

Metal-Free Synthesis of Alkenylazaarenes and 2-Aminoquinolines through Base-Mediated Aerobic Oxidative **Dehydrogenation of Benzyl Alcohols**

Dipak J. Dahatonde,^[a] Aritra Ghosh,^[a, b] and Saniav Batra^{*[a, b]}

A metal-free, base-mediated, and atom-efficient oxidative dehydrogenative coupling of substituted phenylmethanols (benzyl alcohols) with methyl azaarenes or phenylacetonitriles to afford substituted alkenylazaarenes or 2-aminoquinolines, respectively is described. CsOH.H₂O was discovered to be the

Introduction

The oxidative dehydrogenative coupling of alcohols has emerged as an attractive option for the synthesis of a variety of functionalized organic molecules and synthesis of variety of Nheterocycles.^[1] Extrusion of hydrogen and water as the byproduct, atom economy and sustainability due to ready availability of alcohols from several industrial processes or renewable resources are the key attributes, which have contributed to the growth of such transformations. From initial focus on the use of precious and toxic noble-metal-based catalysts,^[2] currently more acceptable earth-abundant Mn, Fe, Co, Ni or Cu-based catalysts are effective options for executing such coupling reactions.^[3] During our program to discover compounds to treat Visceral Leishmaniasis,^[4] we became interested in performing α -olefination of 2-methylquinolines as analogous compounds were reported to display antileishmanial activity (Figure 1).^[5] Given the significance of aryl-substituted olefins, bearing N-heteroarene unit in various natural products, drug molecules and materials,^[6] engineering new strategies for its synthesis has been a topic of continued research.^[7] In particular, there has been a spurt of papers related to dehydrogenative coupling of alcohols for realizing α -olefinations of N-heteroarenes under a variety of metal-based and metal-free conditions during the last few years. Appraisal of these protocols revealed that most of the metal-mediated reactions were performed under strongly basic conditions

[a]	D. J. Dahatonde, A. Ghosh, S. Batra Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute					
	BS-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar					
	Pradesh, India					
	E-mail: batra_san@yahoo.co.uk					
	s_batra@cdri.res.in					
	http://www.cdri.res.in/1426.aspx?id=1426					
[b]	A. Ghosh, S. Batra					
	Academy of Scientific and Innovative Research					
	CSIR – Human Resource Development Centre, (CSIR-HRDC) Campus,					
	Sector 19, Kamla Nehru Nagar, Ghaziabad-201002, Uttar Pradesh, India					

Supporting information for this article is available on the WWW under https://doi.org/10.1002/ejoc.202100420

base of choice for obtaining optimal yields of the title compounds, although the reaction could proceed with KOH as well. The protocol that works efficiently in the presence of air is amenable over broad range of substrates.

Figure 1. 2-Styrylquinolines as antileishmanial agents against L. donovani.^[5a]

(Figure 2). For example, Kempe et al.^[8] used 40% KOH whereas Maji et al.^[9] used 1.0 equiv. of KO^tBu together with Mn complexes for carrying out the α -olefinations of *N*-heteroarenes with alcohols. Likewise, coupling reactions with Ni, Co and Febased catalysts were also carried out in the presence of KO^tBu (1.0 equiv).^[10] Instead, the metal-free dehydrogenative couplings for α -olefinations of azaarenes invariably used the oxidant with catalytic amount of base.^[11] Strategically in such reactions the alcohol is oxidized to aldehyde or ketone, which is the reactive intermediate that condenses with the acidic methyl of azaarenes. Earlier, Wolfson et al. reported high catalytic activity and full selectivity of alkali metal hydroxides for aerobic oxidation of phenylmethanols in a nonpolar medium (Figure 3).^[12] Even the synthesis of aldimine via reaction between

Figure 2. Different routes to the synthesis of alkenyl azaarene.^[7–10]

