

Tetrahedron, Vol. 52, No. 45, pp. 14341-14348, 1996 Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0040-4020/96 \$15.00 + 0.00

PII: S0040-4020(96)00886-1

Arene-Catalysed Lithiation of Triflates and Triflamides under Barbier-Type Conditions: An Indirect Transformation of Alcohols and Amines into Organolithium Compounds

Emma Alonso, Diego J. Ramón and Miguel Yus*

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, E-03080-Alicante, Spain

Abstract: The reaction of alkyl triflates 1 or allyl or benzyl triflamides 3 with an excess of lithium powder and a catalytic amount of naphthalene (4 mol %) in the presence of different electrophiles [Me₃SiCl, PriCHO, Bu'CHO, PhCHO, 4-MeOC₆H₄CHO, CH₃(CH₂)₆CHO, Et₂CO, (CH₂)₅CO, (c-C₃H₅)₂CO, PhCOMe, 4-MeC₆H₄COPh, PhCH=NPh, *n*-C₈H₇CON(CH₂)₄] in THF at temperature ranging between -78 and 0°C leads, after hydrolysis with water, to the corresponding condensation products 2. When α,β -unsaturated carbonyl compounds are used as electrophilic compounds 1,2- (2-cyclohexenone) or 1,4-addition (cinnamaldehyde or benzylideneacetone) takes places depending on the electrophile used. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

Organolithium compounds are in general prepared from the corresponding halogenated material,¹ other methodologies (deprotonation,^{2a} transmetallation,^{2b} reductive cleavage of ethers or thioethers^{2c} or the Shapiro reaction^{2d}), being of limited application. Concerning our continuous interest in the development of new methods to prepare organolithium compounds, we have recently applied the arene-catalysed lithiation³ to the transformation of allyl or benzyl mesylates into the corresponding organolithium intermediates, this procedure being an indirect way to convert this type of alcohols into organolithiums.^{4,5} However, this procedure failed for alkyl derivatives, for which is necessary to use the corresponding sulfates⁶ or phosphates.⁷ In this paper we report for the first time the *in situ* transformation of alkyl triflates or allyl or benzyl triflamides into organolithium compounds, which are trapped with different electrophiles, using a combination of the mentioned arene-catalysed lithiation and Barbier-type reaction conditions.⁸

RESULTS AND DISCUSSION

The reaction of commercially available methyl or ethyl triflates (1a or 1b, respectively) with an excess of lithium powder (1:14 molar ratio) and a catalytic amount of naphthalene (1:0.08 molar ratio; 4 mol %) in the

presence of an electrophile [PhCHO, 4-MeOC₆H₄CHO, Me(CH₂)₆CHO, (CH₂)₅CO, (c-C₃H₅)₂CO, PhCOMe, 4-MeC₆H₄COPh, PhCH=NPh, n-C₈H₁₇CON(CH₂)₄] in THF at temperatures ranging between -78 and 0°C gave after 2 h stirring, and final hydrolysis with water the corresponding products **2aa-2bh** (Scheme 1 and Table 1, entries 1-14).

Scheme 1. Reagents and conditions: i, Li powder, $C_{10}H_8$ cat. (4 mol%), E⁺ = BuⁱCHO, PhCHO, 4-MeOC₆H₄CHO, Me(CH₂)₆CHO, (CH₂)₅CO, (c-C₃H₅)₂CO, PhCOMe, 4-MeC₆H₄COPh, PhCH=NPh, *n*-C₈H₁₇CON(CH₂)₄, THF, -78 to 0°C; ii, H₂O.

The reaction shown in Scheme 1 can be applied to other alcohol derivatives. Thus, we prepared the starting triflates 1c and 1d (by reaction of the corresponding alcohol with triflic anhydride) and submitted them to the same reaction described above for compounds 1a and 1b, so the corresponding compounds 2ca-dc were isolated (Scheme 1 and Table 1, entries 15-20).

We studied also the reaction with α , β -unsaturated carbonyl compounds, finding different results depending on the sustrated used. Thus, applying the reaction shown in Scheme 1 to 2-cyclohexenone as electrophile and starting triflate 1b, the corresponding 1,2-addition product 2bi was the only one isolated, after work-up. However, when cinnamaldehyde or benzylideneacetone were used as electrophilic olefines, starting triflates 1a or 1b yielded compounds 2aj, 2bj and 2ak, 2bk, respectively, resulting from a 1,4-addition.

In an attempt to have a look on the scope of the reaction shown in Scheme 1 we tried the same process with phenyl triflate and benzaldehyde as electrophile, in the presence of BF₃; after work-up the expected diphenylmethanol was obtained in poor isolated yield (17%). This result is a clear demonstration that C_{sp2} -O bond is more difficult to cleave than the corresponding C_{sp3} -O one.

