

Check fo updates

Direct and convenient construction of substituted (*E*)-2methylene-3,4-cyclohexenone skeleton from cyclohexenone-MBH

alcohol in the presence of DMAP

Hong-Xia Ren,^{[a], [b]} Xiang-Jia Song,^{[a], [b]} Lin Wu,^{[a], [b]} Zhi-Cheng Huang,^{[a], [b]} Ying Zou,^{[a], [b]}

Xia Li,^{[a], [b]} Xiao-Wen Chen,^{[a], [b]} Fang Tian^{*[a]} and Li-Xin Wang^{*[a]}

Abstract: An unexpected and effective DMAP catalyzed onestep construction of 3,4-cyclohexenone skeleton from simple and easily available cyclohexenone-MBH alcohol has been disclosed. A series of substituted (E)-2-methylene-3,4-cyclohexenones have been effectively prepared in excellent yields (up to 93%) under convenient reaction conditions. Succesful scale-up preparation and synthetic transformations have demonstrated the potentials of this new protocol.

Introduction

The 3,4-cyclohexenone skeleton, widely existed in huge numbers of bioactive natural products (Figure 1), is an important structural motif with the multiple-drug-resistance reversing activity, insecticidal and fungicidal activities, inhibition efficacy of platelet activating factor.¹⁻² Those features made 3,4cyclohexenone and their derivatives unusual attractive synthetic targets. Metal catalyzed approaches for 3,4-cyclohexenone construction from unusual starting functional materials have been successfully developed.³⁻⁸ Murakami³ and Yu⁷ groups have reported a [5 + 1] reaction of vinylcyclopropanes with carbon monoxide catalyzed by Ir or Rh complex for the construction of 3,4-cyclohexenone skeleton. A Rhodiumcatalyzed 1,3-acyloxy migration and subsequent [5 + 1] cycloaddition of cyclopropyl substituted propargyl esters for vinylidine-cyclohexenone rings has been reported by Tang.4,6 Shi⁸ and Chen⁹ has also reported a special byproduct of (E)-2benzylidenecyclohex-3-enone 3a in 55% and 30 % yield respectively. Considering the limited starting materials or the lower efficiency of the mentioned preparations, concise and effective methods for the construction of 3,4-cyclohexenone skeleton are highly desirable.

Figure 1 Selected bioactive natural products with 3,4-cyclohexenone skeleton.

- [a] Dr. H.-X. Ren, Dr. X.-J. Song, L. Wu, Dr. Z.-C. Huang, Dr. Y. Zou, Dr. X. Li, X.-W. Chen, Prof. F. Tian, Prof. L.-X. Wang. Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemitry, Chinese Academy of Sciences, Chengdu 610041, China E-mails: wtxioc@cioc.ac.cn; 452553462@qq.com http://people.ucas.edu.cn/~wtxcioc
- [b] Dr. H.-X. Ren, Dr. X.-J. Song, L. Wu, Dr. Z.-C. Huang, Dr. Y. Zou, Dr. X. Li, X-W. Chen, University of Chinese Academy of Sciences, Beijing 100049, China Supporting information for this article is given via a link at the end of the document.

Based on the applications of cyclohexenone-MBH carbonates⁹⁻¹¹ and our previous related work in MBH carbonates¹²⁻¹³, we attempted to fulfill some enantioselective applications of cyclohexenone-MBH carbonates. Unexpectedly, when we tried to prepare cyclohexenone-MBH carbonates by treating cyclohexenone-MBH alcohol^[14] with di-*tert*-butyl dicarbonate ester (Boc₂O) in the presence of DMA P for 2 hours, an unusual (*E*)-2-benzylidene-3,4-cyclohexenone **3a**, which was difficultly available from common raw materials and synthetic methods, was formed except for some expected MBH *t*-butyloxycarboryl ester **4** (Scheme 1). After prolonging reaction time, more **3a** and less **4** was observed by monitoring.