Figure 3. Reactions encompassing aerobic oxidative dehydrogenation reactions of alcohols in the presence of base exclusively. $^{\rm (11-13)}$

benzylamine and phenylmethanol in the presence of KOH in toluene under heating in air was reported earlier.^[13] Moreover, there are citations, which describe the synthesis of heterocycles via oxidation of phenylmethanols in the presence of base exclusively.^[14] However, the literature lacks report on the synthesis of alkenyl azaarenes via dehydrogenative coupling of alcohols with methyl azaarenes using base exclusively. Therefore, we were impelled to investigate α -olefination of 2-methvlauinoline via dehydrogenative coupling of phenyl methanol in the presence of a base only with the notion that this would allow a metal-free and sustainable route to 2-alkenyl azaarenes. Herein, we disclose the results of our investigations toward a metal-free base-mediated direct olefination of methyl-substituted azaarenes with aryl methanols. We expanded the scope of the protocol to the synthesis of substituted 2-aminoquinolines via reaction between (2-aminophenyl)methanol and phenylacetonitriles. Notably during the writing of this work, Maji et al. disclosed another Mn-based catalyzed C-alkylation of methyl N-heteroarenes with primary alcohols wherein it was claimed that trace product was formed in the presence of KO^tBu exclusively.^[15]

Results and Discussion

In a pilot reaction in the Schlenk tube fitted with air balloon, 2methylquinoline (1 a) and (4-methylphenyl)methanol (2 h) were heated at 120°C in the presence of 'BuOK (1.0 equiv) in xylenes for 24 h. We were pleased to discover that the desired 2styrylquinoline 3ah was obtained in 30% yield together with the starting substrate **1a** and *p*-tolualdehyde. Encouraged by the results, we examined different base including ^tBuONa, NaOH, KOH and CsOH.H₂O and found CsOH.H₂O to be the superior reagent for this reaction. The reaction in dioxane gave moderate yield of 3 ah but yields were inferior in DMF, DMSO or MeCN. We found that in most cases, the starting material 1a was recovered and therefore we screened the reaction with enhanced amount of 2h and found that 1.2 equiv. was suited for optimal yield. In addition, the reaction was discovered to work efficiently when performed in the presence of air together with the use of freshly distilled toluene (refer to Table S1, Supporting Information). Thus, the optimized condition that produced best yield of **3ah** was heating 1.0 equiv. of **1a** with 1.2 equiv. of **2h** in toluene at 110 $^{\circ}$ C under air.

With the optimized conditions in hand, we tested the scope of the strategy with different 2-methyl guinolines and arylmethanols. In first set of reactions, 2-methyl quinoline 1a was treated with many arylmethanols (2a-z) under the standardized conditions. We discovered that yields of products 3 varied between 45 to 87% for the alcohols to which the methodology was compatible (Scheme 1). It is worth mentioning that for most cases the column chromatographic purification was not required as the removal of solvent and addition of water furnished the pure solid products. It was found that whereas (2chlorophenyl)methanol 2c afforded the product 3ac in 58% yield, (2-flourophenyl) and (2-iodophenyl)methanols (2d and 2e) failed to yield the products 3ad and 3ae, respectively and 1 a was recovered unreacted. The (3-chlophenyl)methanol 2f was attuned to the protocol to offer the 2-styrylquinoline 3 af in 71% yield but the reaction of (3-phenoxyphenyl)methanol 2g was unsuccessful. Except for the (4-nitrophenyl)methanol (2m), the reactions with all other (4-substitutedphenyl)methanols were successful to afford the products 3ah-3al, 3an-3ao in 65-87% yields. The reactions with (di- or tri-substituted phenyl) methanols (2p-2t) too furnished the corresponding styryl derivatives **3ap-at** in 45–70% vields. For the alcohol **2p**, optimal yield of the product 3 ap was achieved by performing the reaction for 48 h in the presence of 2.0 equiv. of alcohol. It is highlighted that 3 ap is the starting material for preparing antimalarial natural compound (\pm) -Galipinine.^[16] The reaction of (1-naphthyl)methanol 2u also smoothly gave the product 3au in 76% yield. Amongst the heterocyclic methanols investigated during the study, (thiophene-2-yl)methanol 2v and (pyridine-3yl)methanol 2x gave the respective product 3av and 3ax, whereas alcohols 2w and 2y were found to be unsuited. When

Scheme 1. Scope of the synthesis of 2-Styrylquinolines.^[a] 1 a was recovered from the reaction.^[b] 2.0 equiv. of 2a was used.

checked independently, we found that the transformation of (2pyridyl)methanol **2w** to the corresponding pyridine-2-aldehyde under the influence of base was unsuccessful. Moreover, direct reaction of pyridine-2-aldehyde with **1a** in the presence of CsOH.H₂O to obtain **3aw** was unproductive too.

