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b Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy   

A R T I C L E  I N F O   

Keywords: 
Metal complexes 
Cytotoxicity 
ct DNA 
tRNA 
BSA 
Apoptosis 

A B S T R A C T   

Four new transition metal complexes, [M(PPh3)(L)].CH3OH (M = Ni(II) (1), Pd(II) (2)) [Pt (PPh3)2(HL)]Cl (3) 
and [Ru(CO)(PPh3)2(L)] (4) (H2L = 2,4-dihydroxybenzaldehyde-S-methyldithiocarbazate, PPh3 = triphenyl-
phosphine) have been synthesized and characterized by elemental analyses (C, H, N), FTIR, NMR (1H, 31P), ESI- 
MS and UV–visible spectroscopy. The molecular structure of (1) and (2) complexes was confirmed by single- 
crystal X-ray crystallography. It showed a distorted square planar geometry for both complexes around the 
metal center, and the H2L adopt a bi-negative tridentate chelating mode. The interaction with biomolecules viz., 
calf thymus DNA (ct DNA), yeast RNA (tRNA), and BSA (bovine serum albumin) was examined by both 
UV–visible and fluorescence spectroscopies. The antioxidant activity of all compounds is discussed on basis of 
DPPH• (2,2-diphenyl-1-picrylhydrazyl) scavenging activity and showed better antioxidant activity for complexes 
compared to the ligand. The in vitro cytotoxicity of the compounds was tested on human (breast cancer (MCF7), 
colon cancer (HCT116), liver cancer (HepG2), and normal lung fibroblast (WI38)) cell lines, showing that 
complex (1) the most potent against MCF7 and complex (4) against HCT116 cell lines based on IC50 and selective 
indices (SI) values. So, both complexes were chosen for further studies such as DNA fragmentation, cell 
apoptosis, and cell cycle analyses. Complex (1) induced MCF7 cell death by cellular apoptosis and arrest cells at S 
phase. Complex (4) induced HCT116 cell death predominantly by cellular necrosis and arrested cell division at 
G2/M phase due to DNA damage.   

1. Introduction 

cis-Platin is the first platinum-based drug used for the treatment of 

different types of cancer in clinics and is considered as a precursor for 
other metallotherapeutic drugs such as oxaliplatin, carboplatin [1]. 
Since the discovery of cis-platin, its efficacy is evidenced in diverse types 
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of cancer including ovarian, colorectal, lung, and bladder cancers [2]. 
On the other hand, its toxicity, serious side effects, and drug resistance 
property have limited its usage in the clinic [3,4]. From this point, re-
searchers dedicated their efforts to developing platinum and non‑pla-
tinum metal-based drugs using the advantage of cis-platin (clinical use) 
with new strategies to improve the pharmacological properties and 
elucidating the mechanism of action of the developed drugs [5]. In 
addition to cis-platin and its derivatives, many metal complexes were 
found to be potential anticancer agents, such as ruthenium [6], palla-
dium [7], and nickel [8]. The structure-activity relationship (SAR) is an 
important factor to be taken into consideration while designing an 
anticancer drug [9]. It explains the relationship between the molecular 
structures and their biological activity [10], which enables determining 
the structure or chemical group responsible for the biological effect 
[11]. Then, the structure can be modified to enhance the bioactivity of 
the compounds. Due to the resemblance between the coordination ge-
ometry of Pt(II), Pd(II) and Ni(II) complexes, palladium and, nickel 
complexes have received considerable interest, due to the lesser side 
effect and resistance therapies [7,12]. Platinum is most effective than 
palladium due to ligand exchange kinetics, as palladium complexes 
readily dissociate in solution (105 times faster than Pt), giving very 
active species that are unable to reach the biological target such as DNA 
and RNA and reduce the biological activity [13]. Hence, the structure 
reactivity relationship plays an important role to design more stable Pd 
(II) and Ni(II) complexes by introducing strong chelating agents, a bulky 
ligand such as PPh3 [7,14], or strongly coordinating nitrogen ligand 
[15] to overcome the rapid aquation process of theses complexes. From 
square planar to octahedral complexes (Platinum to ruthenium), inor-
ganic and organometallic ruthenium (II/III) complexes are believed to 
exhibit promising antitumor activity. Ruthenium(III) complex, sodium 
trans-[tetrachlorobis(1H-indazole) ruthenium(III)]) (KP1339) is 
currently developed for clinical investigation [16–18], and Ru(II)- 
polypyridyl compound (TLD − 1433) has recently entered a human 
clinical trial as PDT (photodynamic therapy) agent for bladder cancer 
[19]. 

The unique properties of ruthenium complexes come from their 
chemistry, it has variable oxidation states (+II to +IV), slow ligand- 
exchange kinetics as well as octahedral geometry that allows the 
structure diversity [20]. It has been also reported that ruthenium com-
plexes are less toxic, highly efficient, and selective against specific types 
of tumors due to their strong affinity to bind to biomolecules (DNA/RNA 
and bovine serum albumin (BSA) [18,21–23]. The mechanism of action 
of ruthenium complexes to exert the antitumor effect mainly depends on 
the nature of the ligand, complexes, and uncoordinated sites present in 
the coordination sphere of the metal center [24]. Mechanism of action 
may include inhibition of metastasis [25], binding to DNA and proteins 
[26], apoptotic cell death, and production of reactive species [27]. 

Ligand design also has great importance in the development of 
anticancer agents. S-alkyl and S-aryl dithiocarbazate Schiff bases are an 
important class of biologically active chelating agents. They contain NS- 
donors (hard/soft atoms) within a thioamide (thione-thiol) moiety 
similar to those of thiosemicarbazones [28]. Their flexible properties 
can be also modified incorporating different substituents [29]. This 
characteristic improves their chelating ability by forming a stable 
chelate with five or six-membered rings when linked to the metal ion 
improving their structural stability as well as biological activity [30,31]. 
On the other hand, phosphine-based ligands are ligands of biological 
interest including antitumor, antibacterial, and antifungal properties 
[32]. They can form complexes with varieties of metal ions, such as Ni 
(II), Pd(II), Pt(II), and Ru(II) with valuable bioactivities [7,26,33]. In 
particular, Pd(II)/Ni(II)-PPh3-based complexes, to reduce their higher 
lability to ligand exchange of Ni(II) and Pd(II) centers [7]. 

Nucleic acids (DNA/RNA) and proteins are attractive targets for 
potential therapeutics. So the interaction of transition metals with those 
biomolecules is essential to design any efficient metal-based anticancer 
drugs [34]. However, the binding of transition metals with nucleic acids 

and protein may induce organ toxicity and other undesirable side ef-
fects, i.e. cisplatin can induce in vivo nephrotoxicity and genotoxicity 
[35]. This may be attributed to excessive generation of free radicals by 
the cisplatin inside the cell as well as intra-strand cross-link DNA by the 
cisplatin in healthy cells [36]. That interaction may cause DNA damage 
in vital organs, subsequently the appearance of secondary cancers [37]. 
So, it is important to innovate new metal-based anticancer drugs with 
antioxidant properties to reduce organ toxicity through the free radical. 
Also, the in vivo studies must be excessively done on the new metal-based 
anticancer agents to avoid organ toxicity danger. 

In this paper, due to the interesting properties of both dithiocarba-
zate and PPh3 ligand, we have synthesized and characterized four new 
complexes of 2,4-dihydroxybenzaldehyde-S-methyldithiocarabzate 
(H2L) with Ni(II), Pd(II), Pt(II), and Ru(II) bearing PPh3 ligand; [Ni 
(PPh3)(L)].CH3OH (1), [Pd (PPh3)(L)].CH3OH (2), [Pt (PPh3)2(HL)]Cl 
(3) and [Ru(CO) (PPh3)2 (L)] (4). We report their solution stability, calf 
thymus (ct DNA)/yeast RNA (tRNA) and BSA binding properties, in vitro 
anticancer activity against human normal and cancer cell lines. 
Furthermore, DNA fragmentation, apoptotic activity, and cell cycle ar-
rest indicating that (1, 4) are promising metallotherapeutic candidates. 

2. Experimental 

2.1. Materials 

The starting materials, NiCl2.6H2O, K2PdCl4, K2PtCl4 (Alfa Aesar), 
RuCl3.xH2O (Pressure Chemicals), 2,4-dihydroxybenzaldehyde (Fischer 
Scientific), Deoxyribonucleic acid sodium salt from calf thymus (ct 
DNA), yeast tRNA (Sigma), bovine serum albumin BSA (Biomark, 
98.5%) and HPLC grade solvents were used as received. The complexes 
[Ni(PPh3)2Cl2] [38], [M(PPh3)2Cl2] (M = Pd(II), Pt(II)] [39], [RuHCl 
(CO)(PPh3)2] [40] and S-methyldithiocarbazate [41] were prepared as 
described in literature. All chemicals used for DNA fragmentation and 
flow cytometry are from Sigma. The reagents, Roswell Park Memorial 
Institute (RPMI)1640 medium, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- 
diphenyltetrazolium bromide) and dimethyl sulfoxide (DMSO) (Sigma 
Co., St. Louis, USA), Fetal Bovine serum (GIBCO, UK). The cell lines, 
Human (WI38), Colorectal carcinoma (HCT116), Mammary gland 
breast cancer (MCF7) and Hepatocellular carcinoma (HePG2) were ob-
tained from ATCC via Holding company for biological products and 
vaccines (VACSERA), Cairo, Egypt. 