		Producta		
Starting triflate	Electrophile (E+)	No.	E	Yield (%)t
1 a	PhCHO	2aa	PhCHOH	67
1 a	4-MeOC ₆ H ₄ CHO	2ab	4-MeOC ₆ H ₄ CHOH	42
1 a	(CH ₂) ₅ CO	2ac	(CH ₂) ₅ COH	47
1 a	PhCOMe	2ad	PhC(OH)Me	33
1 a	4-MeC ₆ H ₄ COPh	2ae	4-MeC ₆ H ₄ C(OH)Ph	28
1 a	(PhCH ₂ S) ₂	2af	PhCH ₂ S	15
1 b	PhCHO	2ba	PhCHOH	61
1 b	4-MeOC ₆ H ₄ CHO	2bb	4-MeOC ₆ H ₄ CHOH	78
1 b	(CH ₂) ₅ CO	2bc	(CH ₂) ₅ COH	75
1 b	PhCOMe	2bd	PhC(OH)Me	46
1 b	Me(CH ₂) ₆ CHO	2be	Me(CH ₂) ₆ CHOH	24
1 b	(c-C ₃ H ₅) ₂ CO	2bf	(c-C ₃ H ₅) ₂ COH	36
1 b	PhCH=NPh	2bg	PhCHNHPh	50
1 b	$n-C_8H_{17}CON(CH_2)_4$	2bh	<i>n</i> -C ₈ H ₁₇ CO	41
1 c	PhCHO	2ca	PhCHOH	54
1c	4-MeOC ₆ H ₄ CHO	2cb	4-MeOC ₆ H ₄ CHOH	22

Table 1. Preparation of Compounds 2 from Alkyl Triflates 1

Entry

17

18

19

20

1 c

1 d

1**d**

1 d

^a All products **2** were >95% pure (GLC and/or 300 MHz ¹H NMR). ^b Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting triflate **1**.

2cc

2da

2db

2dc

(CH₂)₅COH

ButCHOH

PhCHOH

(CH₂)₅COH

(CH₂)₅CO

Bu⁴CHO

PhCHO

(CH₂)₅CO

In the last part of this work we studied the naphthalene-catalysed lithiation of N-substituted triflamides, finding that the expected transformation into the corresponding organolithium intermediates ocurred only for benzylic or allylic derivatives and under Barbier-type reaction conditions. Thus, N-benzyl-N-methyl triflamide **3e** reacted under the reaction conditions shown in Scheme 1 [E⁺ = Me₃SiCl, PriCHO, PhCHO, Et₂CO, (CH₂)₅CO] to give the expected benzylic derivative **2ea-ee** (Scheme 2 and Table 2, entries 1-5); in the case of the diallyl derivative **3f** the reaction was carried out in the presence of two equivalents of the electrophile [E⁺ = PhCHO, Et₂CO, (CH₂)₅CO] to yield two equivalents of the final allylic product **3fa-fc** (Scheme 2 and Table 2, entries 6-8).

45

91

74

61

3e : $R = PhCH_2$, R' = Me**3f** : $R = R' = CH_2 = CHCH_2$

Scheme 2. Reagents and conditions: i, Li powder, $C_{10}H_8$ cat. (4 mol%), E⁺ = Me₃SiCl, PriCHO, PhCHO, Et₂CO, (CH₂)₅CO, THF, -78 to 0°C; ii, H₂O.

Entry	Starting Triflamide	Electrophile (E+)	Producta			
			No.	R	E	Yield (%)b
1	3e	Me ₃ SiCl	2ea	PhCH ₂	Me ₃ Si	60
2	3e	PriCHO	2eb	PhCH ₂	PriCHOH	56
3	3e	PhCHO	2ec	PhCH ₂	PhCHOH	50
4	3e	Et ₂ CO	2ed	PhCH ₂	Et ₂ COH	94
5	3e	(CH ₂) ₅ CO	2ee	PhCH ₂	(CH ₂) ₅ COH	54
6	3f	PhCHO	2fa	CH ₂ =CHCH ₂	PhCHOH	71¢
7	3f	Et ₂ CO	2fb	CH ₂ =CHCH ₂	Et ₂ COH	45 ℃
8	3f	(CH ₂) ₅ CO	2fc	CH ₂ =CHCH ₂	(CH ₂) ₅ COH	25°

^a All products 2 were >95% pure (GLC and/or 300 MHz ¹H NMR). ^b Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting triflamide 3. ^c Yield based on the starting material 3f and corresponding to the transformation $3f \rightarrow 22f$.