Scheme 1 The reaction between cyclohexenone MBH alcohol and Boc₂O in the presence of DMAP

Results and Discussion

Based on the preliminary results, we attempted to further understand the unexpected new reaction. Our studies were conducted with MBH alcohol 1a and Boc₂O 2a in CH₂Cl₂ in the presence of 20 mol% catalyst for conditioning screenings as shown in Table 1. Firstly, the reaction was not detected without catalyst (Table 1, Entry 1). A mines, such as DMAP, DABCO, DBU, Et₃N, pyridine, pyrrole, piperidine and imidazole were tested (Table 1, Entries 2-9). Only DMAP and DBU show catalytic activities, giving the target product in 48% yield for 2 d and 8% yield for 3 d respectively (Table 1, Entries 2, 4). For analogus phosphines, Bu₃P can smoothly catalyze the reaction in 24% yield after 2 days, while Ph₃P shown no catalytic activity, possibly for its less nucleophilicity (Table 1, Entries 10, 11). For inorganic bases, such as carbonates and hydroxides, no desired product was observed (Table 1, Entries 12-15). So, DMAP was chosen as the reaction promoter.

With DMA P as catalyst, solvents were furtherly screened (Table 2). Halogen hydrocarbon, such as $CHCl_3$, gave poor yield (Table 2, Entry 1). Ethers such as Et_2O , THF and 1,4-dioxane, all gave poor yields (Table 2, Entries 2-4). Other solvents, such as CH_3CN , EA, DMF, slightly higher yields were observed (Table 2, Entries 5-6) or no reaction occured (Table 2, Entry 7). MeOH gave no product (Table 2, Entry 8). How ever, the best result was obtained in toluene (up to 80% yield) (Table 2, Entry 9) and analogus aromatic solvents of *m*-xylene and mesitylene gave slightly reduced yields of 76% and 65% respectively, possible due to low er solubility of the substrate **1a**.

COMMUNICATION

Table 1	Screenings of cataly st ^[a]

		$\operatorname{Boc}_2O \xrightarrow{\operatorname{Catalyst}(20 \text{ mol}\%)}{\operatorname{CH}_2\operatorname{Cl}_2, \operatorname{rt}}$	
	1a	2a	° ° 3a
Entry	Catalyst	Reaction time	Yield ^[b] (%)
1	None	3 d	NR
2	DMAP ^[e]	2 d	48
3	DABCO ^[f]	3 d	Trace ^[c]
4	DBU ^[g]	3 d	8
5	Et ₃ N	3 d	NR
6	Py ridine	3 d	NR
7	Py rrole	3 d	NR
8	Piperidin e	3 d	NR
9	Imidazole	3 d	NR
10 ^[d]	Bu₃P	2 d	24
11	Ph₃P	2 d	NR
12	Cs_2CO_3	3 d	Trace ^[c]
13	K ₂ CO ₃	3 d	NR
14	Na ₂ CO ₃	3 d	NR
15	КОН	3 d	Trace ^[c]

[a] Unless otherwise specified, the reaction was performed on a scale of 0.2 mmol MBH alcohol **1a**, 0.22 mmol Boc₂O **2a**, 20 mmol% catalyst in 1 mL CH₂Cl₂ at room temperature. [b] Isolated yield. [c] Only **4** and trace of **3a** were detected. [d] Under N₂ atmosphere. ^[e] DMAP was 4-dimethy laminopy ridine. ^[I] DABCO was 1, 4-Diazabicyclo[2.2.2]octane. ^[g] DBU was 1, 8-Diazabicyclo[5,4,0]undec-7-ene.

[a] Unless otherwise specified, the reaction was performed on a scale of 0.2 mmol MBH alcohol **1a**, 0.22 mmol Boc₂O **2a**, 20 mmol% DMAP in 1 mL solvent at room temperature. [b] Isolated yield. [c] Only 4 observed. ^[d] Poor solubility. ^[e] THF was Tetrahy drof uran. ^[I] EA was ethyl acetate. ^[g] DMF was N, N-Dimethyl formamide.