2.2. Methods 

FT-IR spectra were recorded in the range of 4000–400 cm− 1 on 
JASCO 4100 FTIR spectrophotometer from KBr pellet. NMR (1H and 31P) 
spectra were acquired on Bruker 400 using d6-DMSO as a solvent. ESI- 
MS spectra were performed on Thermo Fisher LCQ Fleet ion trap mass 
spectrometer equipped with HPLC UltiMate™ 3000 system. Elemental 
analyses were done at the Microanalysis unit, Cairo University, Egypt. 
The UV–Vis spectra of the compounds (in DMSO) were recorded by 
JASCO V 630 using a quartz cuvette with 1 cm path-length at 298 K in 
the range of 200–900 nm. Spectrofluorimeter (model 6285, UK) was 
used for fluorescence excitation and emission spectra (200–700 nm). 
Molar conductance values were determined using 10− 3 M solution of 
complexes in DMF using CM-1 K portable conductivity meter. Micro-
plate reader (ELX800, USA) is used for cytotoxic study in MTT assay. The 
single-crystal X-ray diffraction experiment was performed on a Bruker 
Smart APEX II CCD diffractometer with graphite monochromated Mo-Kα 
radiation (l = 0.71073 Å) [42] (Section 1.1, Electronic Supporting In-
formation (ESI†). 
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2.3. Synthesis 

2.3.1. Preparation of 2,4-dihydroxybenzaldehyde-S-methyldithiocarbazate 
ligand (H2L) 

An ethanolic solution of 2,4-dihydroxybenzaldehyde (1.38 g, 10 
mmol, 10 mL) and S- methyldithiocarbazate [41] (1.22 g,10 mmol, 10 
mL) were mixed and refluxed for 4 h in presence of drops of glacial 
acetic acid. The resulting yellow solution was concentrated to one-half 
volume and allowed to cool to room temperature. The yellow crystal-
line product was filtered, washed twice with ethanol, and dried under 
vacuo. Yield: 71%. M. p.: 210–212 ◦C. Anal. Calc. for C9H10N2O2S2 (%): 
C, 44.6; H, 4.1%; N, 11.6%. Found: C, 44.5; H, 4.0; N 11.4%. FT-IR 
(cm− 1) in KBr: ν(O–H) 3429 b, 3296 m; ν(N–H) 3118 w; ν(C=N) 
1629 m; ν(C–O) 1218 m, ν(N–N) 1097 m; ν(C=S) 1025 m;(C–S) 844 
m. 1H NMR (400 mHz, DMSO‑d6, δ ppm, J Hz): δ 2.52 (s, 3H, SCH3), δ 
6.29 (s, 1H, H3), δ 6.33(d, J = 1.2 Hz, 1H, H5), δ 7.47(d, J = 8.0 Hz, 1H, 
H6); δ 8.4(s, 1H, —CH=N); δ 10.07(s, 1H, 4-OH); δ10.25(s, 1H, 2-OH); δ 
13.22 (s, 1H, NH). UV–Vis (DMSO, 1.66 × 10− 5 M): λmax (nm) (ε, M− 1. 
cm− 1): 312 (6807), 361 (35240) 377(25783). 

2.3.2. Preparation of complexes 

2.3.2.1. [Ni(PPh3)(L)].CH3OH (1). To a methanolic solution of H2L 
(0.242 g, 1 mmol), [NiCl2(PPh3)2] [38] (0.653 g, 1 mmol) was added. 
The mixture was refluxed for 3 h and the resulting orange solution was 
concentrated to one third volume followed by addition of small amount 
of diethylether (1 mL). The orange crystals suitable for X-ray crystal-
lography were collected by filtration, carefully washed by methanol and 
diethylether then dried in vacuo. Yield: 78%. M. p.: 140–142 ◦C. Anal. 
Calc. for C28H27N2NiO3PS2 (%): Calcd: C, 56.7; H, 4.6; N, 4.7%. Found: 
C, 56.6; H, 4.4; N 4.5%. FT-IR (cm− 1) in KBr: ν(O–H) 3386 b; ν(C=N) 
1618 s; ν(C=N)new 1585 m; ν(N–N) 1025 m; ν(C–S) 845 m; 
ν(C–O)phenolic 1228 m; ν(Ni–P) 587w; ν(Ni–O) 532 m; ν(Ni–N) 437w; 
ν(PPh3) 1069 m,745 m. 1H NMR (400 mHz, DMSO‑d6, δ ppm, J Hz): δ 
2.50 (s, 3H, SCH3); δ 6.23(d, J = 2.2, 1H, H5); δ 5.78(d, 1H, H3); δ 7.24 
(d, J = 2.0, 1H, H6); δ7.244–7.7(m, 5H, Ph); δ 8.589(s, 1H,— CH––N); δ 
9.88(s, 1H, 4-OH). ESI-MS (m/z): Calcd.: 560.03 ([Ni(L)(PPh3)]), Found: 
582.79 ([Ni(L)(PPh3) + Na]+). UV–Vis (DMSO, 1.66 × 10− 5 M): λmax 
(nm) (ε, M− 1. cm− 1): 306 (30662), 367 (28132), 384 (32349) and 408 
(24518). Molar conductivity (10− 3 M, DMF, ΛM):2.0 Ω− 1cm2mol− 1. 

2.3.2.2. [Pd(PPh3)(L)].CH3OH (2). The ligand (H2L) ((0.12 g, 0.5 
mmol) was dissolved in methanolic solution containing KOH (5 mL, 0.5 
mmol). [PdCl2(PPh3)2] [39] (0.35 g, 0.5 mmol) was added to the above 
solution. The reaction mixture was refluxed for 3 h during which the 
orange precipitate obtained was filtered off, wash with methanol, fol-
lowed by diethylether, and then dried in vacuum. The filtrate was left at 
room temperature for slow evaporation, orange crystals suitable for X- 
ray crystallography were obtained, washed with methanol and dieth-
ylether. Yield: 81%. M. p.: 156–158 ◦C. Anal. Calc. for 
C28H27N2O3PPdS2, Calcd.: C, 52.46; H, 4.25; N, 4.37%. Found. C, 52.42; 
H, 4.02; N 4.25%. FT-IR (cm− 1) in KBr: ν(O–H) 3412,3283 b; ν(C=N) 
1600 s; ν(N–N) 1072 s; ν(C–S) 839 s; ν(C–O)phenolic 1215 s; ν(Pd–P) 
588 w; ν(Pd–O) 530 w; ν(Pd–N) 476 m; ν(PPh3) 979 s,749 m. 1H NMR 
(400 mHz, DMSO‑d6, δ ppm, J Hz): δ 2.56 (s, 3H, SCH3); δ 4.12 (s,1H, OH 
(methanol)); δ 5.99 (s,1H, H3); δ 6.24 (d, J = 2.16 Hz, 1H, H5); δ 7.44 (d, 
J = 4.4 Hz, 1H, H6); δ 7.55–7.63 (m, 15H, Ph); δ 8.57(s, 1H, —CH=N); δ 
9.96(s, 1H, 4-OH). ESI-MS (m/z): Calcd.: 607.99 ([Pd(L)(PPh3)]), 
Found: 609.01 ([Pd(L)(PPh3) + H+]). UV–Vis (DMSO, 1.66 × 10− 5 M): 
λmax (nm) (ε, M− 1. cm− 1): 308 (13012), 350 (9759), 396 (10542). Molar 
conductivity (10− 3 M, DMF, ΛM): 2.0 Ω− 1cm2 mol− 1. 

2.3.2.3. [Pt(PPh3)2(HL)]Cl (3). To an ethanolic solution of H2L (0.12 g, 
0.5 mmol), [PtCl2(PPh3)2] [39] (0.395 g, 0.5 mmol) was added. The 
mixture was refluxed for 3 h. and the resulting yellow solution was 

concentrated to one third volume then left for slow evaporation and the 
yellow precipitate was filtered off, washed with diethyl ether, then dried 
in vacuo. Yield 75%. M. p.:170–172 ◦C. Anal. Calc. for 
C45H39ClN2O2P2PtS2, Calcd.: C, 54.24; H, 3.95; N, 2.81%. Found. C, 
54.0; H, 3.63; N 2.51%. FT-IR (cm− 1) in KBr: ν(O–H) 3283 b; ν(C=N) 
1603 s; ν(C=N)new 1556 s; ν(N–N) 1060 s; ν(C–S) 839 s; ν(C–O)phenolic 
1252 s; ν(Pt–P) 565 w; ν(Pt–O) 504 w; ν(Pt–N) 430 m; ν(PPh3) 998, 
747 m. 1H NMR (400 mHz, DMSO‑d6, δ ppm, J Hz): δ 2.34 (s, 3H, SCH3); 
δ 6.43(s,1H, H3); δ 6.22(d, J = 2.16 Hz, 1H, H5); δ 6.44(d, J = 4.4 Hz, 
1H, H6); 7.18–7.70 (m, 30H, Ph); δ 8.53(s, 1H, —CH=N); δ 10.60(s, 1H, 
4-OH); δ 10.72(s,1H,2-OH). 31P NMR (162 mHz, DMSO‑d6, δ ppm): δ 
2.84 (d, 2JPP = 81.85 Hz), δ 23.76 (d, 2JPP = 70.60 Hz). ESI-MS (m/z): 
Calcd.: 960.15 ([Pt(HL)(PPh3)2]+), Found: 962.64 ([Pd(HL)(PPh3)2 +

2H+]). UV–Vis (DMSO, 1.66 × 10− 5 M): λmax (nm) (ε, M− 1. cm− 1): 370 
(9217), 417 (8675). Molar conductivity (10− 3 M, DMF, ΛM): 42 
Ω− 1cm2mol− 1. 