Interestingly, the (4-fluorophenyl)methanol **2z** instead of the expected **3az** afforded **3az**' in 35% yield. Perhaps the fluoro-group of the aldehyde being electrophilic in nature undergoes nucleophilic aromatic substitution by the alcohol in the presence of a base.

In the next set of reactions, we investigated the protocol by reacting differently substituted 2-alkylquinolines with substituted phenylmethanols 2. The reaction of 6-chloro and 6-bromo-2-methylquinoline (3b-c) with 2a gave the respective 2-styryl quinolones 3ba and 3ca in 75-77% yield (Scheme 2). The STB-8 reagent^[6h] i.e. a (*E*)-2-(2-([1,1'-biphenyl]-4-yl)vinyl)-6-methoxyquinoline (3do) was prepared in 35% yield by reacting 6-methoxy-2-methylquinoline 1d with [1,1'-biphenyl]-4-ylmethanol (2o) under the optimized conditions. Isolation of aldehyde in the reaction accounted for lower yield of 3do. Conversely,

Scheme 2. Scope of the reaction with different substituted 2alkylquinolines.^[a] complex reaction mixture was observed.^[b] 1 h and benzaldehyde were recovered and no coupling product was observed even after prolonged reaction time.

Scheme 3. Scope of the protocol with 1,4-quinoxalines. Yields are based on the substrate 4.^[a]Starting material 4 was recovered.

the reaction of 4-methoxy-2-methylquinoline (1 e) with 2a instead of the expected 4-methoxy-2-styrylquinoline (3 ea) resulted in 4-benzyloxy-2-styrylquinoline (3 fa) in 44% yield. However, reactions of 2a with 2-methyl-8-nitro-quinoline (1g) or 2-ethylquinoline (1h) were unsuccessful to afford 3 ga or 3 ha, respectively.

Towards broadening the scope of the strategy, next we investigated reactions with 2-methylquinoxaline 4, which is more nucleophilic as compared to /2-methylguinoline. Accordingly, 4 was treated with 2a under the optimized condition and we were delighted to discover reaction was completed in 6 h to afford the product 5a in 94% yield (Scheme 3). Subsequently, reactions of 4 with different arylmethanols (2b-s) were evaluated and in all cases except for (2-fluorophenyl)methanol 2d and (4-nitrophenyl)methanol 2m, the required products (5b-c, 5e-l, 5n-5s) were obtained in 64-91% yields. Although the time required for the reaction varied between 6-15 h, unlike 2-styrylquinolines, here the chromatographic purification was essential to obtain pure products. We found that (3-phenoxypheny)methanol 2g which was inert to 2-methylquinoline reacted with 4 to afford the corresponding product 5 g. For assessing the scalability, gram scale reaction 2s with 4 was performed to isolate the product 5s without diminution of yield though time consumed for completion of reaction was relatively higher. Notably, reactions of heterocyclic alcohols 2v and 2x furnished the respective products 5v and 5x in 33% and 40% yields only and the time consumed for reaction of 2v was 28 h. Unlike 2-methylquinoline, here the reaction of 4 with 2z gave the styryl product 5z in 44% yield together with the ether derivative 5 z' in 25% yield.