 Table 3
 Screenings of other parameters^[a]

[a] Onless otherwise specified, the reaction was performed on a scale of 0.2 mmol MBH alcohol 1a, y mmol Boc₂O 2a, x mmol% catalyst in 1 mL toluene.
 [b] Isolated yield.

Unsatisfactorily, the reaction was not completely finished even after 4 days, so further catalyst loadings, temperature and substrate ratio were optimized. When increasing the DMAP loading to 50 mol% or 100 mol%, the reaction time was reduced to 3d and 2 d respectively with slightly decreased yields (Table 3, Entries 1, 2). The yields were increased to 82% at 50 °C for 2 d and 87% at refluxing temperature (110 °C) for 7 h (Table 3, Entries 3, 4). Changing the molar ratio of substrate **1a** and **2a**, how ever, no better result was observed (Table 3, Entries 5-9). Considering all the active parameters, the optimal reaction conditions were established as 0.2 mmol of **1a** and 0.22 mmol of **2a** with 20 mol% of DMAP as catalyst in 1mL toluene at refluxing terperature for 7 h (Table 3, Entry 4).

Under the optimized reaction conditions, the generality for substrates was further investigated (Table 4). Generally, most MBH alcohols 1 and 2 were well tolerated, providing corresponding products in acceptable to excellent yields. While with electron-withdrawing group of halogen atom on phenyl group (R¹) of MBH alcohols 1, slightly decreased yields were observed (Table 4, Entries 2-6). Especially, for 4-NO₂-phenyl 1g, only 17% yield was obtained, and when the reaction was conducted in CH₂Cl₂ at room temperature for 3 d, how ever, the vield increased to 52%, probably attributed to the unstability of 3g at refluxing temperature for hours (Table 4, Entry 7). For electron-donating groups, such as methyl or methoxyl substituted on the aromatic ring, excellent yields (86-93%) were obtained (Table 4, Entries 8-11). For hetereocyclic 2-furyl MBH alcohol, good result was still achieved (Table 4, Entry 12). Changing aromatic group to hydrogen atom or methyl, only mixture or poor yields observed, possibly due to the more unstable target molecules with smaller π conjugated system (Table 4, Entries 13, 14).¹⁵ Broadly, when chloroformate was used instead of Boc₂O, the reaction still worked well with up to 80% yields (Table 4, Entries 15-18). The configuration of the product was determined by X-ray crystal structural analysis of the representative product 3h (Figure 2)(see the Supporting Information for details).¹⁶

WILEY-VCH

COMMUNICATION

To understand the unexpected reaction, we proposed a plausible mechanism (Scheme 2). Firstly, MBH carbonate 4 was obtained via cyclohexenone-MBH alcohol 1a with di-*tert*-butyl dicarbonate ester in the presence of DMAP. MBH carbonate 4 was attacked by DMAP to form quaternary ammonium salt 5 and *tert*-butoxide anion after emission of CO_2 . Further deprotonation of 5 by *tert*-butoxide anion, intermediate 6 was formed. The allylic hydrogen atom in 6 was transfered to the neighboring carbon to form 7. The leaving of catalyst driven by a negative charge completed the catalytic cycle, yielding the product and setting the catalyst free.

To demonstrate the synthetic potential of this new protocol (Scheme 3), scale-up experiment was conducted on gram scale, almost equal result (84% yield) was still achieved, which may lead to a further scale-up preparation. Treating **3a** with NaBH₄ in THF, product **8** was afforded in 83% yield for selective reduction of carbonyl group. Under H₂ atmosphere, **3a** can be vinyl selectively reducted to **9** in 94% yield catalysed by Pd/C (5% w.t.). Carbonyl addition can be selectively occurred in the presence of Grignard reagent and product **10** was obtained in 89% yield.