As a conclusion, we have shown in this paper that alkylic triflates or allylic or benzylic triflamides can be transformed into the corresponding organolithium compound by a naphthalene-catalysed lithiation; the process has to be performed in the presence of the electrophile (Barbier-type reaction conditions) in order to avoid by-products, mainly Wurtz-type coupling of the *in situ* formed alkyllithium in the case of the starting alkyl triflate.

EXPERIMENTAL PART

General.- For general information, see reference 9. Starting triflates 1a and 1b were commercially available (Aldrich) and used as received. The other triflates 1c,¹⁰ 1d,¹¹ phenyl triflate¹² and the triflamides 3e,¹³ and 3f were prepared according to the literature procedures:^{14,15} N,N-Diallyl trifluoromethanesulfonamide (3f): R_f 0.38 (Hexane/ethyl acetate: 4/1); t_r 5.38; v (film) 3090, 1645 (HC=C), 1389, 1227, 1189 cm⁻¹ (SO₂CF₃); δ_H 3.96 (4H, d, J=6.4, 2xCH₂N), 5.28, 5.33 (2 and 2H, 2dd, J=1.2, 17.1 and 1.2, 12.2, respectively, 2xCH₂=C), 5.65-5.85 (2H, m, 2xCH=C); δ_C 49.7 (2xCN), 119.85 (q, J=322.5, CF), 120.6 (2xCH=C), 132.0 (2xCH₂=C); m/z 229 (M⁺, <1%), 200 (31), 188 (16), 160 (12), 96 (29), 94 (20), 80 (16), 69 (54), 68 (43), 67 (27), 56 (38), 55 (24), 54 (42), 42 (53), 41 (100).

Naphthalene-Catalysed Lithiation of Triflates 1 or Triflamides 3 in the Presence of Electrophiles. Isolation of Compounds 2. General Procedure.- To a green suspension of lithium powder (100 mg, 14 mmol) and naphthalene (10 mg, 0.08 mmol) in THF (5 ml) was slowly added (*ca.* 10 min) a solution of the corresponding triflate 1 or triflamide 3 (1 mmol) and the electrophile [1.2 mmol; 2.4 mmol for compounds 3f (see text)] in THF (2 ml) at -78°C under an argon atmosphere. Stirring was continued for 2 h allowing the temperature to rise to 0°C.¹⁶ This resulting mixture was then hydrolysed with water (5 ml) and extracted with diethyl ether (2x20 ml). The organic layer was dried over anhydrous Na₂SO₄ and the solvents were evaporated (15 Torr) to give a residue, which was purified by column chromatography (silica gel, hexane/ethyl acetate) affording the pure title compounds 2. Yields are included in Tables 1 and 2 and in the text. Compounds 2aa,^{6c} 2ad,¹⁷ 2ae,¹⁸ 2af,^{6c} 2ba,^{6c} 2bc,^{6c} 2ea,⁵ 2eb,¹⁹ 2ec,⁵ 2ed,⁵ 2es,⁵ 2fa,⁵ 2fb,⁵ 2fc,¹⁹ and diphenylmethanol¹⁷ which have been previously fully described by us, were characterized by comparation of their spectroscopic (IR, ¹H and ¹³C NMR, and mass spectra) and chromatographic data with those of the reported products. In other cases, physical and spectroscopic data as well as literature references for known compounds follow.

1-(4-Methoxyphenyl)ethanol (**2ab**):²⁰ R_f 0.48 (Hexane/ethyl acetate: 2/1); t_r 9.00; v (film) 3385 (OH), 1612, 1513 (HC=C), 1247, 1176, 1036 cm⁻¹ (C-O); δ_H 1.45 (3H, d, *J*=6.4, CH₃CH), 2.16 (1H, br s, OH), 3.78 (3H, s, CH₃O), 4.82 (1H, q, *J*=6.4, CHO), 6.86, 7.27 (2 and 2H, 2d, *J*=8.2, 8.2, respectively, Ph); δ_C 24.95 (CH₃C), 55.2 (CH₃O), 69.8 (CHO), 113.75, 126.6, 138.0, 158.85 (Ph); m/z 153 (M++1, 1%), 152 (M+, 17), 137 (66), 136 (12), 135 (27), 134 (100), 119 (50), 109 (28), 94 (18), 91 (48), 77 (31), 65 (36), 63 (18), 51 (19), 50 (12), 43 (44), 40 (26).

