Svn thesis

Paper

Total Synthesis of the Nonenolide Xyolide Using a Regioselective Nucleophilic Epoxide Opening Approach

Sachin B. Wadavrao Ramesh S. Ghogare A. Venkat Narsaiah*

Organic and Biomolecular Chemistry Division, Indian Institute of Chemical Technology, Hyderabad-500007, Telangana, India vnakkirala@iict.res.in

Received: 10.11.2014 Accepted after revision: 20.04.2015 Published online: 19.06.2015 DOI: 10.1055/s-0034-1380780; Art ID: ss-2014-n0687-op

Abstract The total synthesis of the nonenolide xyolide is described as a convergent synthesis in 16 steps from the commercially available starting material butane-1,4-diol. The key reactions involved are: Sharpless asymmetric epoxidation, Pinnick oxidation, acid-mediated nucleophilic regioselective epoxide ring opening, Steglich esterification, and ring-closing metathesis.

Key words natural product, xyolide, Sharpless epoxidation, regioselective ring opening, ring-closing metathesis

Ten-membered lactones (Figure 1) are abundant and represent the core of many natural products and display a wide range of pharmacological properties, such as antibacterial, antifungal, antiviral, and anticancer activity.¹ Microcarpalide² and achaetolide³ shows antimicrofillament activity, phomol shows antibacterial and antifungal activity,⁴ and stagonolide A and herbarumins inhibit the growth of invasive weeds.⁵ Xyolide is a newly identified 10-membered-ring lactone isolated as a secondary fungal metabolite from the Amazonian endophytic fungus *Xylaria fejeensis* and it shows good inhibitory activity against the growth of *Pythium ultimum*, an oomcyete plant pathogen with MIC = 425 μ M.⁶ The structural fascination and biological activity of xyolide has attracted synthetic chemists and led to its synthesis by different routes.⁷

As part of our regular research program on the synthesis of biologically active natural and synthetic compounds,⁸ herein we wish to report, our synthetic strategy for the stereoselective total synthesis of the nonenolide xyolide utilizing regioselective 2,3-epoxy ring opening, Steglich esterification, and ring-closing metathesis methods as shown in Scheme 1.

As shown in the retrosynthetic analysis, our synthetic strategy started from commercially available butane-1,4-diol for the acid fragment **10** (Scheme 2) and octanal for the hydroxyalkene fragment **18** (Scheme 3). Butane-1,4-diol was selectively monoprotected using *tert*-butyl(chloro)di-

Syn thesis

S. B. Wadavrao et al.

methylsilane in the presence of imidazole in dichloromethane to give 4-(*tert*-butyldimethylsiloxy)butan-1-ol (2)⁹ in 95% yield. Swern oxidation¹⁰ of compound **2** followed by C2 Wittig¹¹ olefination in benzene at room temperature afforded ethyl (*E*)-6-(*tert*-butyldimethylsiloxy)hex-2-enoate (**3**) in 92% (two steps). Reduction of the obtained ester 3 was carried out using diisobutylaluminum hydride¹² to give (E)-6-(tert-butyldimethylsiloxy)hex-2-en-1-ol (4) in 95% yield, which was subjected to Sharpless asymmetric epoxidation¹³ with (-)-diethyl tartrate, titanium(IV) isopropoxide, and *tert*-butyl hydroperoxide to give enantiopure epoxide 5 in 78% yield. Conversion of the free alcohol into the iodo group was achieved using molecular iodine, imidazole, and triphenylphosphine in diethyl ether-acetonitrile (3:1) at 0 °C to obtain *tert*-butyl{3-[(2S,3R)-3-(iodomethyl)oxiran-2-vllpropoxy}dimethylsilane (6) in 78%. Compound 6 was converted into secondary allylic alcohol 7 (80% yield) using activated zinc in ethanol at reflux for four hours.¹⁴ Protection of the hydroxy group in compound 7 with a 4-methoxybenzyl imidate¹⁵ produced the PMB-protected compound 8 in 85% yield.