These results made it apparent that base alone is sufficient to perform the oxidation of the alcohol to aldehyde under aerobic conditions, which in turn reacts with methyl of the azaarenes to afford 2-styrylazaarene. Thus, we considered investigating the scope further with other methyl-azaarene systems. In this context, 2,3-dimethylquinoxaline **6a** was treated with 1.0 equiv. of **2a** in toluene under heating at 110 °C for 24 h. The reaction resulted in the formation of a mixture of products from which we could isolate 2-styrylquinoxaline **7aa** in 20% yield together with 2,3-bisstyrylquinoxaline **7a'a** in trace amount (Scheme 4). Nonetheless, increasing the amount of the

Scheme 4. Scope of the protocol with different 2-methylazarenes.^{[a]-} Unreacted starting material was recovered.

2a to 4.0 equiv. produced 7a'a in 72% yield. Subjecting 2methylpyrazine 6b to reaction with alcohols 2a, 2h or 2n afforded the corresponding 2-styrylpyrazines 7ba, 7bh or 7bn in 73–86% yields. We also investigated the reaction of 2a with 4-methylquinoline 6c, 1-methyliosquinoline 6d, 2-methylbenzothioazole 6e, and 2-methylbenzoxazole 6f and it was satisfying to discover that the protocol was amenable for all substrates though yield of 7ca, 7da, 7ea and 7fa varied. For 6f, we recovered the unreacted starting material together with benzaldehyde in the reaction mixture.

However, even increasing the amount of alcohol or reaction time the yields of **7 fa** did not improve. Conversely, the reaction of **2 a** with 1,9-dimethyl-9*H*- β -carboline **6 g** under the optimised conditions was unsuccessful to offer product **7 ga**.

Successful implementation of the protocol provided the impetus to study the fate of reaction between (2-aminophenyl) methanol and phenylacetonitriles under the optimized condition as it may offer 2-aminoquinolines. Although several strategies for the synthesis of 2-aminoquinolines are known,^[17] to the best of our knowledge metal-free synthesis of 2aminoquinolines from (2-aminophenyl)methanol is not reported. Therefore, (2-aminophenyl)methanol 8a was treated with phenylacetonitrile 9a in the presence of CsOH.H₂O in toluene at 110 °C and we were pleased to isolate the desired 2aminoquinoline 10 aa in 56% yield together with amide 11 (see Table S2, Supporting Information). Assuming that high temperature may induce hydrolysis of phenylacetonitrile by the water released during the process, we considered optimizing the reaction for the base and temperature. Interestingly, we discovered that the reaction was successful in the presence of CsOH.H₂O as well as KOH and unlike for 2-methylquinoline (1), herein only 1.0 equiv. of either base was required (see Supporting Information). In addition, the superior yields of 10 aa was obtained by use of 1.2 equiv. of phenylacetonitrile. Thus the conditions which offered the optimal yield of the 3phenyl-2-aminoquinoline 10aa were (2-aminophenyl)methanol (1.0 equiv) and phenylacetonitrile (1.2 equiv) in the presence of CsOH.H₂O (1.0 equiv) or KOH (1.0 equiv) under heating at 90 °C for 24 h.

With the optimized conditions in hand, we investigated the scope with a variety of (2-aminophenyl)methanol (8a-h) and arylacetonitriles (9a-I) in the presence of CsOH.H₂O and KOH and the results are presented in Scheme 5. In the first set of experiments methanol 8a and 8b were treated with several phenyl acetonitriles (9a-h) and except for the nitro group bearing phenylacetonitrile 9c, all substrates offered the desired products 10aa-10ab, 10ad-10ah, 10ba-10bb, 10bd-bh in 68-88% yields. It was observed that reactions performed in the presence of CsOH.H₂O gave relatively better yields of products than the ones pursued in KOH. Next, we investigated the protocol by reacting heteroarylacetonitriles (9i-k) with 8a and 8b, which gave the products 10ai, 10bi, 10aj, 10bj, 10ak, 10 bk in low yields. Perhaps recovery of the starting material explained the low yields. Subsequently, the scope of the reaction was evaluated with different (substituted-2-aminophenyl)methanols (8c-h). We observed that except for the methanols bearing 4-fluoro and 4-nitrophenyl substitution (8e-

Scheme 5. Scope of the formation of 2-aminopyridine derivatives in the presence of base only.^[a] Starting substrate was recovered,^[b] 4.0 equiv. of **91** was used.

f), all other substrates afforded the products (10ca-10da, 10ga-10ha) in 68-89% yields. The suitability of the method was also studied with aliphatic nitriles such as butyronitrile 9I and phenylpropionitrile 9m and it was found that whereas butyronitrile afforded the product 10al in 40% yield, the reaction with the latter was unsuccessful. Notably, the reaction between 8a and 9I was performed with 4.0 equiv. of 9I to obtain the product.