1-Methylcyclohexanol (**2ac**):^{3a} R_f 0.43 (Hexane/ethyl acetate: 4/1); t_r 3.93; v (film) 3360 cm⁻¹ (OH); δ_H 1.10 (3H, s, CH₃), 1.20-1.60 (10H, m, 5xCH₂), 1.75 (1H, s, OH); δ_C 22.7, 25.65 (4xCH₂), 29.55 (CH₃), 39.5 (CH₂), 69.85 (CO); m/z 115 (M++1, 1%), 114 (M+, 18), 99 (40), 85 (12), 81 (39), 79 (11), 72 (17), 71 (100), 58 (41), 57 (14), 55 (17), 53 (11), 43 (90), 42 (12), 41 (24).

3-Phenylbutanal (**2aj**)²¹ R_f 0.86 (Hexane/ethyl acetate: 2/1); t_r 7.87; v (film) 3020, 1494 (HC=C), 1724 cm⁻¹ (C=O); $\delta_{\rm H}$ 1.32 (3H, d, *J*=7.0, CH₃), 2.66, 2.76 (1 and 1H, respectively, ddd, *J*=2.1, 7.6, 16.6 and 1.8, 6.9, 16.6, respectively, CH₂), 3.30-3.40 (1H, m, CHPh), 7.15-7.35 (5H, m, Ph), 9.73 (1H, s, CHO); $\delta_{\rm C}$ 22.15 (CH₃), 34.3 (CHPh), 51.7 (CH₂), 126.5, 126.75 128.65, 145.45 (Ph), 210.8 (CO); *m/z* 149 (M++1, 5%), 148 (M+, 47), 133 (36), 130 (12), 106 (32), 105 (100), 103 (20), 91 (55), 79 (32), 78 (27), 77 (40), 55 (11), 51 (31), 50 (10), 41 (25).

4-Phenyl-2-pentanone (**2ak**):²² R_f 0.44 (Hexane/ethyl acetate: 6/1); t_r 8.65; v (film) 3091, 3062, 3027, 1602, 1494 (HC=C), 1716 cm⁻¹ (C=O); δ_H 1.26 (3H, d, J=6.7, CH₃CH), 2.06 (3H, s, CH₃CO), 2.65, 2.75 (1 and 1H, respectively, dd, J=7.9, 16.2 and 6.4, 16.2, respectively, CH₂), 3.25-3.35 (1H, m, CHPh), 7.15-7.30 (5H, m, Ph); δ_C 21.95 (CH₃CH), 30.5 (CH₂), 35.45 (CH₃CO), 51.95 (CHPh), 126.3, 126.75, 128.5, 146.15 (Ph), 207.8 (CO); m/z 163 (M++1, 5%), 162 (M+, 44), 147 (76), 129 (13), 119 (20), 106 (11), 105 (100), 104 (35), 103 (16), 91 (58), 79 (25), 78 (15), 77 (32), 51 (24), 44 (11), 43 (92), 41 (29).

1-(4-Methoxyphenyl)propanol (**2bb**):²³ R_f 0.30 (Hexane/ethyl acetate: 4/1); t_r 8.92; v (film) 3395 (OH), 1612, 1513 (HC=C), 1248 cm⁻¹ (C-O); $\delta_{\rm H}$ 0.88 (3H, t, *J*=7.3, CH₃C), 1.60-1.90 (2H, m, CH₂), 2.06 (1H, s, OH), 3.78 (3H, s, CH₃O), 4.50 (1H, t, *J*=6.6, CHO), 6.86, 7.24 (2 and 2H, respectively, 2d, *J*=8.7, Ph); $\delta_{\rm C}$ 10.15 (CH₃C), 31.7 (CH₂), 55.2 (CH₃O), 75.55 (CHO), 113.7, 127.15, 136.75, 158.9 (Ph); m/z 167 (M++1, 1%), 166 (M+, 8), 148 (56), 147 (32), 137 (100), 133 (13), 121 (12), 17 (20), 115 (12), 109 (30), 105 (15), 103 (10), 94 (27), 91 (18), 79 (18), 78 (14), 77 (48), 66 (11), 65 (17), 63 (15), 55 (13), 51 (26), 49 (13).

2-Phenyl-2-butanol (**2bd**):²⁴ R_f 0.42 (Hexane/ethyl acetate: 6/1); t_r 7.42; v (film) 3418 (OH), 3059, 3026, 1494 cm⁻¹ (HC=C); δ_H 0.79 (3H, t, J=7.5, CH₃CH₂), 1.54 (3H, s, CH₃C), 1.75-1.95 (3H, m, CH₂, OH), 7.15-7.25, 7.30-7.35, 7.40-7.45 (1, 2 and 2H, respectively, 3m, Ph); δ_C 8.25 (CH₃CH₂), 29.55 (CH₃C),

36.6 (CH₂), 74.85 (CO), 124.85, 126.45, 128.05, 147.7 (Ph); m/z 150 (M+, <1%), 121 (33), 57 (11), 43 (100).