2.3.2.4. [Ru(CO)(PPh3)2 (L)] (4). The ligand (H2L) (0.242 g, 1 mmol) 
was dissolved in benzene-ethanol mixture (5:1 v/v) and [RuHCl(CO) 
(PPh3)3] [40] (0.952 g, 1 mmol) was added. The mixture was heated 
refluxed for 5 h. The resulting orange solution was concentrated under 
reduced pressure then petroleum ether was added to collect the pre-
cipitate. The yellowish orange product was filtered off, washed with 
Et2O, and dried under vacuo. Yield 62%. M. p.: 160–162 ◦C. Anal. Calc. 
for C46H38N2O2S2 RuP, Calcd.: C, 61.8; H, 4.28; N, 3.13%. Found. C, 
61.60; H, 4.02; N, 3.20%. FT-IR (cm− 1) in KBr: ν(O–H) 3387 b; ν(C=N) 
1625 s; ν(N–N) 1031 s; ν(C –S) 850 w; ν (C–O)phenolic 1216 m; 
ν(Ru–P) 587w; ν(Ru–O) 515 w; ν(Ru–N) 462 w; ν(PPh3) 1031, 744 m; 
ν (C=O) 1937 s. 1H NMR (400 mHz, DMSO‑d6, δ ppm, J Hz): δ 2.51 (s, 
3H, SCH3); δ7.236–7.45 (m, 30H, Ph); δ 7.51 (s, 1H, H3); δ7.591(d, 1H, 
H6); δ 8.24 (s, 1H, —CH=N); δ10.12 (s, 1H, 4-OH). 31P NMR (162 mHz, 
DMSO‑d6, δ ppm): δ 29.31(s, 1P), 36.26 (s, 2P). ESI-MS (m/z): Calcd.: 
894.08 [Ru(L)(CO)(PPh3)2], Found: [Ru(L)(CO)(PPh3)2+ H+]. UV–Vis 
(DMSO, 1.66 × 10 − 5 M): λmax (nm) (ε, M− 1. cm− 1): 350 (11446), 395 
(13313). Molar conductivity (10− 3 M, DMF, ΛM): 10 Ω− 1cm2mol− 1. 

2.4. Solution stability 

Study the stability of the complexes in aqueous media is essential to 
evaluate the biological activity of any metallodrug [43]. A stock solution 
of 10− 3 M of each complex was prepared in DMSO (to improve solubi-
lity). The sample solutions were prepared by dilution of stock with 
phosphate-buffered saline (PBS): pH 7.4, 137 mM NaCl, 2.7 mM KCl, 10 
mM Na2HPO4 and 1.8 mM K2HPO4). The stability of complexes (1.66 ×
10− 5 M) was carried out in (1.6% DMSO/PBS v/v). The absorption 
spectra of the complexes were measured with increasing time (over 24 
h) at room temperature. 

2.5. Biological applications 

2.5.1. Interaction with biomolecules 
The interaction studies of biomolecules (ct DNA, tRNA and BSA) 

were performed in Tris-HCl buffer (pH = 7.2, 5 mM Tris-HCl + 50 mM 
NaCl). The ctDNA and tRNA concentrations were determined spectro-
photometrically at 260 nm (ε = 6600 M− 1 cm− 1 for ct DNA) and (ε =
7700 M− 1 cm− 1 for tRNA) [44], whereas the concentration of BSA was 
determined at 280 nm (ε = 66,433 M− 1 cm− 1). The required concen-
trations of the test samples were prepared by dissolving the compound in 
a minimum amount of DMSO, then completed to the required volume 
with Tris buffer (1% DMSO/buffer). All the measurements were carried 
out at room temperature. 

2.5.1.1. Absorption studies. The binding affinity of biomolecules 
(ctDNA, tRNA) towards metal complexes was investigated using 
UV–visible spectroscopy. Various concentrations of ctDNA (0–140 μM)/ 
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tRNA (0–45 μM) were added to a fixed concentration of the test com-
pound 70 μM for ct DNA and 45 μM for tRNA. The absorption spectra 
were measured at 300–500 nm. Tris buffer was used as a blank, and an 
equivalent amount of ct DNA/tRNA was added to the reference cell to 
cancel the absorbance of ctDNA/tRNA. 

2.5.1.2. Emission study. As the complexes has no fluorescent properties, 
fluorescence emission spectra of the ligand and its complexes were 
studied by pretreating the nucleic acid (ctDNA or tRNA) with ethidium 
bromide (EB) ([ctDNA] = 50 μM, [tRNA] = 80 μM, [EB] = 5 μM in Tris- 
HCl buffer. Different concentrations of test compounds (0–100 μM) were 
added to the EB/DNA adduct. The emission was measured at 300–600 
nm and the reduction in fluorescence intensity was recorded at 590 nm. 
The quenching constant was evaluated by employing the Stern-Volmer 
equation [45]. 

2.5.2. BSA interaction studies 

2.5.2.1. Absorption studies. The BSA-complexes interaction was also 
determined spectrophotometrically by keeping the concentration of BSA 
constant (15 μM) with adding different concentrations of test compound 
(0–30 μM). The absorption spectra were recorded in the range 300–500 
nm after 5 min incubation period. 

2.5.2.2. Emission study. The quenching emission of BSA tryptophan 
residues was depicted using the ligand and complexes as quenchers. To a 
fixed concentration of BSA (50 μM) in Tris-HCl buffer, varying concen-
trations of quencher (0–50 μM) were added, and the emission intensity 
was measured after a 5 min incubation period. The fluorescence emis-
sion spectra were scanned from 300 to 500 nm (excitation at 295 nm). 
To determine the quenching parameters of the complexes for BSA, Stern 
Volmer equations [46] were used. 

2.6. Antioxidant activity by DPPH• (2,2-diphenyl-1-picrylhydrazyl) 
radical scavenging assay 

The free radical scavenging activity was determined as reported in 
the literature [47]. Various concentrations of the test compounds 
(25–600 μM) and reference compound (ascorbic acid as a standard) 
were prepared in 2.0 mL of DMSO. Then mixed with 1 mL of DPPH in 

DMSO. The resulting solution was incubated in dark at room tempera-
ture for 30 min before spectrophotometric measurement at 517 nm. The 
DPPH• scavenging activity percent was determined using Eq. (1): 

%DPPH scavenging activity =
Ac − As

Ac
× 100 (1) 

Where Ac and As are the absorbances in the presence and absence of 
the test compound, respectively. The antioxidant activity is expressed 
based on IC50 value and other antioxidant parameters: antioxidant 
reducing power (ARP), effective concentration (EC50), stoichiometry, 
and the number of reduced DPPH have been also determined [48]. 

2.7. In vitro cytotoxic activity assay 

The cytotoxic activity of the synthesized compounds was evaluated 
to determine the inhibitory effects of compounds on cell growth using 
MTT assay as depicted in (Section 1.2, ESI†). 

2.8. Anticancer mechanism 

2.8.1. Quantitative analysis of DNA fragmentation 
DNA fragmentation by the complexes (1) on MCF7 and (4) on 

HCT116 cell lines was analyzed calorimetrically by diphenylamine 
(DPA) reaction as explained in Section 1.3, ESI†). 

2.8.2. Cell apoptosis by flow cytometry 
The cell death mode of MCF7 cells by complex (1) and HCT116 cells 

by complex (4) line has been performed by annexin V-FITC/PI (propi-
dium iodide) assay (Section 1.4, ESI†). 

2.8.3. Cell cycle analysis 
The effect of complexes (1) and (4) on the DNA content by cell cycle 

progression was assessed using MCF7 and HCT116, respectively (Section 
1.5, ESI†). 

3. Results and discussion 

3.1. Synthesis 

Synthesis and characterization details of the ligand and its complexes 

(a) (b)

Fig. 1. Molecular structures for (a) [Ni(PPh3)(L)].CH3OH (1) and (b) [Pd(PPh3)(L)].CH3OH (2).  
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have been mentioned in the experimental Section 2.3 (Synthesis). All 
synthesized compounds are stable in air, insoluble in water, but fairly 
soluble in DMSO and DMF, and partially soluble in CH2Cl2 and CH3CN. 
The complexes (1), (2), and (4) showed lower molar conductance values 
(2.0–10.0 Ω− 1cm2mol− 1) which indicated the non-electrolytic nature of 
the complexes, whereas complex (3) has a value of 42 Ω− 1cm2mol− 1 

indicating 1:1 electrolytic behavior [49]. 

3.2. Characterization 

3.2.1. Molecular structure 
Suitable crystals for X-ray diffraction analysis for nickel(II) and 

palladium(II) complexes [M(L)(PPh3)3].(CH3OH) (M = Ni (1), M = Pd 
(2)) were obtained by slow evaporation of their methanolic solutions. 
Crystallographic data of complexes (1) and (2) are listed in (Table S1, 
ESI†) and their molecular structures are shown (Fig. 1a and b). The 
ligand 2,4-dihyroxybenzaldehyde S-methyl dithiocarbazate (L2− ) co-
ordinates to Ni(II) or Pd(II) centers in a bi-negative tridentate manner 
through phenolic oxygen O1, azomethine N1, and thiolate sulfur S2, 
forming stable five- or six-membered chelate rings. The nickel or 
palladium center adopts a slightly distorted square planar geometry 
with bond angles; O1–Ni–P 88.97 (5)◦, P–Ni–S1 89.89 (2)◦, S1–Ni–N1 
86.64 (5)◦ and N1–Ni–O1 94.54 (7)◦ of the sum 360◦ and the angles; 

O1–Ni–S1 176.74 (6) and P–Ni–N1 176.44 (6)◦ near the ideal angle 
180◦. Similar related bond angles (Table 1) are found for palladium(II) 
complex (2). Bond angles with a square planar coordination environ-
ment of Ni(II) and Pd(II) are in agreement with that found in the liter-
ature [50,51]. The donor atoms O1, N1, and S1 form the tridentate 
ligand (H2L), and the phosphorous atom P of PPh3, occupies the square 
plane. For complexes (1) and (2), the data depicted in Table 1 of bond 
lengths M – X (M = Ni(II), Pd(II); X = O, N, S, P) are similar to those 
reported for related nickel(II) and palladium(II) complexes [50,52] The 
C2–N2 bond (1.275(3)Å)(1), (1.275(2)Å)(2) as the usual C––N bond 
length [53,54]. The bond length C2–S1 1.743(2) Å for (1) and 1.752(2) 
Å for (2) is the same for the single bond C2–S2 1.752(2)(1) 1.7514(9)Å 
(2). This is close to that found for similar related O,N,S- donor ligands 
chelated in their thiolate form [50,54], where the thiol form is also 
characterized by the fact that the hydrazinic nitrogen N1 is not bonded 
to any hydrogen atom. The selected bond parameters are listed in 
Table 1. 