Desilylation of compound **8** with 10-camphorsulfonic acid in dichloromethane produced primary alcohol **9** in 90% yield, which was subjected to Swern oxidation followed by Pinnick oxidation¹⁶ using sodium chlorite under buffer conditions to afford (*S*)-4-(4-methoxybenzyloxy)hex-5-enoic acid (**10**) in 75% yield (after two steps).¹⁷

© Georg Thieme Verlag Stuttgart · New York – Synthesis 2015, 47, 2129–2137

Paper

Syn thesis

S. B. Wadavrao et al.

Synthesis of segment 18 began from commercially available octanal, which was subjected to C2 Wittig followed by reduction with diisobutylaluminum hydride to afford (E)-dec-2-en-1-ol (11) in 95% yield. Sharpless asymmetric epoxidation of allylic alcohol 11 was performed using (+)-diethyl tartrate, titanium(IV) isopropoxide, and tertbutyl hydroperoxide in dichloromethane to give enantiopure [(2R,3R)-3-heptyloxiran-2-yl]methanol (12) in 78% yield with 95% ee. The treatment of chiral epoxide 12 with acid-mediated nucleophilic regioselective 2,3-ring opening in presence of benzoic acid and titanium(IV) isopropoxide gave (2S.3R)-3-(benzovloxy)decane-1.2-diol (13) in 88% yield as a single isomer,¹⁸ which was confirmed by ¹H NMR spectroscopy. This regioselective ring-opening protocol serve as the key synthetic intermediate in this approach. Thus, obtained diol benzoate 13 was subjected to protection with *tert*-butyl(chloro)dimethylsilane in the presence of imidazole in dichloromethane to give. (2S.3R)-1.2bis(tert-butyldimethylsiloxy)decan-3-yl benzoate (14) in 95% yield.

Selective desilvlation of compound 14 was carried out using 10-camphorsulfonic acid in a mixture of methanoldichloromethane (1:3) solvent to afford (2S,3R)-3-(benzoyloxy)-2-(tert-butyldimethylsiloxy)decan-1-ol (15) in 87% yield. The obtained alcohol 15 was oxidized under Swern conditions to give the corresponding aldehyde, which was directly subjected to Grignard reaction with 1 M vinvlmagnesium bromide in tetrahydrofuran in anhydrous tetrahydrofuran to produce the secondary allyl alcohol 16 as a mixture of anti/syn diastereomers (9:1). The major diastereomer was separated by column chromatography to give pure anti isomer (3S,4S,5R)-5-(benzoyloxy)-4-(tert-butyldimethylsiloxy)dodec-1-en-3-ol (16) (85% yield in two steps). The TBS protection of alcohol 16 with tert-butyl(chloro)dimethylsilane, imidazole, and a catalytic amount of 4-(dimethylamino)pyridine gave silyl ether 17 in 95% yield. Treatment of compound 17 with potassium carbonate in methanol resulted in deprotection of the benzoyl group to give (3S,4R,5R)-3,4-bis(*tert*-butyldimethylsiloxy)dodec-1-en-5-ol (**18**) in 92% yield.

The coupling of fragments 10 and 18 (Scheme 4) was successfully performed using the Steglich protocol¹⁹ in the presence of N,N'-dicyclohexyldicarbodiimide and 4-(dimethylamino)pyridine in dichloromethane to give ester 19 in 75% yield. Deprotection of the PMB group was carried out with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone in a mixture of water-dichloromethane (1:19) solvent to afford the diene ester in 80% yield; Ring-closing metathesis reaction with this compound using Grubbs' second-generation catalyst²⁰ (10 mol%) afforded the 10-membered lactone 20 as the sole product (E-isomer) in 82% yield. Compound 20 was subjected to esterification with succinic anhydride²¹ using pyridine with 4-(dimethylamino)pyridine as the catalyst in dichloromethane to give acid 21 (91%), which on desilvlation with 2 M hydrochloric acid gave xvolide (1) in 73% yield. The spectroscopic data and optical rotation of synthetic compound **1** are comparable with that in the literature, which is good agreement with the reported xvolide.1

In conclusion, the stereoselective total synthesis of xyolide is accomplished in 16 steps from readily available butane-1,4-diol. The main feature of the synthesis includes the construction of a chiral fragment by using Sharpless asymmetric epoxidation, acid-mediated nucleophilic regioselective epoxide opening, and ring-closing metathesis.