3-Decanol (**2be**):²⁵ R_f 0.58 (Hexane/ethyl acetate: 6/1); t_r 7.82; v (film) 3356 cm⁻¹ (OH); δ_H 0.88, 0.94 (3 and 3H, respectively, 2t, *J*=6.9 and 7.5, respectively, 2xCH₃), 1.25-1.55 (15H, m, 7xCH₂, OH), 3.50-3.60 (1H, m, CH); δ_C 9.85, 14.05 (2xCH₃), 22.65, 25.65, 29.3, 29.65, 30.1, 31.8, 36.95 (7xCH₂), 73.35 (CO); *m/z* 140 (M+-18, 1%), 69 (65), 59 (100), 58 (22), 57 (22), 55 (43), 43 (32), 42 (10), 41 (53).

1,1-Dicyclopropylpropanol (**2bf**):²⁶ R_f 0.58 (Hexane/ethyl acetate: 6/1); t_r 6.44; v (film) 3489 cm⁻¹ (OH); δ_H 0.25-0.45 (8H, m, 4xCH₂CH), 0.75-0.90 (3H, m, 2xCH, OH), 1.00 (3H, t, J=7.6, CH₃), 1.59 (2H, q, J=7.6, CH₂CO); δ_C -0.85, 0.60 (4xCH₂CH), 8.25 (CH₃), 18.0 (2xCH), 35.0 (CH₂CO), 70.9 (CO); m/z 122 (M+-18, 4%), 111 (60), 91 (14), 83 (25), 79 (25), 77 (15), 69 (100), 57 (43), 55 (38), 43 (23), 41 (96).

N, *1-Diphenylpropamine* (**2b**g):²⁷ R_f 0.62 (Hexane/ethyl acetate: 2/1); t_r 12.98; v (film) 3414 (NH), 3086, 3053, 3024, 1603, 1504 cm⁻¹ (HC=C); $\delta_{\rm H}$ 0.93 (3H, t, *J*=7.6, CH₃), 1.70-1.90 (2H, m, CH₂), 4.01 (1H, br s, NH), 4.20 (1H, t, *J*=6.7, CHN), 6.50-7.35 (10H, m, 2xPh); $\delta_{\rm C}$ 10.8 (CH₃), 31.6 (CH₂), 59.65 (CN), 113.2, 117.05, 126.4, 126.8, 128.4, 129.0, 143.85, 147.45 (2xPh); m/z 212 (M++1, 3%), 211 (M+, 17), 183 (27), 182 (100), 104 (31), 93 (19), 91 (75), 78 (10), 77 (47), 51 (24), 41 (16).

3-Undecanone (**2bh**):²⁸ R_f 0.56(Hexane); t_r 8.79; v (film) 1718 cm⁻¹ (C=O); δ_H 0.90, 1.07 (3 and 3H, 2t;, J=6.2 and 7.3, respectively, 2xCH₃), 1.20-1.65 [12H, m, (CH₂)₆CH₃], 2.35-2.50 (4H, m, 2xCH₂CO); δ_C 7.65, 13.9 (2xCH₃), 22.5, 23.8, 29.0, 29.15, 29.25, 31.7, 35.65, 42.25, (8xCH₂), 211.65 (CO); *m*/z 171 (M++1, 1%), 170 (M+, 4), 141 (82), 85 (50), 81 (26), 73 (59), 72 (95), 71 (71), 67 (19), 58 (17), 57 (100), 56 (25), 55 (54), 44 (23), 43 (92), 42 (91), 41 (74), 40 (26).

1-Ethyl-2-cyclohexen-1-ol (**2bi**):²⁹ R_f 0.49 (Hexane/ethyl acetate: 6/1); t_r 5.15; v (film) 3381 (OH), 3018, 1647 cm⁻¹ (HC=C); δ_H 0.91 (3H, t, *J*=7.5, CH₃), 1.50-1.75 (9H, m, 4xCH₂, OH), 5.61 (1H, d, *J*=9.9, CHCO), 5.81 (1H, ddd, *J*=2.8, 4.6, 9.9, CH=CCO); δ_C 7.75 (CH₃), 18.95, 25.2, 34.65, 34.75 (4xCH₂), 69.8 (CO), 129.9, 132.5 (2xCH=C); m/z 126 (M+, <1%), 98 (15), 97 (100), 93 (11), 79 (43), 77 (19), 69 (34), 67 (16), 55 (35), 49 (29), 41 (39).