We extended the study to include the use of secondary alcohol in the reaction. Accordingly, when (2-aminophenyl)(-phenyl)methanol **12** was subjected to reaction with **9a** in the presence of CsOH.H₂O, we isolated acridin-9(10*H*)-one **13** as the major product in 30% yield (Scheme 6). Literature cites the formation of such product oxidative C–H amination of 2-aminobenzophenone in the presence of KO'Bu and DMSO.^[18]

However, when the same reaction was performed in the presence of KOH, we isolated the required 2-amino-3,4,– diphenylquinoline **14** in 25% yield together with the 2-amino-benzophenone **15** but with no trace of acridin-9(10*H*)-one.

Finally, to exemplify the utility of the 2-aminoquinoline derivatives, in a representative reaction compound **10aa** was treated with acetophenone in the presence of $Cu(OAc)_2$ and ZnI in dichlorobenzene to produce 2,4-diphenylimidazo[1,2-*a*]

Scheme 6. Reaction with secondary alcohol.

quinolone 16 in 32% yield together with the recovery of starting material (58%) (Scheme 7).^[19]

Conclusion

In summary, we have developed a base-mediated facile, practical and atom-efficient method for preparing the alkenyl azaarenes and 2-aminoquinolines utilizing (substitutedaryl) methanols or substituted (2-aminophenyl)methanols, respectively. The protocol scores over the reported methodologies as it does not requires the use of a metal catalyst or ligand and is tenable in the presence of air only. Comparatively, the CsOH.H₂O was found more efficient than KOH, speculatively due to Cesium effect.^[20] This method tolerates wide range methyl azaarenes and arylmethanols. The protocol was successfully extended for the synthesis of 2-aminoquinolines from (2-aminophenyl)methanol and phenylacetonitriles via aerobic oxidative cyclocondensation.

Experimental Section

General Information- Unless otherwise stated, all reactions were performed in non-dry glassware under an air atmosphere and were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated silica gel plates. After elution, plate was visualized under UV illumination at 254 nm for UV active materials. Further visualization was achieved either via lodine or KMnO₄ solution. The melting points were recorded on a hot stage apparatus and are uncorrected. IR spectra were recorded using a FTIR spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on 400 or 500 MHz NMR spectrometers with CDCl₃ or DMSO-d⁶ as solvent, using TMS as an internal standard (chemical shifts in δ). Peak multiplicities of ¹H-NMR signals were designated as s (singlet), brs (broad singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), m (multiplet) etc. Coupling constants (J) are in Hz. The ESI-MS and HRMS were recorded on triple guadrupole Mass spectrometer and orbitrap velos pro mass spectrometer. Column chromatography was performed using silica

gel (100–200 mesh) or neutral alumina. Analytical grade solvents for the column chromatography were used as received.

General procedure for the synthesis of alkenylazaarenes (3 aa-3 az and 3 ba, 3 ca, 3 do, 3 fa, 7 aa-7 fa) as exemplified for 3 ah.

Method A. To a two way 50 mL round-bottom flask equipped with a stirring bar and condenser (attached with an air balloon on the top) was added 2-methylquinoline **1a** (0.20 g, 1.40 mmol), (4-tolyl) methanol **2h** (0.20 g, 1.68 mmol), and CsOH.H₂O (0.21 g, 1.39 mmol) in toluene (3 mL) and the mixture was heated at 110 °C under stirring. The reaction was continued for 24 h and on completion (as monitored by TLC), the solvent was removed completely under the reduced pressure. The residue thus obtained was triturated with H₂O (10 mL) to furnish **3ah** as a yellow solid product that was filtered and dried in vacuum.