 \cap

Table 4 Generality of substrates^[a]

		Ŭ ₀ _R	O II
		or DMAP(20 mol%)	R ¹
	1	toluene, reflux	3
Entry	1 /R ¹	2	3 /Yield ^[b] (%)
1	1a /C ₆ H ₅	2a/Boc ₂ O	3a /87
2	1b/2-FC ₆ H ₄	2a/Boc ₂ O	3b /70
3	1c /4-FC ₆ H ₄	2a/Boc ₂ O	3c /79
4	1d/2-CIC ₆ H ₄	2a/Boc ₂ O	3d /67
5	1e /4-CIC ₆ H ₄	2a/Boc ₂ O	3e /58
6	1f/3-BrC ₆ H ₄	2a/Boc ₂ O	3f /64
7	$1g/4-NO_2C_6H_4$	2a/Boc ₂ O	3g /17(52) ^[c]
8	$\mathbf{1h}/4\text{-}CH_3C_6H_4$	2a/Boc ₂ O	3h /86
9	1i/2-OCH ₃ C ₆ H ₄	2a/Boc ₂ O	3i /90
10	1j/ 3-OCH ₃ C ₆ H ₄	2a/Boc ₂ O	3j /89
11	1k /4-OCH ₃ C ₆ H ₄	2a/Boc ₂ O	3k /93
12 ^[d]	11/ Furyl	2a/Boc ₂ O	3I /81
13	1m /H	2a/Boc ₂ O	3m/trace
14	1n/Me	2a/Boc ₂ O	1n/47 ^[e]
15	1a /C ₆ H ₅	2b/CICO ₂ Bn	3a /42
16	1a/C ₆ H ₅	2c/CICO ₂ Ph	3a /80
17	1a /C ₆ H ₅	2d/CICO2Et	3a /46
18	1a /C ₆ H₅	2e /CICO₂ <i>i</i> -Bu	3a /74

[a] Unless otherwise specified, the reaction was performed on a scale of 0.2 mmol MBH alcohol 1, 0.22 mmol ester 2, 20 mmol% DMAP in 1 mL toluene reflux for 7 h. [b] Isolated yield. [c] The reaction condition was 0.2 mmol 1g, 0.22 mmol 2a, 20 mmol% DMAP in 1 mL CH_2CI_2 at room temperature for 3 d. [d] Reacted for 2 h. [e] Detected by HPLC.

Figure 2 Representative X-ray cry stallographic structure of product 3h

Scheme 3 Scale-up preparation and the synthetic transformations of 3a

Conclusions

In summary, an unexpected new reaction of cyclohexenone-MBH alcohol catalyzed by DMAP has been disclosed. A series of substituted (*E*)-2-methylene-3,4-cyclohexenones have been successfully prepared in excellent yields (up to 93%) under convenient reaction conditions. After typical successful scale-up preparation and synthetic transformations, our protocol is potentially feasible for scale-up applications for concise and effective constructions of 3,4-cyclohexenone skeleton.

Experimental Section

General information

Commercial grade solvent was dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance (300 MHz for ¹H NMR, 75 MHz for ¹³C NMR) instrument. Data for ¹H NMR are reported as chemical shift (ppm, tetramethylsilane as the internal standard), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m= multiplet), coupling constant (Hz). Data for ¹³C NMR are reported as chemical shift. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. Reactions were monitored by TLC and visualized with ultraviolet light.

WILEY-VCH

VIANUSCII

General Procedures for the reaction of MBH alcohol 1 and 2.

A solution of 0.2 mmol MBH alcohol 1, 0.22 mmol 2, 20 mmol% DMAP in 1 mL toluene was stirred at reflux temperature for 7 h. After completion, the crude product was directly purified by flash chromatography to obtain the product.