3-Phenylpentanal (**2bj**):³⁰ R_f 0.63 (Hexane/ethyl acetate: 6/1); t_r 8.64; v (film) 3028, 1494, 1453 (HC=C), 1724 cm⁻¹ (C-O); δ_H 0.81 (3H, t, J=7.3, CH₃), 1.55-1.80 (2H, m, CH₂CH₃), 2.72 (2H, d, J=7.3, CH₂CH), 3.00-3.15 (1H, m, CHPh), 7.05-7.35 (5H, m, Ph), 9.66 (1H, s, CHO); δ_C 11.85 (CH₃), 29.45 (CCH₃), 41.75 (CPh), 50.2 (CH₂CO), 126.55, 127.5, 128.55, 143.6 (Ph), 202.05 (CO); m/z 163 (M⁺⁺¹, 4%), 162 (M⁺, 33), 133 (75), 115 (13), 105 (67), 103 (14), 92 (11), 91 (97), 79 (18), 78 (22), 77 (29), 65 (10), 55 (15), 51 (20), 44 (26), 41 (20), 40 (100).

4-Phenyl-2-hexanone (**2bk**):³¹ R_f 0.54 (Hexane/ethyl acetate: 6/1); t, 9.35; v (film) 3061, 3027, 1602, 1494, 1453 (HC=C), 1718 cm⁻¹ (C=O); $\delta_{\rm H}$ 0.77 (3H, t, J=7.3, CH₃CH₂), 1.45-1.75 (2H, m, CH₂CH₃), 2.01 (3H, s, CH₃CO), 2.72 (2H, d, J=7.3, CH₂CH), 3.03 (1H, m, CHCH₂), 7.15-7.30 (5H, m, Ph); $\delta_{\rm C}$ 11.9 (CH₃CH₂), 29.3 (CH₃CO), 30.6 (CH₂CH₃), 42.95 (CH₂CO), 50.5 (CHCH₂), 126.3, 127.5, 128.4, 144.25 (Ph), 208.0 (CO); m/z 177 (M++1, 1%), 176 (M+, 5), 147 (42), 119 (19), 118 (81), 117 (21), 91 (64), 77 (14), 55 (11), 51 (14), 44 (12), 43 (100), 41 (15).

1-Phenyl-4-hexyn-1-ol (**2ca**):³² R_f 0.39 (Hexane/ethyl acetate: 6/1); t_r 10.95; v (film) 3386 (OH), 3085, 3062, 3030, 1603, 1493 (HC=C), 2245 cm⁻¹ (C=C); $\delta_{\rm H}$ 1.79 (3H, s, CH₃), 1.80-2.05, 2.10-2.35 (1 and 3H, respectively, 2m, 2xCH₂), 4.82 (1H, t, *J*=6.4, CHO), 7.25-7.35 (5H, m, Ph); $\delta_{\rm C}$ 3.45 (CH₃), 15.4, 37.9 (2xCH₂), 73.45 (CO), 76.45, 78.4 (C=C), 125.8, 127.55, 128.4, 144.2 (Ph); m/z 174 (M+, 2%), 159 (44), 145 (14), 141 (19), 120 (18), 115 (13), 106 (100), 105 (83), 104 (16), 97 (31), 91 (19), 79 (84), 78 (40), 77 (80), 67 (19), 65 (15), 63 (10), 53 (31), 52 (16), 51 (52), 50 (19), 43 (23), 41 (38), 40 (21).

l-(4-Methoxyphenyl)-4-hexyn-1-ol (**2cb**): R_f 0.29 (Hexane/ethyl acetate: 4/1); t_r 13.14; v (film) 3422 (OH), 3001, 1611, 1513 (HC=C), 2246 (C=C), 1248, 1175, 1035 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.70-2.30 (8H, m with s at 1.79,

CH₃C, 2xCH₂, OH), 3.80 (3H, s, CH₃O), 6.88, 7.27 (2 and 2H, respectively, 2d, J=8.3, Ph); δ_C 3.45 (CH₃C), 15.45, 37.8 (2xCH₂), 55.25 (CH₃O), 73.1 (CHO), 76.35, 78.45 (C=C), 113.8, 127.05, 136.35, 159.05 (Ph); *m*/z 205 (M++1, 2%), 204 (M+, 12), 189 (13), 187 (14), 186 (46), 174 (14), 171 (49), 161 (16), 155 (10), 153 (10), 141 (11), 138 (11), 137 (100), 135 (34), 129 (12), 128 (34), 127 (10), 121 (22), 119 (20), 115 (22), 109 (47), 105 (12), 94 (27), 91 (26), 78 (14), 77 (54), 66 (12), 65 (25), 63 (18), 53 (16), 51 (27), 41 (13), 40 (16).