The data of specific contacts O∙∙∙H, S┄H and C┄H of the intermo-
lecular hydrogen bonding interactions characterized in the lattice for 
complexes (1) and (2) are presented in Table 2. Each molecule of the 
complex is connected with a strong hydrogen bond between O3 of 
CH3OH solvent and H2 of the free hydroxyl group (dH(H2⋯O3) = 2.005 
Å (1), 1.971 Å (2)). The distances dH(O┄H) are shorter than the 
maximum values of 2.72 Å for the van der Waals radii of hydrogen and 
oxygen atoms and considered for any contact [55]. The molecules are 
interconnected via S2 atom from one molecule and H24(1) or H18(2) of 
the other neighboring one, with a weaker interaction C18–H24(H18)⋯ 
∙S2 dH(H24(H18)⋯∙S2) = 2.924 Å (1), 2.97 Å (2). This is similar to that 
observed in related O,N,S- metal complexes [56–58]. The molecules 
form parallel planes which are constructed through C10 (PPh3) in a 
plane and H3(L2− ) of the other plane the contact C3–H3⋯C10 
(dH(H3⋯C10) = 2.802 Å (1), 2.857 Å (2)). In each complex ((1) or (2)), 
the molecules are also specifically contacted through C28(CH3OH) and 
H2(2-OH), dH(H2⋯C28) = 2.854 Å (1) or through C13(PPh3) and H3A 
(CH3OH), dH(H3A⋯C13) = 2.748 Å (2). These lattice contacts are 
shown in (Fig. S1a,b, ESI†). 

3.2.2. Vibrational spectra 
The infrared spectral data of the ligand and its complexes have been 

identified and presented in the experimental Section 2.3. The FTIR 
spectrum of the free ligand (H2L) (Fig. 2a), showed its distinctive bands 
at 3429 and 3118 cm− 1 which are assigned to ν(O–H) and ν(N–H) 
stretching vibrations, respectively. In addition, the presence of ν(C=S) 
stretching vibration at 1097 cm− 1, suggests the presence of thione form 
(HN–C = S) of the free ligand (Schem1a). This phenomenon is also 
supported by the absence of ν(S–H) at ca. 2500 cm− 1 [48,59]. In the 
FTIR spectra of complexes (1), (2) and (4), the ν(O–H) and ν(N–H) 
bands disappeared, and the ν(C–O) band shifted to higher frequency 
[60,61] (1227–1252 cm− 1) as compared to free ligand (1218 cm− 1). 
This result ascertained the involvement of phenolic oxygen (2-OH) in 
coordination after deprotonation [60]. The coordination via azomethine 
nitrogen ν(C=N) was indicated by the shift of this band to lower fre-
quency in the spectra of the complexes in the (1600–1625 cm− 1) region. 
This is also supported by the shift of ν(N–N) to lower frequency 
(1027–1060 cm− 1) compared to those of the parent ligand (1097 cm− 1). 
The absence of ν(C=S) band at 1025 cm− 1 in the ligand is replaced by a 
lower frequency band (839–850 cm− 1) for ν(C – S) [62] in complexes 
along with the appearance of a new strong azomethine band in 
1556–1580 cm− 1 region due to the formation of (C––N – N = C – S‾) 
moiety (Scheme 1c), this confirms that the ligand coordinates to the 
metal center through the deprotonated thiol sulfur (Scheme 1b). This 
concludes that the ligand acts as a bi-negative tridentate ONS-donor 
through deprotonated phenolic oxygen, azomethine nitrogen, and thi-
olate sulfur as shown in (Fig. 2b, as a representative example). 

Another coordination mode was exhibited by platinum(II) complex 
(3), where there is no significant shift in ν(O–H) bands, while ν(N–H) 

Table 1 
Selected bond lengths (Å) and bond angles (◦) for nickel(II) (1) and palladium(II) 
(2) complexes.   

(1) (2) 

Bond lengths (Å) 
M–S1 2.1475(6) 2.2455(6) 
M–O1 1.8536(16) 2.0192(5) 
M–N1 1.8808(18) 2.0112(16) 
M–P 2.2173(6) 2.2759(6) 
C2–N2 1.275(3) 1.275(2) 
C2–S1 1.743(2) 1.752(2) 
C2–S2 1.752(2) 1.7514(9)  

Bond angles (◦) 
O1–M–P 88.97(5) 91.28(4) 
P–M–S1 89.89(2) 92.314(19) 
S1–M–N1 86.64(5) 84.12(5) 
N1–M–O1 94.54(7) 92.38(1) 
O1–M–S1 176.74(6) 175.45(5) 
P–M–N1 176.44(6) 175.91(5)  

Table 2 
Hydrogen bonding parameters for complexes (1) and (2).  

D–H⋅⋅⋅A Symmetry D–H 
(Å) 

H⋅⋅⋅A 
(Å) 

D⋅⋅⋅A 
(Å) 

D–H⋅⋅⋅A 
(◦) 

(1) 
(i) O┄H and S┄H 

contacts      
O2–H2⋯O3 x,3/2–y,–1/2 

+ z 
0.775 2.005 2.762 165.66 

C18–H24⋯S2 x,3/2–y,1/2 
+ z 

0.93 2.924 3.684 139.91 

(ii) C┄H contacts      
O2–H2∙∙∙C28 x,y,z 0.775 2.854 3.568 154.39 
C3–H3∙∙∙C10 2–x,2–y,1–z 0.93 2.802 3.668 155.04  

(2) 
(i) O∙∙∙H and S∙∙∙H 

contacts      
O2–H2∙∙∙O3 x,3/2–y,–1/2 

+ z 
0.81 1.971 2.771 168.97 

C18–H18∙∙∙S2 x,y,z 0.93 2.97 3.707 137.16 
(ii) C∙∙∙H contacts      

O3–H3A∙∙∙C13 –1 + x,3/ 
2–y,–1/2 + z 

0.82 2.748 3.509 155.1 

C3–H3∙∙∙C10 1–x,1–y,1–z 0.93 2.857 3.726 156.2  
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band disappeared, and a shift to a lower frequency for ν(C=N) was found 
together with new bands display for ν(C=N) and ν(C–S) as in complexes 
(1), (2) and (4). This confirms the mono-negative bi-dentate (HL) 
manner of the ligand as NS-donor through azomethine nitrogen and 
thiol sulfur (Scheme 1b). In all complexes, the new bands observed at 
1091–1097 and 692–694 cm− 1 are designated to ν(P-Ph) stretching vi-
brations [63], while the bands appeared at 565–586 cm− 1 due to 
504–532 and 430–476 nm are due to ν(M – P), ν(M – N) and ν(M – N), 
respectively [64,65]. In Ru(II) complex (4), the strong band observed at 
1937 cm− 1 is characteristic for ν(CO). The presence of CH3OH molecule 
in the structure of the complex (2) is defined by the band at 3597 cm− 1 

and that of complex (1) is obscured by the broad band at ca. 3500 cm− 1. 
The FTIR spectra of the complexes (1)–(3) are presented in (Fig. S2a–c, 
ESI†). 

3.2.3. NMR spectra 
All 1H NMR spectral data and their assignments of H2L ligand and its 

complexes are stated in the experimental section (2.1) and (Fig. S3a–e, 
ESI†). The 1H NMR spectrum of the ligand shows singlets at δ13.22, 
10.25, 10.07, 8.40, 6.29, and 2.52 due to NH, 2-OH, 4-OH, CH = N, 3-H, 
and S-CH3 protons, respectively [48,60]. The two doublets occurred at δ 
6.33 (J––1.2 Hz) and δ 7.47 (J = 8.0 Hz) are assigned to 5-H and 6-H 
respectively. The absence of SH signal at ~4.0 ppm, confirms the thi-
one moiety of the ligand (Scheme 1a). In 1H NMR spectra of the com-
plexes (1), (2) and (4), the NH and 2-OH signals disappeared upon 
coordination indicating the deprotonation before the coordination. 
Furthermore, the coordination of azomethine nitrogen is confirmed by 
the downfield or upfield shift (8.24–8.61 ppm) of azomethine proton 
(CH=N) [66]. The splitting of the CH resonance of azomethine protons 
may be due to the nuclear quadrupolar effect [67,68]. Thus, the 1H NMR 

data are constituent with a bi-negative tridentate behavior as ONS- 
chelating donor for all complexes except for that for platinum(II) (3), 
where NH signal disappeared and the 2-OH signal remain unaltered. 
This indicates that the ligand coordinates to the Pt(II) center in a mono- 
negative bidentate manner through thiol sulfur and azomethine nitro-
gen as NS-donor (Fig. 3a). The triphenylphosphine protons are located 
in their expected position at δ7.18–7.70 ppm [63]. The 31P NMR spec-
trum of Pt(II) complex (3), shows two doublets at δ 2.70 and 23.48, 
which indicates the presence of two magnetically different P-atoms co-
ordinated to platinum(II), corresponding to four satellite signals of the 
Pt(II) ion [69]. For Ru(II) complex (4) (Fig. 3b) two signals at 29.0 and 
36.33 ppm are shown, indicating the presence of two coordinated tri-
phenylphosphine groups in cis-configuration [70]. 