(E)-2-benzylidenecyclohex-3-enone (3a). 87% yield, pale yellow oil, $R_f = 0.28$ (silica gel, petroleum ether/ethyl acetate 20:1), 1H NMR (300 MHz, DMSO-d6) $\breve{0}$ 7.54-7.30 (m, 5H), 7.27 (s, 1H), 6.90 (dq, J= 10.0, 1.4 Hz, 1H), 6.23 (dtd, J= 10.1, 4.4, 1.8 Hz, 1H), 2.68-2.44 (m, 4H). 13 C NMR (75 MHz, DMSO-d₆) δ 199.0, 134.8, 132.3, 130.8, 130.5, 129.8, 128.7, 128.6, 124.2, 37.7, 24.0. HRMS (ESI) m/z calcd for C13H13O⁺ (M+H)⁺ 185.09609, found 185.09572.

(E)-2-(o-fluorobenzylidenecyclohex)-3-enone (3b). 70% yield, pale yellow oil, $R_f = 0.31$ (silica gel, petroleum ether/ethyl acetate 20:1), ¹H NMR (300 MHz, Chloroform-d) δ 7.42 (s, 1H), 7.35-7.25 (m, 2H), 7.13-7.02 (m, 2H), 6.73 (d, *J* = 10.0 Hz, 1H), 6.15-6.11 (m, 1H), 2.67-2.62 (m, 2H), 2.58-2.53 (m, 2H). ¹³C NMR (75 MHz, Chloroform-d) δ 199.4, 160.7 (*J* = 249.1 Hz), 132.4, 131.5, 130.6 (*J* = 2.7 Hz), 130.2 (*J* = 8.2 Hz), 0.45 (*J* = 2.47 Hz), 130.2 (*J* = 8.2 Hz), 0.45 (*J* = 2.47 Hz), 0.45 (*J* = 2.48 Hz), 0.45 (*J* = 124.9 (J = 0.9 Hz), 124.4 (J = 3.5 Hz), 123.7 (J = 3.6 Hz), 123.1 (J = 13.9 Hz), 115.5 (J = 21.6 Hz), 38.1, 24.5. HRMS (ESI) m/z calcd for $C_{13}H_{12}FO^{+}$ (M+H)⁺ 203.08667, found 203.08630.

(E)-2-(p-fluorobenzylidenecyclohex)-3-enone (3c). 79% yield, pale yellow oil, R_f = 0.23 (silica gel, petroleum ether/ethyl acetate 20:1), NMR (300 MHz, Chloroform-d) δ 7.50-7.36 (m, 3H), 7.16-7.05 (m, 2H), 6.89 (dq, J = 10.0, 1.4 Hz, 1H), 6.20 (dtd, J = 8.7, 4.4, 1.7 Hz, 1H), 2.76-2.66 (m, 2H), 2.66-2.54 (m, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 200.0, 162.6 (*J* = 248.4 Hz), 131.8, 131.7, 131.5, 131.4, 131.2, 130.9, 130.7, 124.8, 115.6 (*J* = 21.5 Hz), 38.1, 24.5. HRMS (ESI) m/z calcd for $C_{13}H_{12}FO^{+}\left(M\!+\!H\right)^{\!+}203.08667, found\ 203.08620.$

(E)-2-(o-chlorobenzylidenecyclohex)-3-enone (3d). 67% yield, pale yellow oil, R_f = 0.27 (silica gel, petroleum ether/ethyl acetate 20:1), ¹H NMR (300 MHz, Chloroform-d) δ 7.50 (s, 1H), 7.40-7.31 (m, 2H), 7.24-7.21 (m, 2H), 6.65 (dd, J = 10.0, 0.9 Hz, 1H), 6.14-6.11 (m, 1H), 2.69-2.64 (m, 2H), 2.59-2.55 (m, 2H). ¹³C NMR (75 MHz, Chloroform-d) δ 2.64 (m, 2H), 2.59-2.55 (m, 2H). $^{13}\mathrm{C}$ NMR (75 MHz, Chloroform-d) δ 199.5, 134.7, 133.6, 132.1, 131.7, 130.6, 129.6, 129.5, 128.7, 126.2, 124.6, 38.1, 24.6. HRMS (ESI) m/z calcd for $C_{13}\mathrm{H}_{12}\mathrm{GO}^{+}$ (M+H)^+ 219.05712, found 219.05673.