3-Pentyn-1-yl-1-cyclohexanol (**2cc**): $R_f 0.35$ (Hexane/ethyl acetate: 6/1); $t_r 9.64$; v (film) 3431 (OH), 1280 (C-O), 2244 cm⁻¹ (C=C); $\delta_H 1.25$ -1.70 [13H, m, CH₂CO, (CH₂)₅, OH], 1.77 (3H, t, *J*=2.6, CH₃), 2.20-2.35 (2H, m, CH₂C=C); $\delta_C 3.4$ (CH₃), 12.65, 22.15, 25.8, 37.25, 40.55 (7xCH₂), 71.3 (CO), 76.15, 79.5 (C=C); m/z 166 (M+, 1%), 133 (13), 110 (17), 109 (22), 105 (11), 99 (82), 98 (21), 95 (37), 94 (21), 91 (17), 81 (74), 79 (25), 67 (49), 65 (14), 57 (25), 55 (100), 53 (37), 51 (11), 43 (63), 42 (20), 41 (73), 40 (12).

2,2-Dimethyl-3-nonanol (**2da**):³³ R_f 0.59(Hexane); t_r 7.58; v (film) 3403 cm⁻¹ (OH); δ_H 0.85-0.95 (12H, m, 4xCH₃), 1.25-1.60 (11H, m, 5xCH₂, OH), 3.15-3.20 (1H, m, CH); δ_C 14.05 (*C*H₃CH₂), 25.7 (3x*C*H₃C), 22.65, 27.05, 29.4, 31.5, 31.9 (5xCH₂), 34.9 (*C*CHO), 80.0 (CH); m/z 157 (M+-15, 1%), 115 (15), 97 (70), 87 (23), 69 (37), 57 (58), 56 (27), 55 (100), 45 (17), 44 (11), 43 (51).

1-Phenylheptanol (**2db**):³⁴ R_f 0.33 (Hexane/ethyl acetate: 6/1); t_r 11.36; v (film) 3372 (OH), 3090, 3065, 3026, 1600, 1466 cm⁻¹ (HC=C); δ_H 0.86 (3H, t, J=6.9, CH₃) 1.20-1.85 (11H, m, 5xCH₂, OH), 4.65 (1H, t, J=6.7, CHO), 7.25-7.35 (5H, m, Ph); δ_C 14.05 (CH₃), 22.6, 25.8, 29.2, 31.75, 39.1 (5xCH₂), 74.7 (CO), 125.9, 127.45, 128.4, 144.95 (Ph); m/z 192 (M⁺, 2%), 107 (100), 79 (38), 77 (18), 43 (16).

1-Hexylcyclohexanol (**2dc**):³⁵ R_f 0.43 (Hexane/ethyl acetate: 6/1); t_r 9.64; v (film) 3421 cm⁻¹ (OH); δ_H 0.88 (3H, t, *J*=6.4, CH₃), 1.25-1.60 (21H, m, 10xCH₂, OH); δ_C 14.05 (CH₃), 22.3, 22.6, 22.85, 25.85, 29.95, 31.9, 37.45, 42.45 (10xCH₂), 71.45 (CO); *m/z* 166 (M+-18, 2%), 113 (13), 100 (10), 99 (100), 96 (11), 82 (10), 81 (66), 71 (15), 67 (27), 59 (13), 58 (30), 57 (37), 54 (45), 43 (54), 42 (11).

ACKNOWLEDGEMENTS

This work was financially supported by the DGICYT (no. PB94-1514) from the spanish Ministerio de Educación y Ciencia (MEC). E. A. and D. J. R. thank the MEC for grants.

REFERENCES AND NOTES

- 1. For a general monograph, see: Wakefield, B. Organolithium Methods; Academic Press: London, 1988.
- (a) Schlosser, M. In Organometallics in Syntheses; Schlosser, M., Ed.; J. Wiley & Sons: Chichester, 1994; pp. 47-50. (b) Schölkopff, U. In Houben-Weyl, Methoden der Organischen Chemie, Band 13/I;
 G. Thieme Verlag: Stuttgart, 1970; pp. 127-133. (c) Ref. 1, pp. 47-49. (d) Shapiro, R. H. Org. React. 1976, 23, 405-507.
- (a) Yus, M.; Ramón, D. J. J. Chem. Soc., Chem. Commun. 1991, 398-400. (b) Yus, M. Chem. Soc. Rev., in the press.
- 4. Guijarro, D.; Mancheño, B.; Yus, M. Tetrahedron 1992, 48, 4593-4600.
- 5. For another methodology based on arene-catalysed lithiation reactions of allylic and benzylic alcohols or their silylated derivatives, see: Alonso, E.; Guijarro, D.; Yus, M. *Tetrahedron* **1995**, *51*, 11457-11464.
- (a) Guijarro, D.; Mancheño, B.; Yus, M. Tetrahedron Lett. 1992, 33, 5597-5600. (b) Guijarro, D.;
 Guillena, G.; Mancheño, B.; Yus, M. Tetrahedron 1994, 50, 3427-3436. (c) Guijarro, D.; Yus, M.