3.2.4. Mass spectra 
Electron Spray Ionization mass (ESI-MS) is a valuable technique for 

molecular weight determination in coordination compounds. The ESI- 
MS spectra of the complexes (1)–(4) are shown in (Fig. S4a–d, ESI†). 
Their molecular ion peaks [M+] are in good agreement with the pro-
posed chemical structure. The positive ion ESI-mass spectrum of [Ni(L) 
(PPh3)].CH3OH complex (1) shows fragmentation patterns attributed to 
subsequent degradation of the complex. The signal at m/z = 582.79 
(Calcd. 583.02, 100%) and 298.92 (Calcd. 297.94, 12%) ascribed to [Ni 
(L)(PPh3) + Na]+ and [Ni(L) + H]+, respectively. In addition, the signal 
located at m/z = 1144.23 (Calcd. 1120.06) with relative abundance 
100%, attributes to [Ni(L)(PPh3)]2 + Na]+, and assigned to association 
of two molecules. The positive ion ESI-mass spectrum of [Pd(PPh3) 
(L)].CH3OH complex (2) shows molecular ion peak at m/z = 609.01 
(Calcd. 607.99) with a relative abundance of 100% corresponds to [Pd 
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(L)(PPh3) + H]+, while in negative ion mode the base peak signal 
showed up at 607.32 with relative abundance 100% corresponds to [Pd 
(PPh3)(L)-H]− and the second fragment located at 345.16 (345.91, 20%) 
due to [Pd(L)-H]− fragment. The positive ion ESI-mass spectrum of [Pt 
(HL)(PPh3)2]Cl complex (3), shows its molecular ion peak at m/z =
962.64 (Calcd. 960.15 with relative abundance 10%) is assigned to [Pt 
(PPh3)2(HL)]+. The other fragment observed at m/z = 698.01 (100%, 
Calcd. 698.06) is attributed to [Pt(HL)(PPh3)]+ arising from the loss of 
one PPh3 ligand. The positive ion ESI-mass spectrum of [Ru(CO) 
(PPh3)2(L)] complex (4) show the first signal at m/z = 895.15 with 
relative abundance 100% (Calcd. 894.08) assigned to [Ru(CO) 
(PPh3)2(L) + H]+. The second signal appeared at m/z = 633.0 (8%, 
Calcd. 631.99) is attributed to [Ru(CO)(PPh3)(L) + H]+ which corre-
spond to the cation formed by missing of PPh3 ligand. 

3.2.5. Electronic spectra and magnetic susceptibility measurements 
The magnetic susceptibility measurements revealed that all com-

plexes are diamagnetic with square planar geometry for Ni(II), Pd(II), 
and Pt(II) complexes which assigned to their (d8) configuration [71] and 
low spin (d6, S = 0) for Ru(II) complex [48,54]. The UV–visible spectra 
of the ligand and its complexes (1)–(4) were measured for 1.6 × 10− 5 M 
in DMSO solution at room temperature in the 200–600 nm range. The 
electronic spectrum of the ligand shows absorption bands in 290–377 
nm which are assigned to π-π* and n-π* transitions that resulted from 
azomethine and thiocarbonyl moieties [72,73]. In the electronic spectra 
of the complexes, these bands were shifted into higher wavelength 
(redshift) 307–450 nm along with the appearance of a new band in 
385–420 nm due to metal-to-ligand charge transfer (MLCT) due to the 
coordination of metal (II) ion with the azomethine nitrogen and thiol 
sulfur [74,75]. The d-d transition bands of the complexes obscured due 
to their relatively low extinction coefficient compared to ligand-to-metal 
charge transfer (LMCT) or MLCT [76]. The electronic spectra measure-
ments are shown in (Fig. 4 and Table S2, ESI†). 

3.2.6. Solution stability 
Study the stability of metal complexes in solution is an essential step 

while evaluating their interaction with biomolecules and anticancer 
activity [43]. As the anticancer agents are usually introduced into the 
bloodstream, it is worth studying their stability in aqueous media. For 
example, it is reported that hydrolysis has a positive influence on the 
anticancer activity of ruthenium(II) and platinum(II) complexes by 
activating the DNA binding [77,78]. Hence, the solution stability of the 
complexes (1)–(4) was studied by UV–Vis spectroscopy in phosphate- 
buffered saline (pH = 7.4) containing 1% DMSO over a time period of 
24 h (Fig. S5, ESI†). The complexes displayed an increase of absorbance 

during the first hour near 360 and 400 nm attributed to fluctuation or 
modification of the original compounds, then the data obtained up to 24 
h shows a decrease in absorbance with no significant changes in band 
positions indicating substantial stability of the complexes in buffer- 
DMSO solution [74,79]. Complex (3) shows a slight spectral change at 
λ = 430 nm which may simply result from the solvent exchange (DMSO 
or H2O) with chloride ion. 

4. Biological applications 

4.1. Interaction with biomolecules (ct DNA and tRNA and BSA) 

In classical studies, DNA was known as the major target to design any 
anticancer drugs.Recently, RNA also not less important than DNA in that 
purpose, as the RNA itself is synthesized from DNA during the tran-
scription process [80] which in turn produces proteins in the body by 
structures call ribosomes [81]. This concludes that both DNA and RNA 
possess an important role in the drug design field and they are also the 
key factor for many deadly diseases. Thus, in this context, we have 
studied the binding properties of nucleic acid (ct DNA, tRNA) and BSA 
with our complexes (1)–(4) compared to the parent ligand (H2L) using 
absorption and emission studies. 

4.1.1. Absorption studies 

4.1.1.1. Ct DNA/tRNA binding studies. Electronic absorption titration of 
the ligand and its complexes (1)–(4) has been carried out using UV–vi-
sible absorption spectra of the tested compounds in the absence and 
presence of nucleic acid in the range of 200–600 nm. With the incre-
mental addition of ct DNA/tRNA to a fixed concentration of the com-
pounds, the absorption band observed at 350–420 nm decreased with 
6–20% hypochromism. This confirms that the compounds undergo 
interaction with the nucleic acids via intercalation mode [82]. This 
mode of interaction is typically due to the π-π stacking interaction of 
aromatic chromophore of the ligand with the base pairs of the nucleic 
acid, which result in conformational alternation on the molecules of 
DNA [83]. The binding strength of the compounds with nucleic acid has 
been determined based on the intrinsic binding constant (Kb) using the 
Wolfe–Shimer Eq. (2) [84,85]: 

[Nucleic acid]
(
εa − εf

) =
[Nucleic acid]
(
εb − εf

) +
1

Kb
(
εb − εf

) … (2) 

Where [Nucleic acid] is the molar concentration of ct DNA or tRNA, 
εa is the apparent extinction coefficient of the complex bound to nucleic 
acid (Aobs/[compound]), εf and εb are the extinction coefficients of the 
free complex and that fully bound to DNA, respectively. The electronic 
spectral changes upon addition of the nucleic acid to the complexes (1)– 
(4) are presented in Fig. 5 and Fig. S6a, ESI† for the ligand. The equi-
librium binding constant (Kb) was obtained from the plot of [DNA] or 
[RNA]/(εa - εf) vs [DNA] or [RNA] (Fig. 5) and dividing slope over the 
intercept. The intrinsic binding constant (Kb) of the compounds was 
found to be in the order 104 M− 1 as depicted in Table 3. The Kb values for 
the complexes are of the order (4) > (3) > (1) > (2) > (H2L). This in-
dicates that the binding affinity of complexes is increased than that of 
the ligand to ~2.5–8.0-fold for ct DNA and 12–24-fold for tRNA. The 
binding affinities of tRNA to the metal complexes are greater than those 
of the DNA (4.5–8.9 × 104 M− 1), which was expected due to striking 
differences in the 3-dimensional morphology of ct DNA and tRNA. 
Moreover, in contrast to DNA, the minor groove of RNA helix is wider 
(shallow minor groove), which is more accessible for specific binders, to 
form hydrogen bonds to the hydroxyl and phosphate groups with the 
aromatic chromophore ligand [86]. The binding constant (Kb) values of 
the compounds are 4.60 (4) > 3.40 (3) > 2.02 (1) > 1.38 (2) > 0.58 
(H2L) × 104 M− 1 for ct DNA and 8.90 (4) > 6.90 (3) > 5.40 (1) > 4.50 
(2) > 0.37 (H2L) × 104 M− 1 for tRNA (Table 3), which are similar to 
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those obtained for related nickel(II) and palladium(II)-PPh3 base com-
plexes of hydrazone complexes [8,74]. 

4.1.1.2. Bovine Serum Albumin (BSA) binding studies. Study the inter-
action of small molecules with bovine serum albumin (BSA) have 
recently received much attention from researchers in chemistry, 

biology, and pharmacology due to their significant importance in 
pharmacology as it consists of 76% similarity with HSA [87]. The 
electronic absorption study is a very useful tool to evaluate the 
quenching type (static or dynamic) as well as the structural changes of 
BSA by the effect of interaction with small molecule drugs [88]. This 
study has been performed for BSA without and with different 
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concentrations of the test compounds (ligand and its complexes) in Tris- 
HCl buffer (pH 7.2) in the range 200–320 nm. The absorption spectra of 
complexes (2)–(4) are presented in Fig. 6 (as representative examples), 
the ligand and complex (1) are presented in (Fig. S6b, ESI†) and the 
binding constant data are depicted in Table 4. It has been observed that 
increasing the concentration of the compounds results in increasing the 
absorbance intensity with hyperchromism from 5.30–62.5% for all 
compounds with blue-shift (4–5 nm) for the complexes. This informs 
that the interaction between BSA and the test compounds is static and 
the complexes are in the ground state [89]. These data may also explore 
that the structural changes have occurred as a result of non-covalent 
binding mode (electrostatic or via hydrogen bonding interaction be-
tween the compounds and BSA). In complex (2), an isosbestic point (not 
sharp) was observed at ca. 293 nm, which indicated that the interaction 
between BSA and the complex attained equilibrium [90,91]. The bind-
ing strength of the compounds with BSA has been determined using 

Benesi–Hildebrand Eq. (3) [88]: 

(A∞ − Ao)

(Ax − Ao)
=

1
Kb[compound]

+ 1… (3) 

Where Ao is the absorbance of free BSA, Ax, the absorbance of BSA 
upon addition of different concentrations of the compounds, and A∞ is 
the fully bound BSA with the compounds. The binding constants for the 
ligand and its complexes can be obtained from the linear relation be-
tween (A∞–Ao)/(Ax–Ao) against (1/[compound]) (Fig. 6, Fig. S6b, ESI†) 
and intercept to slope ratio. The obtained binding constants of the 
compounds are (1.70–4.29) × 104 M− 1 and in the order of (4) > (3) >
(1) > (2) > (H2L). The same as ctDNA and tRNA, the compounds follow 
the same order and the complex (4) had the highest binding affinity with 
the protein in a spontaneous fashion. 