All reagents were purchased from commercial sources and were used without additional purification. All reactions were performed under an inert atmosphere unless otherwise noted. THF was freshly distilled over Na/benzophenone ketyl. Petroleum ether refers to the fraction boiling in the 60–80 °C range. Column chromatography was performed on silica gel (Acme grade 60–120 mesh). All reactions were monitored by TLC to completion; TLC plates (Merck precoated silica gel 60 F 254 plates) were made visible with UV light, in an I_2 chamber

Paper

Paper

or with phosphomolybdic acid spray. Melting points were recorded using a Buchi M-560 melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer FT-IR 240-c spectrophotometer. ¹H NMR spectra were recorded on Bruker-300 MHz, spectrometer in CDCl₃ using TMS as internal standard. Mass spectra were recorded on a Finnigan MAT 1020 mass spectrometer operating at 70 eV. Optical rotations were measured on Rudolph Autopol IV polarimeter at 25 °C.

4-(tert-Butyldimethylsiloxy)butan-1-ol (2)

To a stirred solution of butane-1,4-diol (3 mL, 33.3 mmol) in anhydrous CH_2Cl_2 (30 mL) was added imidazole (2.73 g, 66.6 mmol) at 0 °C and the mixture was stirred for 30 min. TBSCl (5 g, 33.3 mmol) dissolved in CH_2Cl_2 (20 mL) was added and the mixture was stirred at r.t. for 1 h (TLC monitoring). The mixture was quenched with sat. NH_4Cl solution and extracted with CH_2Cl_2 (2 × 30 mL). The combined organic extracts were washed with brine, dried (Na_2SO_4), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc-hexane, 2:8) to afford TBS ether **2** as a colorless syrup; yield: 6.4 g (95%).

IR (neat): 3682, 3611, 3339, 3017, 2930, 2858, 1424, 1265, 1219, 1091, 1025, 942, 860, 784 $\rm cm^{-1}.$

 ^{13}C NMR (75 MHz, CDCl₃): δ = 63.3, 62.8, 30.2, 29.9, 25.9, 25.5, 18.3, -3.5.

MS (ESI): $m/z = 205 [M + H]^+$.

Ethyl (E)-6-(tert-Butyldimethylsiloxy)hex-2-enoate (3)

To a stirred solution of oxalyl chloride (5.5 g, 44.1 mmol) in anhydrous CH_2Cl_2 (40 mL) at -78 °C was added DMSO (6.9 g, 88.2 mmol) over 20 min and the mixture was stirred for an additional 15 min. Alcohol **2** (6 g, 29.4 mol) dissolved in CH_2Cl_2 (10 mL) was added and the mixture was stirred for 30 min. Et_3N (20.4 mL, 147 mmol) was added dropwise and the mixture was stirred at r.t. for 1 h (TLC monitoring). The mixture was quenched with water and the aqueous phase was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic layers were washed with brine, dried (Na_2SO_4), and concentrated in vacuo to give the aldehyde which was used in the next step.

The aldehyde was dissolved in benzene (60 mL), the Wittig ylide (12.4 g, 35.2 mmol) was added at r.t. and the mixture was stirred for 2 h (TLC monitoring). The solvent was evaporated and the residue was purified by column chromatography (silica gel, EtOAc-hexane, 1:9) to afford unsaturated ester **3** as a colorless liquid; yield: 7.3 g (92%).

IR (neat): 2929, 2855, 1717, 1653, 1368, 1317, 1268, 1213, 1040, 980, 771 $\rm cm^{-1}$.

¹H NMR (300 MHz, CDCl₃): δ = 6.9 (dt, *J* = 15.8, 6.9 Hz, 1 H), 5.82 (d, *J* = 15.4 Hz, 1 H), 4.19 (q, *J* = 6.4 Hz, 2 H), 3.62 (t, *J* = 6.5 Hz, 2 H), 2.28 (q, *J* = 6.5 Hz, 2 H), 1.60–1.71 (m, 2 H), 1.28 (t, *J* = 6.4 Hz, 3 H), 0.88 (s, 9 H), 0.03 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 166.6, 148.3, 121.7, 61.9, 60.2, 30.8, 28.4, 25.8, 25.6, 14.2, -3.6.

MS (ESI): $m/z = 273 [M + H]^+$.

(E)-6-(tert-Butyldimethylsiloxy)hex-2-en-1-ol (4)

To a stirred solution of unsaturated ester **3** (7.2 g, 25.7 mmol) in anhydrous CH_2Cl_2 (50 mL) at -78 °C was added 25% DIBAL-H in toluene (29.2 mL, 51.5 mmol) slowly over 15 min. The mixture was stirred at this temperature for 1 h, cooled to 0 °C, and quenched with sat. sodi-

um potassium tartrate and the mixture stirred for 2 h. The mixture was passed through a bed of Celite. The filtrate was extracted with CH_2Cl_2 (2 × 20 mL) and the combined organic extracts were washed with brine, dried (Na_2SO_4), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc-hexane 2:8) to obtain allylic alcohol **4** as a colorless liquid; yield: 5.6 g (95%).