Tetrahedron 1995, 51, 11445-11456.

- 7. Guijarro, D.; Mancheño, B.; Yus, M. Tetrahedron 1994, 50, 8551-8558.
- For the last paper from our laboratory on the use of the arene-catalysed lithiation, see: Guijarro, A.; Ortiz, J.; Yus, M. *Tetrahedron Lett.* 1996, 37, 5597-5600.
- 9. Huerta, F. F.; Gómez, C.; Guijarro, A.; Yus, M. Tetrahedron 1995, 51, 3375-3388.
- Anderson, B. A.; Bao, J.; Brandvold, T. A.; Challener, C. A.; Wulff, W. D.; Xu, Y.-C.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 10671-10687.
- 11. Wipf, P.; Kim, Y.; Fritch, P. C. J. Org. Chem. 1993, 58, 7195-7203.
- 12. Moinet, C; Fiaud, J.-C. Tetrahedron Lett. 1995, 36, 2051-2052.
- 13. Bozec-Ogor, S.; Salou-Guiziou, V.; Yaouanc, J. J.; Handel, H. Tetrahedron Lett. 1995, 36, 6063-6066.
- (a) Hanack, M.; Dehesch, T.; Hummel, K.; Nierth, A. Org. Synth. Coll. Vol. 1988, 6, 324-326. (b)
 Shieh, W.-C.; Carlson, J. A. J. Org. Chem. 1992, 57, 379-381.
- 15. Takahashi, H.; Kawakita, T.; Ohno, M.; Yoshioka, M.; Kobayashi, S. Tetrahedron 1992, 48, 5691-5700.
- 16. In the case of phenyl triflate, BF_3 (1.2 mmol) was added to the reaction mixture before the addition of this reagent and benzaldehyde, and the temperature was allowed to rise to 20°C before the final hydrolyses.
- 17. Guijarro, D.; Yus, M. Tetrahedron 1994, 50, 3447-3452.
- 18. Guijarro, D.; Mancheño, B.; Yus, M. Tetrahedron 1993, 49, 1327-1334.
- 19. Alonso, E.; Guijarro, D.; Yus, M. Tetrahedron 1995, 51, 2699-2708.
- 20. Jendralla, H.; Li, C. H.; Paulus, E. Tetrahedron: Asymmetry 1994, 5, 1297-1320.
- 21. Venturello, C.; Gambaro, M. J. Org. Chem. 1991, 56, 5924-5931.
- 22. Gustafsson, B. Tetrahedron 1978, 34, 3023-3026.
- 23. Waldmann, H.; Weigerding, M.; Dreisbach, C.; Wandrey, C. Helv. Chim. Acta 1994, 77, 2111-2116.
- 24. Montgomery, F. C.; Saunders, Jr. W. H. J. Org. Chem. 1976, 41, 2368-2372.
- 25. Woods, G. F.; Lederle, H. F. J. Am. Chem. Soc. 1951, 73, 2245-2247.
- 26. Kataoka, F.; Nishida, S.; Tsuji, T.; Murakami, M. J. Am. Chem. Soc. 1981, 103, 6878-6884.
- 27. Cho, B. T.; Chun, Y. S. Tetrahedron: Asymmetry 1992, 3, 1583-1590.
- 28. Collman, J. P.; Winter, S. R.; Clark, D. R. J. Am. Chem. Soc. 1972, 94, 1788-1789.
- 29. Reetz, M. T.; Kindler, A. J. Chem. Soc., Chem. Commun. 1994, 2509-2510.
- 30. Maruoka, K.; Banno, H.; Yamamoto, H. Tetrahedron: Asymmetry 1991, 2, 647-662.
- 31. House, H. O.; Traficante, D. D.; Evans, R. A. J. Org. Chem. 1963, 28, 348-355.
- 32. Mayr, H.; Grubmüller, B.; Halberstadt, I. K. Tetrahedron Lett. 1979, 1749-1752.
- Orrenius, C.; Öhrner, N.; Rotticci, D.; Mattson, A.; Hult, K.; Norin, T. Tetrahedron: Asymmetry 1995, 6, 1217-1220.
- 34. Weber, B.; Seebach, D. Tetrahedron 1994, 50, 7473-7484.
- 35. Williams, H. B.; Edwards, Jr. W. R. J. Am. Chem. Soc. 1947, 69, 336-338.

(Received in UK 29 August 1996; revised 23 September 1996; accepted 26 September 1996)