It is worth noting that the process of dynamic quenching occurs only 
in the excited state, where the lifetime is extremely short, the quencher 
(compounds) and fluorophore (BSA) come into contact during the 
temporary existence of the excited state, and it has no role in the ab-
sorption spectrum [92]. 

4.1.2. Emission studies 
Fluorescence quenching is considered an important technique to 

study the binding affinity of the drug and biomolecules (DNA, RNA and 
proteins). The binding affinity of the synthesized compounds cannot be 
directly detected by emission spectra, as they don't show any fluores-
cence in presence of ct DNA or tRNA, hence ethidium bromide (EB) 
displacement assay has been employed to investigate the binding af-
finity of ctDNA and tRNA to metal complexes. Ethidium bromide (EB) is 
the most widely applied fluorophore that strongly intercalates between 
base pairs of DNA and RNA to flourish a fluorescence that can be 
measured at 600 nm [93]. 

Table 3 
Ct DNA and tRNA binding constants (Kb, Ksv, Kq and Kapp) obtained from ab-
sorption and fluorescence spectroscopy for the ligand and its complexes.  

Compound Absorption 
spectroscopy 

Emission spectroscopy 

(Kb) × 104 Ksv (M− 1) × 103 Kq (M− 1S− 1) ×
1011 

Kapp ×

105 

ct 
DNA 

tRNA ct 
DNA 

tRNA ct 
DNA 

tRNA ct DNA 

H2L 0.58 0.37 2.95 2.65 1.34 1.2 2.7 
(1) 2.02 5.4 3.76 2.82 1.7 1.28 3.7 
(2) 1.38 4.5 − 1.97 – − 0.89 – – 
(3) 3.4 6.9 8.4 6.69 3.8 3.04 7.9 
(4) 4.6 8.9 12 9.46 5.45 4.3 8  
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Fig. 6. (Left): Absorption spectra of BSA (15 μM) in absence and presence of increasing amounts complexes (2)–(4) (0–30 μM) in Tris-HCl buffer pH = 7.2 at 25 ◦C. 
Arrow indicates the changes in absorbance upon increasing the compound concentration. (Right): Benesi – Hildebrand linear plot [(A∞-Ao)/(Ax-Ao)] versus 1/ 
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4.1.2.1. Ct DNA and tRNA binding studies.. If the test compound can 
displace ethidium bromide from ctDNA/tRNA-EB adduct, the fluores-
cence intensity will be quenched (due to the formation of a non- 
fluorescent complex), and the interaction between the small molecule 
and the nucleic acid will be intercalation [94,95]. On the other hand, if 
the complex failed to displace EB from nucleic acid-EB, the surface or 
groove binding may take place. In the present study, while adding 
increasing amounts of the complexes to nucleic acid-ethidium bromide 
(NA-EB) adduct, the fluorescence intensity at 580 nm is reduced for the 
H2L and its (1, 3, 4) complexes (Fig. 7 and H2L (Fig. S6c). Conversely, 
the palladium complex (2) showed a different mode of interaction, 
where the fluorescence intensity is enhanced upon addition of the 
complex (Fig. 7), this indicates that this complex (2) interacted with 
ctDNA-EB adduct via another way rather than intercalation (interact via 
non-competitive inhibition) and a negative binding constant was ob-
tained [96–98]. Furthermore, in the case of yeast tRNA (Fig. 7), the 
emission intensity is decreased at the beginning within the concentra-
tions (5–25 μM) with 17% hypochromism and bathochromic shift of 4 
nm, then the enhancement takes place with the concentrations (30–75 
μM) with 10% hyperchromism and bathochromic shift 7 nm, which also 
confirms that interaction of tRNA with complex (2) occurs differently 
(intercalation along with surface binding)[98], for the differential 
structure of DNA and RNA [99]. 

The quenching efficiency can be measured from Stern-Volmer Eq. (4) 
[46]: 

Fo/F = 1+Ksv[Q], (4) 

Where Fo and F stand for the fluorescence intensities before and after 
the addition of quencher, respectively, Ksv is Stern-Volmer rate constant, 
and [Q] is the concentration of the quencher. Ksv is obtained from the 
slope of the linear relation between Fo/F and [Q] and the Ksv values were 
presented in Table 3. 

The dynamic or collision quenching constant (Kq) can be calculated 
from Ksv using the Eq. (5): 

Ksv = Kqτo, (5) 

Where τo is the lifetime of the fluorophore in absence of the 
quencher, which is often approximate at 10− 8 s [100]. It was found that 
the calculated biomolecular rate constant (Ksv, Table 3) is higher than 
(2.0 × 1010 M− 1S− 1), the maximum collisional quenching of different 
types of biopolymer quencher, which confirm the results obtained from 
absorption spectra, the quenching takes place through NA-complex 
formation [82]. 

Furthermore, the apparent binding constant (Kapp) can be evaluated 
using the Eq. (6). 

KEB[EB] = Kapp[Complex]50% (6) 

Where KEB is 1.0 × 107 and [EB] = 5 μM and [Complex]50% is the 
complex concentration at a 50% reduction of the fluorescence intensity. 
It has been found that all binding constant values (Ksv, Kq, and Kapp) 
follow the order: (4) > (3) > (1) > (H2L) as shown in Table 3. The 
complex (2) is not in order, as the enhancement is observed in Fig. 5b. 
These results reveal that, among all compounds, the Ru(II) complex (4) 
possesses the strongest affinity to ctDNA and tRNA. By comparing with 
some Schiff base metal complexes of triphenylphosphine 
[26,48,54,74,95], the reported binding constants are in the order 
103–104 M− 1 range which is similar or lower than those obtained in the 
current study. 

4.1.2.2. BSA binding studies. The binding properties of BSA with the 
synthesized compounds have been also studied using fluorescence 
spectroscopy to confirm whether the BSA-complex formation follows a 
static or a dynamic quenching mechanism. The emission spectrum of 
BSA shows its characteristic peak at ~340 nm (excited at 290 nm) that is 
associated with the existence of tryptophan residues (Trp134 and Trp 
213). Trp 134 is located on the surface of the protein, while Trp213 
residue present within a hydrophobic binding pocket of the molecules. 
Both residues have an intrinsic fluorescence [101,102]. The successive 
addition of the compounds to BSA in buffer solution results in quenching 
in fluorescence intensity in the complexes (1)–(4). This quenching is 
usually assigned to static quenching mechanism as the changes occur in 
BSA secondary structure as a result of binding to the compounds, and 
this indicates that the formation of a ground state new complex between 
BSA and metal complexes rather than dynamic collision [103]. 
Conversely, in the addition of different amounts of H2L to BSA solution, 
the intrinsic fluorescence of protein is enhanced at 450 and 485 nm, 
where their interaction may occur in different a different mechanism 
[104]. Emission spectra of the ligand (H2L) and complexes (1)–(4) are 
shown in (Fig. S6d, ESI†). 

The Stern-Volumer (Ksv) and quenching rate (Kq) constants were 
obtained from Stern-Volumer Eqs. (4) and (5), respectively. Both values 
(Ksv and Kq) were obtained from the plot of Fo/F versus [Q] for complexes 
(1)–(3), but not for H2L and complex (4) due to the negative slope and 
nonlinearity, respectively. So, the quenching process was further 
analyzed using the modified Stern-Volmer Eq. (7) [105] below for the 
complexes (1)–(4) (Fig. 8). 

Fo

(Fo − F)
=

1
faKa[Q]

+
1
fa

(7) 

Where Fo and F were mentioned above, fa is the fractional accessible 
protein fluorophore, [Q] is the molar concentration of the quencher and 
Ka is the effective quenching constant for the accessible fluorophore, 
which is similar to the association binding constants for the quencher 
acceptor system. It can be obtained from the intercept (1/fa) to slope (1/ 
faKa) ratio from straight line obtained after plotting Fo/Fo-F against 1/ 
[Q], as shown in Fig. 8. This linear relationship confirms a static 
quenching mechanism has taken place for the interaction of complexes 
with BSA. The quenching constant Ka for the complexes follow the 
following order (Table 4): 

Additionally, the binding constant (Kb) and the number of binding 
sites (n) in static quenching can be calculated using Scatchard Eq. (8) 
[106,107] for static quenching, 

Log10 [(Fo − F)/F ] = Log10 Kb + nLog10 [Q] (8) 

Where Fo and F are defined the same as above, the values of Kb and n 
values are given in Table 4 which obtained from the inverse logarithm of 
the intercept and the slope, respectively from the interpolations of Log 
[(Fo – F)/F] versus Log[Q]. The binding affinity is found in the order (4) 
> (1) > (3) ~ (2) to show that the complex (4) still has the highest 
binding constant with nucleic acids and protein as shown in Table 4. For 

Table 4 
The BSA binding constants and parameters (Kb, Ksv, Kq, Ka, and n) for the ligand 
and its complexes.  