Method B. For the products where solid was not obtained, the residue was extracted with H_2O (25 mL) and EtOAc (3×20 mL). The combined organic layers was washed with brine (20 mL), dried over anhydrous Na_2SO_4 , filtered and evaporated to furnish the crude product. Purification by silica gel column chromatography using hexanes/ EtOAc (9:1, v/v) as the eluent, to yield the product.

General procedure for the synthesis of 2-Styrylquinoxalines (5a-5z) as exemplified by the synthesis of 5a.

To a round-bottom flask fitted with condenser (having an air balloon) was added 2-methyl quinoxaline **4** (0.20 g, 1.39 mmol), phenyl methanol **2a** (0.18 g, 1.66 mmol), and CsOH. H₂O (0.21 g, 1.39 mmol) in toluene (3 mL) was heated at 100 °C. The reaction progress was monitored by TLC. After completion, the solvent was removed under vacuum and the residue was directly adsorbed on silica. Purification by column chromatography on silica gel using hexanes/ EtOAc (9:1, v/v) as eluent afforded the product **5a**.

General procedure for the synthesis of 3-Phenylquinolin-2-amines (10aa–10am, 10ba–10bk, 10ca–10ha, 14) as exemplified for 10aa.

A round-bottom flask equipped with a stirring bar, condenser (attached with an air balloon on the top) was charged with 2-(aminophenyl)methanol **8a** (0.20 g, 1.62 mmol), phenylacetonitrile **9a** (0.23 g, 1.94 mmol), and the base (CsOH.H₂O: 0.24 g or KOH: 0.090 g, 1.62 mmol) in toluene (6 mL) and heated at 90 °C for 24 h under vigorous stirring. On completion, the solvent was removed from the reaction mixture and the residue was directly adsorbed on neutral alumina for column chromatography. Purification using hexanes/ EtOAc (7:3, v/v) as eluent afforded the product **10aa** as a white solid.

Acknowledgements

The authors DJD and AG gratefully acknowledge the financial support from CSIR, New Delhi, in the form of fellowships. The authors acknowledge the SAIF, CDRI for providing the spectroscopic data. This is CDRI Communication no 10233.

Conflict of Interest

The authors declare no conflict of interest.

Scheme 7. Utility of 2-aminoquinoline.

Keywords: Alkenyl	azaarene	• 2-Aminoquinoline •		
Benzylalcohol ·	Nitrogen	heterocycles	•	Oxidative
dehydrogenation				