IR (neat): 3355, 2928, 2856, 1468, 1254, 1219, 1100, 968, 836, 773 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 5.70 (q, *J* = 5.4 Hz, 2 H), 4.10 (d, *J* = 5.4 Hz, 2 H), 3.62 (t, *J* = 6.4 Hz, 2 H), 2.05–2.15 (m, 2 H), 1.55–1.68 (m, 2 H), 0.88 (s, 9 H), 0.03 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 132.8, 129.0, 63.7, 62.4, 32.1, 30.8, 28.4, 25.8, –5.3.

HRMS: m/z [M + H]⁺ calcd for C₁₂H₂₇O₂Si: 231.1774; found: 231.1785.

{(25,35)-3-[3-(*tert*-Butyldimethylsiloxy)propyl]oxiran-2-yl}methanol (5)

To a stirred mixture of molecular sieves powder (4 Å, 5.5 g) and Ti(Oi-Pr)₄ (0.85 mL, 2.8 mmol) in CH₂Cl₂ (15 mL) at -20 °C was added (-)-DET (0.6 mL, 3.5 mmol) dissolved in CH₂Cl₂ (2 mL) and the mixture was stirred for 15 min. Then 3 M TBHP in toluene (15.9 mL, 47.8 mmol) was added. After 30 min, a solution of allylic alcohol **4** (5.5 g, 23.9 mmol) dissolved in CH₂Cl₂ (8 mL) was added. The resulting mixture was stirred at -20 °C for 4 h and then quenched with H₂O (17 mL) followed by 20% NaOH solution (5.7 mL). The mixture was stirred at r.t. for 45 min, and it was filtered and the filtrate was extracted with CH₂Cl₂ (3 × 25 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and concentrated. The residual oil was purified by column chromatography (hexanes–EtOAc, 1.5: 8.5) to give chiral epoxy alcohol **5** as a colorless liquid; yield: 4.5 g (78%).

 $[\alpha]_D^{25}$ +0.2 (*c* 0.5, CHCl₃).

IR (neat): 3441, 2927, 2856, 1692, 1467, 1253, 1219, 1096, 835, 773 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.87–3.92 (m, 1 H), 3.60–3.71 (m, 3 H), 2.90–3.10 (m, 2 H), 1.60–1.72 (m, 4 H), 0.88 (s, 9 H), 0.03 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 62.5, 61.6, 58.4, 55.8, 29.0, 28.1, 25.9, 18.3, –5.3.

HRMS: m/z [M + H]⁺ calcd for C₁₂H₂₇O₃Si: 247.1724; found: 247.1737.

tert-Butyl{3-[(2*S*,3*R*)-3-(iodomethyl)oxiran-2-yl]propoxy}dimethylsilane (6)

To a solution of epoxy alcohol **5** (4.5 g, 18.2 mmol) in Et₂O–MeCN (3:1, 40 mL) was added Ph₃P (4.8 g, 18.2 mmol) followed by imidazole (1.5 g, 21.9 mmol) at 0 °C and the mixture was stirred for 10 min. Then I₂ (4.6 g, 18.2 mmol) was added at 0 °C and the mixture was stirred for 2 h at r.t. (TLC monitoring). The mixture was quenched with sat. Na₂S₂O₃ (15 mL) and extracted with EtOAc (3 × 20 mL). The organic layers were washed with brine and dried (Na₂SO₄). The solvent was evaporated and residue was purified by column chromatography (silica gel, EtOAc–hexane, 0.5:9.5) to afford epoxy iodo **6** as a colorless liquid; yield: 5 g (78%).

 $[\alpha]_{D}^{25}$ +3.2 (*c* 0.5, CHCl₃).

IR (neat): 2928, 2856, 1692, 1467, 1253, 1219, 1096, 835, 773 cm⁻¹.