Complex Absorption 
spectroscopy 

Emission spectroscopy 

Stern-Volmer Modified 
Stern Volmer 
(MSV) 

Scatchard 

(Kb) × 104 Ksv Kq Ka Kb n 

H2L 1.7 – – – – – 
(1) 3.57 1.50 

× 104 
1.50 
×

1012 

1.20 × 104 4.4 
×

105 

1.35 

(2) 3.55 1.00 
× 104 

1.00 
×

1012 

1.14 × 104 5.1 
×

104 

1.3 

(3) 3.6 1.60 
× 104 

1.60 
×

1012 

1.19 × 104 7.1 
×

104 

1.16 

(4) 4.29 – – 1.50 × 104 1.1 
×

106 

1.37  
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all complexes, the number of the binding sites (n) on BSA was in the 
range (1.16–1.37) as shown in Table 4 and Fig. S6e. which indicates the 
existence of a single available binding site for the complexes [108]. 

4.2. Antioxidant activity 

The antioxidant activity of the ligand and its complexes has been 
evaluated using DPPH radical assay. In DPPH, scavenging activity, the 
antioxidant scavenges the free radical by donation of hydrogen, which 
can be observed visually, as the color becomes lighter (purple to yellow). 
The DPPH assay is one of the most useful methods used for evaluating 
the antioxidant activity of the compounds depending on the electron/ 
proton donation capacity. This assay can be affected by numerous fac-
tors, such as the concentration of hydrogen, metal ions, amount of 

solvent. In this method, the chromogen free radical (DPPH•) reacts with 
the test compounds (antioxidant). Due to accepting a proton or electron 
donation, the purple color of the chromogen changes into yellow in the 
solution, and this change was followed spectrophotometrically at 517 
nm. The reaction can be simply presented as DPPH• + HA → DPPH-H +
A•. The reduction of color depends on the concentration of the com-
pounds which led to the enhancement of radical inhibition. As shown in 
Table 5. The DPPH scavenging activity of the complexes is higher than 
that of the free ligand indicating that the chelation to the metal ion 
enhances the activity, and the radical scavenging activity of the test 
compounds as well as ascorbic acid is concentration-dependent as 
shown in complex (4) (Fig. 9 as an example), and Fig. S7, ESI†). The 
higher antioxidant activity results were taken as a lower value of IC50 of 
order (Table 5) which of the order: AA >4 > 3 > 1 > 2 > H2L. The 
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Fig. 7. Fluorescence quenching curves of EB- bound; (a) ct DNA and (b) tRNA in presence of complexes (1)–(4);[EB] = 5 μМ, [DNA] = [RNA] = 80 μМ, [complex] =
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complex (4) exhibited the highest scavenging activity among all com-
pounds (IC50 = 55 μM), which is similar to that reported for potent 
antioxidants of ruthenium(II) and vanadium(IV) complexes containing 
similar O,N,S-donor ligand [48]. The other antioxidant parameters; 
EC50, ARP, stoichiometry and number of reduced DPPH• radicals have 
been calculated, and we found that the lower IC50 and EC50 values, the 
greater ARP values [48]. 

4.3. In vitro cytotoxic activity (MTT assay) 

The interesting results collected from ct DNA, tRNA, BSA binding 
affinity, and antioxidant properties of the synthesized compounds have 

prompted us to evaluate their anticancer activity against human cancer 
cell lines; Colorectal carcinoma Colon cancer (HCT116), Hepatocellular 
carcinoma (HepG2), and mammary gland breast cancer (MCF7) along 
with the human lung fibroblast (WI38) as a non-tumor cell line and 
compared to cis-platin as positive control by MTT assay. The cell 
viability percentage was plotted against the concentration of the com-
pounds after 24 and 48 h of treatment (Fig. S8, ESI†). As shown in these 
figures, the cell viability decreased in a concentration-dependent 
manner and incubation period as well as the type of cancer cell 
[109,110]. The data are presented based on IC50 (the half-maximum 
inhibitory concentration) and selectivity index (SI) = IC50 of normal 
cell/IC50 of cancer cell) [111] as shown in (Figs. 10 and 11, and 
Table S3, S4), and respectively. The IC50 values showed the higher ac-
tivity of metal complexes in a 48 h period, this may be attributed to the 
high kinetic stability of the complexes in culture media [112]. It has 
been shown that the complex (4) showed the lowest IC50 (highest 
cytotoxic activity) on HepG2 (26.14 ± 2.0 μM) and HCT116 (22.02 ±
1.9 μM) and the highest selectivity index, 3.75 and 4.45, respectively. 
On the other hand, nickel(II) complex (1) showed the lowest IC50 on 
MCF7 (14.35 ± 1.4 μM) highest selectivity index 5.59. The cytotoxic 
activity of the compounds was found to follow the order on the basis of 
IC50: 

HepG2: (4) > (3) > (1) > (2) > (H2L) 
HCT116: (4) > (3) > (1) > (H2L) > (2) 
MCF7: (1) > (4) > (3) > (H2L) ≈ (2) 
In comparing ruthenium(II) complexes with platinum(II) complexes, 

it is known that ruthenium complexes have several characteristic 
properties over the platinum complexes such as, octahedral geometry, 
which induces the structure diversity as compared to square planar 
platinum(II) complexes, multiple accessible oxidation states (+II to +IV) 
under physiological conditions, and kinetic lability of ruthenium(II) 
species which facilitate the ligand exchange reaction and leads to more 
rapid interaction with biological targets molecules [113,114]. In addi-
tion to the concentration of the tested compound and the incubation 
period, the anticancer activity may also be affected by the structure- 
activity relationship [115]. For instance, among the three square 
planar complexes (1)–(3), the Pt(II) complex exhibited a better cytotoxic 
activity (in terms of IC50 values) towards HePG2 (28.94 ± 2.4 μM) and 
HCT116 (31.11 ± 2.8 μM) after 48 h of treatment, while it showed 
moderate activity against MCF7 (44.76 ± 3.4 μM), but the Ni(II) com-
plex (1) exhibited a high selectivity index to all tested cancer cell lines 
(1.59–3.03), and presented a safely profile towards the normal cell line 
(WI38, IC50 = 80.30 ± 4.2 μM). This may attribute to the structure di-
versity of cationic Pt(II) complex (3), where, the ligand acts as a mono- 
negative bidentate rather than bi-negative tridentate in the rest of the 
complexes. Among all the compounds, Ru(II) and Ni(II) complexes dis-
played interesting activity towards cancer cells as their selectivity 
indices (3.46–5.59) are higher than 3.0, comparable to that of cisplatin 
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Fig. 8. Modified Stern –Volmer plot for the quenching of BSA fluorescence 
complexes (1)–(4). 

Table 5 
Antioxidant parameters in DPPH scavenging activity data of the ligand and its 
complexes.  

Compound IC50 EC50
a ARPa Stoichiometrya No of reduced DPPH 

a 

H2L 408 4.08 0.25 8.16 0.12 
(1) 235 2.35 0.43 4.7 0.21 
(2) 270 2.7 0.37 5.4 0.18 
(3) 91 0.91 1.09 1.82 0.55 
(4) 55 0.55 1.82 1.1 0.91 
Ascorbic 

acid 
43 0.43 2.32 0.86 1.16  

a EC50 (μmol of antioxidant/μmol DPPH), ARP = 1/EC50, stoichiometry = 2 ×
EC50, no. of reduced DPPH = 1/stoichiometry. 
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(< 1.5). This provide a high selectivity towards particular human cancer 
cell lines [116]. It is worth noting that the selectivity of the compounds 
towards cancer cells can be determined by the selectivity index (SI), 
which becomes an essential prerequisite to estimate the capability of the 
test compound to kill the cancerous cells without harming the healthy 
one [117]. The higher the SI, the higher selectivity of the compounds. It 
has been reported that the compounds which have SI ≥ 3 are considered 

highly selective towards a specific cell line, so it becomes a curial 
requirement for the development of a chemotherapeutic agent with 
good selectivity towards cancer cells [118,119]. 

The complexes provide comparable cytotoxic levels with some other 
reported complexes for the selected tumor cell lines. It has been reported 
that a series of Ni(II) triphenylphosphine complexes with thioamide 
derivatives [120] or aroylhydrazone [95] has shown IC50 of 20–40 and 
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32.6 μM, respectively against MCF7 cell line and they showed higher 
toxicity to cancer cells than cis-platin, which support the Ni(II) complex 
possesses the potential to act as effective metal-based anticancer drugs. 

4.4. Apoptotic activity 

Apoptosis and necrosis are two major forms of cell death [121,122] 
Apoptosis (or programmed cell death) plays an essential role in regu-
lating cell death by controlling the number and size of the cells. Necrosis 
(sudden cell death), usually causes spillage of cell contents into sur-
rounding tissues, consequently, cell damage takes place. Inappropriate 
regulation of apoptosis can result in various forms of diseases including 

cancer [123]. To distinguish between apoptotic and necrotic cell death, 
cell cycle assays by Annexin has been carried out by following cyto-
metric technique. Based on ct DNA/tRNA and BSA interaction studies, 
along with antioxidant and cytotoxic properties of the synthesized 
compounds, complexes (1) and (4) exhibited better activities compared 
to their parent ligand and other complexes. So, both complexes were 
further selected for investigating their efficacy in cell death in MCF7 and 
HCT116 cells, respectively. The induction of apoptosis was studied by 
the colorimetric diphenylamine (DPA) assay and flow cytometric anal-
ysis of DNA contents. 