- a) C. Gunanathan, D. Milstein, *Science* 2013, *341*, 1229712–1229714;
 b) A. Corma, J. Navas, M. J. Sabater, *Chem. Rev.* 2018, *118*, 1410–1459;
 c) T. Irrgang, R. Kempe, *Chem. Rev.* 2019, *119*, 2524–2549;
 d) A. Mukherjee, D. Milstein, *ACS Catal.* 2018, *8*, 11435–11469.
- [2] a) D. Benito-Garagorri, K. Kirchner, Acc. Chem. Res. 2008, 41, 201–213;
 b) J. Choi, A. H. R. MacArthur, M. Brookhart, A. S. Goldman, Chem. Rev. 2011, 111, 1761–1779; c) N. Selander, K. J. Szabo, Chem. Rev. 2011, 111, 2048–2076; d) C. Gunanathan, D. Milstein, Chem. Rev. 2014, 114, 12024–12087.
- [3] a) J. Miao, H. Ge, Eur. J. Org. Chem. 2015, 7859–7868; b) S. Chakraborty, U. K. Das, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 2017, 139, 11710–11713; c) M. Garbe, K. Junge, M. Beller, Eur. J. Org. Chem. 2017, 4344–4362; d) M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier, K. Kirchner, J. Am. Chem. Soc. 2016, 138, 15543–15546; e) N. A. Espinosa-Jalapa, A. Kumar, G. Leitus, Y. Diskin-Posner, D. Milstein, J. Am. Chem. Soc. 2017, 139, 11722–11725; f) B. Maji, M. K. Barman, Synthesis 2017, 49, 3377–3393; g) F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 2018, 57, 46–60; Angew. Chem. 2018, 130, 48–63.
- [4] a) S. Mukhopadhyay, D. S. Barak, R. Karthik, S. K Verma, R. S. Bhatta, N. Goyal, S Batra, *RSC Med. Chem.* 2020, *11*, 1053–1062; b) S. Gangwar, M. S. Baig, P. Shah, S. Biswas, S. Batra, M. I. Siddiqi, N. Goyal, *Chem. Biol. Drug Des.* 2012, *79*, 149–156.
- [5] a) P. M. Loiseau, S. Gupta, A. Verma, S. Srivastava, S. K. Puri, F. Sliman, M. Normand-Bayle, D. Desmaele, *Antimicrob. Agents Chemother.* 2011, *55*, 1777–1780; b) A. Luczywo, I. P. Sauter, T. C. da S Ferreira, M. Cortez, G. P. Romanelli, G. Sathicq, S. E. Asís, *J. Heterocycl. Chem.* 2021, doi.org/ 10.1002/jhet.4217.
- Representative examples only a) T. Endo, M. Tsuda, T. Okada, S. [6] Mitsuhashi, H. Shima, K. Kikuchi, Y. Mikami, J. Fromont, J. Kobayashi, J. Nat. Prod. 2004, 67, 1262-1267; b) S. Blanchard, A. D. William, A. C.-H. Lee, A. Poulsen, E. L. Teo, W. Deng, N. Tu, E. Tan, K. L. Goh, W. C. Ong, C. P. Ng, K. C. Goh, Z. Bonday, E. T. Sun, Bioorg. Med. Chem. Lett. 2010, 20, 2443-2447; c) J. Dai, Z.-Q. Liu, X.-Q. Wang, J. Lin, P.-F. Yao, S.-L. Huang, T.-M. Ou, J.-H. Tan, D. Li, L.-H. Gu, Z.-S. Huang, J. Med. Chem. 2015, 58, 3875–3891; d) G. Huang, C. M. Solano, J. Melendez, J. Shaw, J. Collins, R. Banks, A.K. Arshadi, R. Boonhok, H. Min, J. Miao, D. Chakrabarti, Y. Yuan, J. Med. Chem. 2020, 63, 11756-11785; e) Q. Li, J. S. Lee, C. Ha, C. B. Park, G. Yang, W. B. Gan, Y. T. Chang, Angew. Chem. Int. Ed. 2004, 43, 6331-6335; Angew. Chem. 2004, 116, 6491-6495; f) S. Wang, Y.-T. Chang, Chem. Commun. 2008, 1173-1175; g) N.-Y. Kang, H.-H. Ha, S.-W. Yun, Y. H. Yu, Y.-T. Chang, Chem. Soc. Rev. 2011, 40, 3613-3626; h) R. K. Mittal, P. Purohit, Anti-Cancer Agents Med. Chem. 2020, 20 1981–1991; i) Q. Li, J. Min, Y.-H. Ahn, J. Namm, E. M. Kim, R. Lui, H. Y. Kim, Y. Ji, H. Wu, T. Wisniewski, Y.-T. Chang, ChemBioChem 2007, 8, 1679-1687; j) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,

K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, *Nature* **1990**, *347*, 539–541.