(E)-2-(p-chlorobenzylidenecyclohex)-3-enone (3e). 58% yield, pale yellow solid, m. p. 79.8-81.2 $^\circ\text{C},~\text{R}_f$ = 0.28 (silica gel, petroleum ether/ethyl acetate 20:1), ¹H NMR (300 MHz, Chloroform-d) δ 7.29-7.25 (m, 5H), 6.80 (dd, J = 10.0, 0.8 Hz, 1H), 6.16-6.09 (m, 1H), 2.64-2.59 (m, 2H), 2.56-2.50 (m, 2H), 2.56-2.50 (m, 2H), 1³C NMR (75 MHz, Chloroform-*d*) δ 199.6, 134.2, 133.6, 131.6, 131.2, 131.0, 130.2, 128.5, 124.5, 37.9, 24.3. HRMS (ESI) m/z called for C₁₃H₁₂ClO⁺ (M+H)⁺ 219.05712, found 219.05667.

(E)-2-(m-bromobenzylidenecyclohex)-3-enone (3f). 64% yield, pale yellow oil, $R_f = 0.21$ (silica gel, petroleum ether/ethyl acetate 20:1), ¹H NMR (300 MHz, Chloroform-d) δ 7.53 (t, J = 1.8 Hz, 1H), 7.49-7.39 (m, 1H), 7.3-7.27 (m, 2H), 7.23 (t, J = 7.8 Hz, 1H), 6.84 (dq, J = 10.1, 1.5 Hz, 1H), 6.19 (dtd, J = 10.4, 4.4, 1.7 Hz, 1H), 2.73-2.63 (m, 2H), 2.61-2.55 (m, 2H). ¹³C NMR (75 MHz, Chloroform-d) δ 199.8, 137.4, 132.3, 132.1 131.9, 131.2, 130.0, 129.9, 128.4, 124.5, 122.4, 38.1, 24.5. HRMS (ESI) m/z calcd for C13H12BrO⁺ (M+H)⁺ 263.00660, found 263.00616.

(E)-2-(p-nitrobenzylidenecyclohex)-3-enone (3g). 52% yield, pale yellow solid, m. p. 138.5-139.6 °C, $R_f = 0.10$ (silica gel, petroleum ether/ethyl acetate 20:1), ¹H NMR (300 MHz, Chloroform-*a*) δ 8.20 (d, J =ethel/ethylacetate 20.1), H NMK (300 MH2, Chlotolain-0) 03.20 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.7 Hz, 2H), 7.35 (s, 1H), 6.82 (dd, J = 10.0, 0.8 Hz, 1H), 6.31-6.25 (m, 1H), 2.72-2.67 (m, 2H), 2.65-2.61 (m, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) \overline{o} 199.3, 147.1, 142.1, 133.9, 133.3, 130.4, 128.6, 124.2, 123.6, 38.0, 24.7. HRMS (ESI) m/z calcd for C₁₃H₁₂NO₃⁺ (M+H)⁺ 230.08117, found 230.08183. (*E*)-2-(*p*-methylbenzylidenecyclohex)-3-enone (3h). 86% yield,

pale yellow solid, m. p. 86.1-87.4 °C, $R_f = 0.29$ (silica gel, petroleum ether/ethyl acetate 20:1), ¹H NMR (300 MHz, Chloroform-*d*) δ 7.41 (s, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 6.94 (dd, J = 10.0, 0.9 Hz, 1H), 6.15-6.10 (m, 1H), 2.68-2.64 (m, 2H), 2.60-2.56 (m, 2H), 2.36 (s, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 200.2, 138.7, 132.4, 132.1, 130.5, 130.4, 130.0, 129.1, 125.2, 38.1, 24.4, 21.3. HRMS (ESI) m/z calcd for $C_{14}H_{15}O^{+}(M+H)^{+}$ 199.11174, found 199.11122.