 ^1H NMR (300 MHz, CDCl₃): δ = 3.62–3.72 (m, 2 H), 3.20–3.30 (m, 1 H), 2.95–3.10 (m, 2 H), 2.70–2.80 (m, 1 H), 1.60–1.72 (m, 4 H), 0.88 (s, 9 H), 0.03 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 62.3, 58.3, 28.9, 28.2, 25.8, 18.2, 4.9, –5.3.

2133

Syn thesis

S. B. Wadavrao et al.

HRMS: m/z [M + H]⁺ calcd for C₁₂H₂₆O₂ISi: 357.0741; found: 357.0761.

(S)-6-(tert-Butyldimethylsiloxy)hex-1-en-3-ol (7)

To a stirred solution of epoxy iodo **6** (5 g, 14 mmol) in EtOH (20 mL) was added activated Zn dust (9.1 g, 140 mmol) and the mixture was stirred at reflux for 4 h. After complete consumption of the starting material, the mixture was passed through a Celite bed. The filtrate was concentrated and the residue was purified by column chromatography (silica gel, EtOAc-hexane, 2:8) to afford allylic alcohol **7** as a colorless liquid; yield: 2.7 g (80%).

 $[\alpha]_{D}^{25}$ +1.4 (c 0.5, CHCl₃).

IR (neat): 3392, 2926, 2855, 1467, 1387, 1361, 1253, 1099, 991, 920, 834 $\rm cm^{-1}$

¹H NMR (300 MHz, CDCl₃): δ = 5.84–5.91 (m, 1 H), 5.24 (dd, *J* = 17.2, 1.3 Hz, 1 H), 5.10 (dd, *J* = 17.2, 1.3 Hz, 1 H), 4.10–4.18 (m, 1 H), 3.67 (t, *J* = 7.0 Hz, 2 H), 2.75 (br. s, 1 H), 1.52–1.56 (m, 4 H), 0.88 (s, 9 H), 0.03 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 141.2, 114.2, 72.6, 63.3, 34.4, 28.7, 25.9, 25.6, -5.3.

HRMS: *m*/*z* [M + H]⁺ calcd for C₁₂H₂₇O₂Si: 231.1774; found: 231.1785.

tert-Butyl{[(S)-4-(4-methoxybenzyloxy)hex-5-en-1-yl]oxy}dimethylsilane (8)

To a stirred solution of 4-methoxybenzyl alcohol (3.5 g, 25.3 mmol) in Et_2O (20 mL) was added a suspension of NaH (0.2 g, 60%, 5 mmol) dissolved in Et_2O (20 mL) at r.t. The resulting mixture was stirred for 30 min and cooled to 0 °C, to this was added trichloroacetonitrile (1.93 mL, 1.2 mmol) slowly and stirring was continued at r.t. for 6 h. The solvent was evaporated to give an orange syrup, which was dissolved in anhyd hexane (50 mL) containing a few drops of MeOH. This suspension was shaken vigorously and filtered on Celite bed; filtrate was concentrated to afford the imidate.

The above imidate (6.1 g, 21.7 mmol) was taken up in cyclohexane (30 mL) and added to a solution of alcohol **7** (2.5 g, 10.8 mmol) dissolved in CH₂Cl₂(15 mL). The resulting mixture was cooled to 0 °C and CSA (0.25 g, 2.17 mmol) was added and the mixture was stirred at r.t. for 4 h to give a white precipitate of trichloroacetamide. The solution was filtered off, and washed with CH₂Cl₂. The filtrate was washed with sat. NaHCO₃ and brine. The solvent was evaporated and the residue was purified by column chromatography (silica gel, EtOAc–hexane, 1: 9) to give PMB ether **8** as a pale yellow liquid; yield: 3.2 g (85%).

 $[\alpha]_D^{25}$ –19.3 (*c* 0.45, CHCl₃).

IR (neat): 2952, 2925, 2854, 1626, 1512, 1464, 1247, 1173, 1093, 833, 773 $\rm cm^{-1}.$

¹H NMR (300 MHz, $CDCI_3$): δ = 7.27 (d, J = 7.0 Hz, 2 H), 6.88 (d, J = 7.0 Hz, 2 H), 5.69–5.77 (m, 1 H), 5.23–5.29 (m, 2 H), 4.54 (d, J = 11.2 Hz, 1 H), 4.28 (d, J = 11.2 Hz, 1 H), 3.79 (s, 3 H), 3.74–3.78 (m, 1 H), 3.59–3.63 (m, 2 H), 1.18–1.96 (m, 4 H), 0.88 (s, 9 H), 0.03 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 158.9, 139.1, 130.8, 129.3, 116.9, 113.6, 80.0, 69.8, 63.0, 55.2, 31.7, 28.6, 25.9, –5.3.

