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Abstract: 2,2,2-Trifluoro-1-(N,N-dimethylaminophenyl)ethanols
were easily formed in excellent yields by electrophilic substitution
between N,N-dimethylanilines 1a, b and trifluoroacetaldehyde eth-
yl hemiacetal (TFAE). The corresponding substitution of phenols
2a-e to prepare 2,2,2-trifluoro-1-(hydroxyphenyl)ethanols, howev-
er, occurred only in the presence of catalytic amounts of anhydrous
potassium carbonate.
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Trifluoromethylated compounds have attracted much at-
tention because of their unique properties,1 and the devel-
opment of new preparation methods is still an important
area of research.2 α-Trifluoromethylbenzylic alcohols, es-
pecially the optically active ones, are of great interest be-
cause of their potential use as ferroelectric liquid crystals.3

For practical applications, p-substitutents such as hydrox-
yl or amino groups, are introduced into their benzene
rings.4 Compound 4a is one of the most important inter-
mediates used for this. It is usually prepared by Grignard
reaction of p-anisylmagnesium bromide and trifluoroace-
tic acid, followed by demethylation and reduction
(Scheme 1).5

Scheme 1

Trifluoroacetaldehyde, a potentially very useful precursor
to trifluoromethyl carbinols, is rarely used directly be-
cause of the volatility and the commercial unavailability.
For this reason trifluoroacetaldehyde ethyl hemiacetal
(TFAE) is usually used as an important synthetic equiva-
lent.6 Its substitution reaction with electron-rich het-
eroarenes, such as indoles and imidazoles, readily occurs
under mild conditions.7 In our continuing investigations,
substitutions of TFAE with electron-rich benzene deriva-
tives have been carried out to prepare useful α-trifluoro-
methylbenzylic alcohols. We here report its reactions with
N,N-dimethylanilines and with phenols.

The reaction was carried out by heating equivalent
amounts  of N,N-dimethylanilines  1a, b and  TFAE at 
120 °C8 (Scheme 2). 2,2,2-Trifluoro-1-[4-(dimethylami-
no)phenyl]ethanol 3a9 was the main product in the reac-
tion of N,N-dimethylaniline 1a, only a trace amount of the
o-substituted isomer being detected by GC. When the para
site was blocked by a methyl group, i.e. 1b, the o-substi-
tuted product 2,2,2-Trifluoro-1-[2-(dimethylamino)-5-
methylphenyl] ethanol 5b was the only product.

Scheme 2

On the other hand, no reaction occurred between 2a-e and
TFAE under the same conditions. In the presence of cata-
lytic amounts of anhydrous potassium carbonate, howev-
er, these reactions proceeded smoothly and gave rise to
the formation of the substituted products, 10 2,2,2-trifluo-
ro-1-(hydroxyphenyl)ethanols (Scheme 3). Details of
these reactions are given in Table 1. Both the p- and o-
substituted products,11 4a and 6a, were formed in the reac-
tion of phenol 2a, the ratio of 4a/6a being higher at a low-
er  temperature. When  the reaction  was  performed at 
120 °C, a certain amount of di-substituted product 4a’ was
also formed. In the case of 2,6-dimethylphenol 2c, howev-
er, only the p-substituted product 4c12 was generated even
if the reaction occurred at 120 °C. Moreover, only the o-
substituted products were formed in the reactions of 4-me-
thylphenol 2b and 4-phenylphenol 2e, though mono-sub-
stituted product 6b was the predominant product for 2b,
but both mono- and di-substituted products 6e and 6e’
were formed for 2e.

In conclusion, the substitution of N,N-dimethylanilines or
phenols with trifluoroacetaldehyde ethyl hemiacetal is an
appropriate pathway to prepare α-trifluoromethylbenzylic
alcohols. Further applications of this substitution are be-
ing investigated.

OMe

MgBr

OH

COCF3

OMe

COCF3

OH

CH(OH)CF3

CF3COOH BBr3-CH2Cl2 NaBH4

4a

NMe2

R

NMe2

CH(OH)CF3

CH(OH)CF3

NMe2

Me

CF3CH(OH)OEt

1a: R = H
1b: R = Me 3a 5b

D
ow

nl
oa

de
d 

by
: N

an
ya

ng
 T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 N

T
U

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



1404 Y. Gong et al. LETTER

Synlett 1999, No. 9, 1403–1404 ISSN 0936-5214 © Thieme Stuttgart · New York

Scheme 3
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