(E)-2-(o-methoxybenzylidenecyclohex)-3-enone (3i). 90% yield, pale yellow oil, R = 0.21 (silica gel, petroleum ether/ethyl aœtate 20:1), ¹H NMR (300 MHz, Chloroform-*d*) δ 7.63 (s, 1H), 7.34-7.28 (m, 2H), 6.97-6.88 (m, 2H), 6.82 (dd, J = 10.0, 0.8 Hz, 1H), 6.21-6.06 (m, 2H), 3.84 (s, 3H), 2.69-2.64 (m, 2H), 2.59-2.54 (m, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 200.1, 158.3, 130.9, 130.4, 130.1, 130.1, 128.3, 125.5, 124.3, 120.0, 110.5, 55.4, 38.3, 24.5. HRMS (ESI) m/z calcd for $C_{14}H_{15}O_2^+$ (M+H)⁺ 215.10666, found 215.10629.

(E)-2-(m-methoxybenzylidenecyclohex)-3-enone (3j). 89% yield, pale yellow oil, $R_f = 0.20$ (silica gel, petroleum ether/ethyl acetate 20:1), ¹H NMR (300 MHz, Chloroform-d) δ 7.35 (s, 1H), 7.25 (t, J = 7.9 Hz, 1H), 7.63 (d, J = 7.6 Hz, 1H), 6.91-6.88 (m, 2H), 6.83 (dd, J = 8.2, 2.4 Hz, 1H), 6.13-6.07 (m, 1H), 3.76 (s, 3H), 2.65-2.60 (m, 2H), 2.56-2.50 (m, 2H). ¹³C NMR (75 MHz, Chloroform-d) δ 199.8, 159.3, 136.4, 131.6, 131.1, 130.9, 129.2, 124.9, 122.2, 115.1, 114.0, 55.0, 38.0, 24.3. HRMS (ESI) m/z calcd for $C_{14}H_{15}O_2^+~(M+H)^+~215.10666,$ found 215.10645.

(*E*)-2-(*p*-methoxybenzylidenecyclohex)-3-enone (3k). 93% yield, pale yellow solid, m. p. 55.8-56.7 °C, R_i = 0.16 (silica gel, petroleum ether/ethyl acetate 20:1), ¹H NMR (300 MHz, Chloroform-*d*) δ 7.38-7.35 (m, 3H), 6.92-6.86 (m, 3H), 6.11-6.07 (m, 1H), 3.78 (s, 3H), 2.63-2.59 (m, 2H), 2.55-2.51 (m, 2H), ¹³C NMR (75 MHz, Chloroform-*d*) δ 20.0, 159.8, 21.4 6, 130, 0.120 4, 127.7 135.4, 143.8, 55.1, 28.0, 24.2, HPMS 131.8, 131.6, 130.0, 129.4, 127.7, 125.1, 113.8, 55.1, 38.0, 24.2. HRMS (ESI) m/z calcd for C₁₄H₁₅O₂⁺ (M+H)⁺ 215.10666, found 215.10622.

(E)-2-(furan-2-ylmethylene)cyclohex-3-en-1-one (31). 81% yield, pale yellow oil, $R_f = 0.23$ (silica gel, petroleum ether/ethyl acetate 20:1), H NMR (300 MHz, Chloroform- \vec{a}) δ 7.59 (d, J = 1.4 Hz, 1H), 7.45 (d, J = 10.1 Hz, 1H), 7.10 (s, 1H), 6.70 (d, J = 3.4 Hz, 1H), 6.2-6.50 (m, 1H), 6.22-6.16 (m, 1H), 2.71-2.66 (m, 2H), 2.63-2.60 (m, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 199.5, 152.3, 144.9, 130.4, 127.2, 125.9, 117.3, 116.9, 112.2, 38.0, 24.4. HRMS (ESI) m/z calod for C₁₁H₁₁O_{2⁺} (M+H)⁺ 175.07536, found 175.07564.