HRMS: *m*/*z* [M + H]⁺ calcd for C₂₀H₃₅O₃Si: 351.2350; found: 351.2370.

(S)-4-(4-Methoxybenzyloxy)hex-5-en-1-ol (9)

To a stirred solution of **8** (3 g, 8.5 mmol) in anhydrous CH_2Cl_2 (25 mL) was added CSA (0.55 g, 1.7 mmol) and the mixture was stirred at 0 °C for 1 h (TLC monitoring). The mixture was quenched with sat. NaHCO₃ and extracted with CH_2Cl_2 (2 × 15 mL). The combined organic layers

were washed with brine, dried (Na_2SO_4) , and evaporated. The crude alcohol was purified by column chromatography (silica gel, EtOAc-hexane, 2:8) to afford primary alcohol **9** as a colorless liquid; yield: 1.8 g (90%).

 $[\alpha]_{D}^{25}$ –22.4 (*c* 0.4, CHCl₃).

IR (neat): 3393, 2923, 2854, 1611, 1512, 1462, 1300, 1246, 1174, 1055, 772 $\rm cm^{-1}.$

¹H NMR (300 MHz, $CDCl_3$): δ = 7.26 (d, *J* = 7.0 Hz, 2 H), 6.88 (d, *J* = 7.0 Hz, 2 H), 5.72–5.82 (m, 1 H), 5.20–5.30 (m, 2 H), 4.53 (d, *J* = 11.2 Hz, 1 H), 4.28 (d, *J* = 11.2 Hz, 1 H), 3.80 (s, 3 H), 3.74–3.78 (m, 1 H), 3.59 (t, *J* = 6.5 Hz, 2 H), 1.18–1.96 (m, 4 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 159.1, 138.7, 130.4, 129.4, 117.6, 113.7, 80.0, 69.8, 62.8, 55.2, 32.2, 28.7.

HRMS: m/z [M + Na]⁺ calcd for C₁₄H₂₀O₃Na: 259.1304; found: 259.1317.

(S)-4-(4-Methoxybenzyloxy)hex-5-enoic Acid (10)

To a stirred solution of oxalyl chloride (1 mL, 10.8 mmol) in anhydrous CH_2Cl_2 (40 mL) at -78 °C was added DMSO (1.6 mL, 21.6 mmol) over 20 min. The resulting mixture was stirred for an additional 15 min. Alcohol **9** (1.7 g, 7.2 mmol) dissolved in CH_2Cl_2 (10 mL) was added slowly and the mixture was stirred for 30 min. To this mixture was added Et_3N (5 mL, 136 mmol) and the mixture was stirred at r.t. for 1 h (TLC monitoring). The mixture was quenched with water and the aqueous phase was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic layers were washed with brine, dried (anhyd Na_2SO_4), and concentrated in vacuo to give the aldehyde.

To a stirred mixture of the aldehyde (1.6 g, 4.9 mmol) in t-BuOH–2-methylbut-2-ene (3:1, 20 mL) at 0 °C was added a solution of NaClO₂ (1.2 g, 9.9 mmol) and NaH₂PO₄ (2.1 g, 9.9 mmol) dissolved in the minimum quantity of water. Stirring was continued for 30 min at r.t. (TLC monitoring). The mixture was diluted with H₂O (20 mL) and t-BuOH was removed under reduced pressure; the aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure to give the crude acid, which was purified by column chromatography (hexane–EtOAc, 7:3) to afford acid **10** as a colorless liquid; yield: 1.3 g (75%).

 $[\alpha]_{D}^{25}$ –22.0 (c 0.5, CHCl₃) [Lit.^{17a} $[\alpha]_{D}^{25}$ –27.4 (c 0.1, CHCl₃)].

IR (neat): 3459, 3074, 2954, 2854, 1706, 1611, 1512, 1421, 1246, 1174, 1034, 929, 851, 736 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): δ = 7.25 (d, *J* = 7.5 Hz, 2 H), 6.89 (d, *J* = 7.5 Hz, 2 H), 5.68–5.80 (m, 1 H), 5.25–5.32 (m, 2 H), 4.53 (d, *J* = 11.2 Hz, 1 H), 4.28 (d, *J* = 11.2 Hz, 1 H), 3.79 (s, 3 H), 3.76–3.78 (m, 1 H), 2.5 (t, *J* = 7.2 Hz, 2 H), 1.18–1.96 (m 2 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 179.2, 159.1, 138.1, 130.4, 129.3, 117.6, 113.7, 78.8, 69.8, 55.2, 30.1, 30.0.