- [7] Some selected citations only, a) B. Qian, P. Xie, Y. Xie, H Huang, Org. Lett. 2011, 13, 2580–2583; b) J. Liu, Q. Ren, X. Zhang, H. Gong, Angew.Chem. Int. Ed. 2016, 55, 15544–5548; Angew. Chem. 2016, 128, 15773–15777; c) J. Xiao, J. Yang, T. Chen, L.-B. Han, Chem. Commun. 2016, 52, 2157–2160; d) Q.-Q. Li, Z. Shah, J.-P. Qu, Y.-B. Kang, J. Org. Chem. 2018, 83, 296–302; e) S. Prameela, F.-R. N. Khan, Eur. J. Org. Chem. 2020, 5394–5410; f) W. Li, J. Tang, S. Li, X. Zheng, M. Yuan, B. Xu, W. Jiang, H. Fu, R. Li, H. Chen, Org. Lett. 2020, 22, 7814–7819; g) L. Wang, Z. Yu, 2020, CN 111253305; Chem. Abstr. 173: 370956.
- [8] G. Zhang, T. Irrgang, T. Dietel, F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 2018, 57, 9131–9135; Angew. Chem. 2018, 130, 9269–9273.
- [9] M. K. Barman, S. Waiba, B. Maji, Angew. Chem. Int. Ed. 2018, 57, 9126– 9130; Angew. Chem. 2018, 130, 9264–9268.
- [10] a) J. Rana, R. Babu, M. Subaramanian, E. Balarama, Org. Chem. Front. 2018, 5, 3250–3255; b) B. M. Ramalingam, I. Ramakrishna, M. Baidya, J. Org. Chem. 2019, 84, 9819–982; c) J. Das, M. Vellakkaran, Sk. Motahar, D. Banerjee, Org. Lett. 2019, 21, 7514–7581.
- [11] S. Hazra, V. Tiwari, A. Verma, P. Dolui, A. J. Elias, Org. Lett. 2020, 22, 5496-5501.
- [12] a) K. Ben-Harush, A. Wolfson, M. Herskowitz, *Lett. Org. Chem.* 2006, *3*, 664–667; b) A. Wolfson, K. Ben-Harush, M. Herskowitz, *Kinet. Catal.* 2010, *51*, 63–68.
- [13] J. Xu, R. Zhuang, L. Bao, G. Tang, Y. Zhao, *Green Chem.* **2012**, *14*, 2384–2387.
- [14] a) S. Yao, K. Zhou, J. Wang, H. Cao, L. Yu, J. Wu, P. Qiu, Q. Xu, Green Chem. 2017, 19, 2945–2951; b) X. Shi, J. Guo, J. Liu, M. Ye, Q. Xu, Chem. Eur. J. 2015, 21, 9988–9993; c) Q. Wang, M. Lv, J. Liu, Y. Li, H. Cao, X. Zhang, Q. Xu, ChemSusChem 2019, 12, 3043–3048.
- [15] A. Jana, A. Kumar, B. Maji, *Chem. Commun.* **2021**, DOI: 10.1039/ d1 cc00181g.
- [16] a) I. Jacquemond-Collet, F. Benoit-Vical, A. Valentin, E. Stanislas, M. Mallié, I. Fourasté, *Planta Medica* 2002, 68, 68–69; b) S. G. Davies, A. M. Fletcher, P. M. Roberts, J. E. Thomson, *Eur. J. Org. Chem.* 2019, 5093–5119.
- [17] Representative examples only: a) W. Lv, B. Xiong, H. Jiang, M. Zhang, *Adv. Synth. Catal.* **2017**, *359*, 1202–1207; b) G. Chakraborty, R. Sikari, S. Das, R. Mondal, S. Sinha, S. Banerjee, N. D. Paul, *J. Org. Chem.* **2019**, *84*, 2626–2641; c) K. Das, A. Mondal, D. Pal, D. Srimani, Org. Lett. **2019**, *21*, 3223–3227.
- [18] W.-T. Wei, J.-F. Sheng, H. Mian, X. Luo, X.-H. Song, M. Yan, Y. Zou, Adv. Synth. Catal. 2018, 360, 2101–2106.
- [19] L. Zhang, L. Zheng, B. Guo, R. Hua, J. Org. Chem. 2014, 79, 11541–11548.
 [20] a) G. Dijkstra, W. H. Kruizinga, R. M. Kellogg, J. Org. Chem. 1987, 52, 4230–4234; b) C. Galli, Org. Prep. Proced. Int. 1992, 24, 285–307.

Manuscript received: April 7, 2021 Revised manuscript received: April 16, 2021 Accepted manuscript online: April 20, 2021