Keywords: Cyclohexenone-MBH alcohol • Organocatalysis • Substituted (E)-2-methylene-3,4-cyclohexenone skeleton • Unexpected new reaction

- K. Stratmann, R. E. Moore, R. Bonjouklian, J. B. Deeter, G. M. L. [1] Patterson, S. Shaer, C. D. Smith, T. A. Smitka, J. Am Chem. Soc., **1994**, *116*, 9935-9942.
- E. D. Coy, L. E. Cuca, M. Sefkow, J. Nat. Prod., 2009, 72, 1245-1248. [2]
- [3] M. Murakami, K. Itami, M. Ubukata, I. Tsuji, Y. Ito, J. Org. Chem, 1998, 63, 4-5.
- D. Shu, X. Li, M. Zhang, J. P. Robichaux, W. Tang, Angew. Chem Int. [4] Ed., 2011, 50, 1346-1349; Angew. Chem, 2011, 123, 1382-1385.
- D. Shu, X. Li, M. Zhang, P. J. Robichaux,; I. A. Guzei, W. Tang, J. Org. [5] Chem., 2012, 77, 6463-6672.
- M. Zhang, W. Tang, Org. Lett., 2012, 14, 3756-3759. [6]
- [7]
- C.-H. Liu, Z.-X. Yu, Org. Biomol. Chem, 2016, 14, 5945-5950. [8] F. Wang, S. Li, M. Qu, M.-X. Zhao, L.-J. Liu, M. Shi, Chem Commun., 2011, 47, 12813-12815.
- [9] Z. Shafiq, L. Liu, Z. Liu, D. Wang, Y.-J. Chen, Org. Lett., 2007, 9, 2525-2528
- [10] J. Peng, G.-Y. Ran, W. Du, Y.-C. Chen, Org. Lett., 2015, 17, 4490-4493.
- [11] K. Y. Lee, J. E. Na, J. N. Kim, Bull. Korean Chem Soc., 2003, 24, 409-410.
- Q.-L. Wang, L. Peng, F.-Y. Wang, M.-L. Zhang, L.-N. Jia, F. Tian, X.-Y. [12] Xu, L.-X. Wang, Chem Commun., 2013, 49, 9422-9424.
- [13] H.-X. Ren, L. Peng, X.-J. Song, L.-G. Liao, Y. Zou, F. Tian, L.-X. Wang, Org. Biomol. Chem, 2018, 16, 1297-1304.
- [14] J. C. Gomes, J. M. T. Rodrigues, A. Moyano, F. Coelho, Eur. J. Org. Chem., 2012, 6861-6866.
- No pure product 3m was obtained, and its ¹H-NMR and ¹³C-NMR were [15] not av ailable
- [16] See the ESI for the details on the single crystal X-ray analysis of 3h in this paper. CCDC 1833125

WILEY-VCH

COMMUNICATION

COMMUNICATION

Text for Table of Contents

Inietal free

An unexpected new reaction of cyclohexenone-MBH alcohol catalyzed by DMAP has been successfully disclosed to prepare a series of substituted (E)-2-methylene-3,4-cyclohexenones in excellent yields (up to 93%) under convenient reaction conditions. Scale-up preparation and synthetic transformations have been conducted.

Synthetic methods

Author(s), Corresponding Author(s)*

Hong-Xia Ren, Xiang-Jia Song, Lin Wu, Zhi-Cheng Huang, Ying Zou, Xia Li, Xiao-Wen Chen, Fang Tian* and Li-Xin Wang*

Page No. – Page No.

Title

Direct and convenient construction of substituted (E)-2methylene-3,4-cyclohexenone skeleton f rom cyclohexenone-MBH alcohol in the presence of DMAP