4.4.1. DNA fragmentation 
The DNA fragmentation was quantitatively determined using the 

colorimetric diphenylamine assay (DPA) [124]. The complexes (1) and 
(4) were selected for DNA fragmentation analysis. The fragmentation 
percentage data were presented with respect to the control (untreated 
cells) in Fig. 12 and Table S5. The breast cancer cells (MCF7) were 
treated with complex (1) at IC50 = 14.35 ± 1.4 μM, it was found that the 
DNA fragmentation percent was 34.09 ± 1.86% (control, 5.24 ±
0.29%). In the case of treatment of colon cancer cells (HCT116) with 
complex (4) at IC50 = 22.02 ± 1.9 μM, the fragmentation percent was 
29.75 ± 1.62 (control, 4.5 ± 0.25). This concludes that the fragmenta-
tion percent of each complex compared to its selected cell lines increased 
ca. 6.5-fold compared to control cells for 48 h. These findings may 
suggest that complexes promote cell death via DNA damage [125]. 

4.4.2. Apoptosis analysis by flow cytometry 
Flow cytometry is considered one of the most effective methods to 

analyze cell death and evaluate the therapeutic efficacies of anti-cancer 
drugs [126]. Most of the anticancer agents inhibit cancer cell prolifer-
ation by induction of apoptosis in tumor cells [127]. To determine the 
cellular DNA content and the growth inhibition mechanism on tumor 
cells, the flow cytometry technique has been employed. 

4.4.2.1. Cell apoptosis. The apoptotic cell death in MCF7 and HCT116 
was investigated by flow cytometry using co-staining of annexin-V FITC 
and (PI). Generally, the cells are distributed in four different quadrants 
(Q1-Q4) as shown in Fig. S9, ESI†, Q1 (live cells, lower left quadrant), 
Q2 (early apoptosis, lower right quadrant), Q3 (late apoptosis, upper 
right quadrant) and Q4 (necrosis, upper left quadrant). The MCF7 cells 
were treated with complex (1) at IC50 concentration for 48 h. In control 
(untreated MCF7 cells), the living cell % was 98.15% and apoptotic % 
was 1.03%. On the treatment of MCF7 cells with the complex (1), the 
apoptotic percent increased to 24.58% (2.33% early and 22.25% late 
apoptosis), i.e. 23.86-fold (control, 1.03%), this indicates that the 
complex can induce cell death via apoptosis. It has been also noted that 
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the number of cells in Q4 was increased to 9.71 (control, 0.82%) 
demonstrated that the cell death mode can, to a slight extent, takes place 
via necrosis. While, the treatment of HCT116 cells with complex (4) at 
IC50 concentration for 48 h, the apoptosis percent increased to 5.77% 
(1.61% early and 4.16% late apoptosis), i.e. increased 8.49-fold 
compared to untreated cells (0.68%), which indicates that the cells 
may be undergoing apoptosis [128]. It has been also observed that the 
HCT116 cells increased in necrosis quadrant to 19.11%, by 8.49-fold 
compared to untreated cells (2.25%), and this result following early 
reports [129] which demonstrated that Ru(II) complexes can majorly 
induce cell death through necrosis. Apoptotic cell % is shown in Fig. 13 
and (Fig. S9 and Table S6, ESI†). 

4.4.2.2. Cell cycle analysis. Based on the inhibitory effect on cell pro-
liferation, the effect of complex (1) on the cell cycle of MCF7 cells was 
evaluated. The analysis of the cell cycle phases was carried out by flow 
cytometry at IC50 concentration for 48 h. Cell cycle phase distribution 

consists of some phases such as quiescent (G0), interphase (gap1 (G1), 
synthesis (S), and gap2 (G2)), and mitotic phase (M) [130]. During the 
cell dividing progression, the cells undergo a transition through (G1) → 
(S) → (G2) → (M) phases to synthesize DNA, cell division followed by 
mitosis process. However, if the cells enter the inactive phase (G0 or Pre- 
G1 phase), this means that the cells enter a resting state (quiescent), 
where there is no dividing, no proliferation [126]. 

The effect of complexes (1) and (4) have been studied on the cell 
cycle of MCF7 and HCT116 cells, respectively. Complex (1) exhibited a 
significant increase at the pre-G1 phase (~32.44% versus untreated 
cells) (Fig. 14, Fig. S10 and Table S7). Earlier reports indicated that 
disruption of the pre-G1 phase in the cell cycle might be one of the 
reasons for apoptosis [131]. The MCF7 cells were arrested in the S phase, 
since there is an increase in the number of cells by ~14.12% (49.38%, 
control 35.26%), but an insignificant change (~2.01%) was found at the 
G2/M phase. This observation along with the DNA fragmentation 
studies may suggest that the nickel(II) complex (1) can stop the MCF7 

Fig. 14. Percentage of cell populations among cell phases in: (a) untreated (control) and treated cells MCF7 with complex (1), (b) untreated (control) and treated 
HCT116 with complex (4) at IC50 concentrations for 48 h. 
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proliferation by induction of apoptotic cell death. On the other hand, on 
the treatment of the HCT116 cells with complex (4), there was a 
decrease in the number of cells in G1 phase (38.49%, control 49.13) and 
S phase (41.32, control 46%) as shown in Fig. 14. However, the number 
of cells increased in the G2/M phase (20.19, control 4.87%) which 
means cell cycle arrest at the G2/M phase. That increased in G2/M leads 
to the accumulation of the cells in this stage indicating the inhibition of 
HCT116 cells from replication again and this may be due to the strong 
interaction between the complex (4) and the DNA that was previously 
confirmed by ct DNA binding assay. From the former data, we observed 
that the complex (4) can interact with the cellular protein, as observed 
from BSA binding affinity, along with strong interaction with nucleic 
acids which may break the DNA and make unpacked DNA rather than 
fragmentation, which prevent cancer replication and arrest the cell cycle 
at G2/M. Moreover, the HCT116 cells treated with ruthenium(II) com-
plex have increased the pre-G1 population which may appear from 
loosely packed DNA that happened and resulted in a high increase in cell 
percentage at necrotic quadrant, when analyzed by annexin assay, 
revealed the induction of necrotic cell death. 

Finally, our data revealed the apoptotic cell death of the MCF7 cells 
treated with complex (1) was confirmed by high DNA fragmentation 
percentage and the good binding affinity with biomolecules (DNA, RNA, 
and BSA). When complex (1) made strong binding with nucleic acid 
resulting DNA damage and hence the S phase in the cell cycle was 
arrested, as increased its percentage, and the pre-G1 phase has appeared 
with high percentage as a result of apoptotic cell death. The MCF7 
apoptotic cell death was also confirmed by the annexin V/PI stain, after 
treated with complex (1), with an increase in the total apoptosis % 
23.86-fold than control. Cancer cells induced high reactive oxygen 
species (ROS) as increased metabolism due to increased proliferation 
rate [132]. The antioxidant potency of the complex (1) can scavenge the 
elevated ROS and inhibited the cancer cell replication and that increased 
the safety of that complex on healthy cells which is confirmed by the 
high SI and good cytotoxicity results. 

On the other hand, the treatment with complex (4) induced an anti- 
proliferative effect against HCT116 cells via making intercalation and 
surface binding with DNA strands which can unpack the two strands 
leading to replication inhibition which confirmed by cell cycle arrest at 
the G2/M phase. Also, the necrotic cell death that appears in annexin V/ 
PI stain data may be attributed to high binding affinity with bio-
molecules, which can make irreversible binding, and results in the 
sudden death of the cancer cells (necrotic cell death). However, the DNA 
fragmentation data of the complex (4) may due to the intercalation with 
DNA that led to unpacked strands rather than truly fragmentation 
because DNA fragmentation didn't contribute to necrotic cell death. One 
of the probable hypotheses of the appearance of the pre-G1 phase is the 
accumulation of dead cells that are affected by the complex (4) treat-
ment through necrotic death [133,134]. The accumulated dead cells 
were due to sudden unpacked DNA strands and they may reduce the 
fluorescence intensity of the G1 population during cell cycle analysis 
leading to the appearance of the pre-G1 phase [135,136] Concurrently, 
the high antioxidant activity of complex (4) has increased its safety on 
healthy cells confirmed with high SI and cytotoxicity values. 

5. Conclusions 

Synthesis and characterization of new series of Ni(II) (1), Pd(II) (2), 
Pt(II) (3), and Ru(II) (4) complexes bearing 2,4-dihydrox-
ybenzaldehdye-S-methyldithiocarbazate (H2L) and PPh3 ligands have 
been described. In complexes; (1), (2), and (4), the ligand coordinates to 
the metal center in a di-basic tridentate (ONS) manner, while in complex 
(3) coordinates in a mono-basic bidentate (NS) manner. The binding 
properties of the ligand and complexes with ct DNA, tRNA and BSA were 
evaluated by UV–Vis and fluorescence spectroscopies revealing the 
intercalation binding mode for most of complexes. The antioxidant 
properties of all compounds were investigated using DPPH radical 

scavenging activity and showed that the complexes have better antiox-
idant activity compared to the parent ligand. Anticancer activity against 
four human cell lines has been demonstrated, indicating that all com-
plexes are toxic to cancer cell lines and safe towards the normal one. 
Finally, complexes (1) and (4) were selected for DNA fragmentation, 
apoptotic activity and cell cycle analysis. Our data revealed, complex (1) 
induced apoptotic cell death of the MCF7 cells by fragmentation of the 
DNA after binding with it, increased pre-G1 phase and arrested the cell 
cycle at S phase. Also, complex (1) has antioxidant activity that helped 
in scavenging the excess ROS and preventing healthy cell damage along 
with inhibiting the cancer cell replication. For complex (4), it exhibited 
a good anti-proliferative effect against HCT116 cells that arrested at the 
G2/M phase. Necrosis induction has also occurred, that may be due to 
the intercalation and surface binding with DNA strands which can un-
pack the two strands leading to sudden cell death. Also, the increased 
safety of the complex (4) on the healthy cells was confirmed by its potent 
antioxidant activity and elevated SI values. 
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