HRMS: m/z [M + Na]⁺ calcd for C₁₄H₁₈O₄Na: 273.1097; found: 273.1110.

(E)-Dec-2-en-1-ol (11)

To a stirred mixture of octanal (2 g, 15.6 mmol) in benzene (60 mL) was added the Wittig ylide (10.9 g, 31.2 mmol) at r.t. and the mixture was stirred for 1 h (TLC monitoring). The solvent was evaporated and the residue was purified by column chromatography (silica gel, EtOAc-hexane, 1:9) to afford the unsaturated ester as white solid. Thus obtained ester (2.8 g, 14.14 mmol) was dissolved in anhydrous CH_2Cl_2 (30 mL) at -78 °C and to this was added 25% DIBAL-H in toluene (16 mL, 28.28 mmol) slowly over 15 min. The mixture was stirred

at this temperature for 2 h, cooled to 0 °C, quenched with sat. sodium potassium tartrate (15 mL), and stirred for 2 h. The mixture was passed through bed of Celite and the filtrate was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were washed with brine, dried (Na_2SO_4), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc-hexane 2:8) to give allylic alcohol **11** as a as colorless liquid; yield: 2.2 g (90%, 2 steps).

IR (neat): 3355, 2928, 2856, 1696, 1552, 1219, 1100, 968, 772 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 5.60–5.73 (m, 2 H), 4.09 (d, *J* = 6.2 Hz, 2 H), 2.01–2.07 (m, 2 H), 1.22–1.41 (m, 10 H), 0.88 (t, *J* = 7.0 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 133.6, 128.7, 63.8, 32.2, 31.8, 29.1, 22.6, 14.0.

MS (ESI): $m/z = 157 [M + H]^+$.

[(2S,3S)-3-Heptyloxiran-2-yl]methanol (12)

To a stirred mixture of molecular sieves powder (4 Å, 2 g) and Ti $(Oi-Pr)_4$ (0.43 mL, 1.5 mmol) in CH₂Cl₂ (15 mL) at -20 °C was added (+)-DET (0.4 mL, 1.9 mmol) dissolved in CH₂Cl₂ (2 mL) and the mixture was stirred for 15 min. Then 3 M TBHP in toluene (9.2 mL, 25.6 mmol) was added and the mixture was stirred for 30 min. To this mixture, allylic alcohol 11 (2 g, 12.8 mmol) dissolved in CH₂Cl₂ (10 mL) was added slowly. The resulting mixture was stirred at -20 °C for 4 h and then quenched with H₂O (8.7 mL) followed by the addition of 20% NaOH solution (3 mL). The mixture was stirred at r.t. for 45 min, then it was filtered and the filtrate was extracted with CH_2Cl_2 (3 × 25 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography (EtOAc-hexanes, 1:9) to give chiral epoxy alcohol 12 as a colorless liguid; yield: 1.72 g (78%); 95% ee [Chiral HPLC (Gilson, Chiralpak IC column, 250 × 4.6 mm, hexane-i-PrOH, 95:5, flow rate 1.5 mL/min, 25 °C, λ_{max} = 210 nm)].

 $[\alpha]_{D}^{25}$ -31.4 (c 0.5, CHCl₃) [Lit.^{13b,22} $[\alpha]_{D}^{20}$ -36.5 (c 2.8, CHCl₃).

IR (neat): 3392, 2923, 2854, 1512, 1463, 1377, 1214, 1079, 1032, 880, 732 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 3.91 (dd, *J* = 12.5, 2.4 Hz, 1 H), 3.62 (dd, *J* = 12.5, 4.2 Hz, 1 H), 2.90–2.97 (m, 2 H), 1.54–1.61 (m, 2 H), 1.38–1.52 (m, 2 H), 1.23–1.37 (m, 8 H), 0.88 (t, *J* = 7.0 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 61.7, 58.4, 56.0, 31.7, 31.5, 29.3, 29.1, 25.9, 22.6, 14.0.

MS (ESI): $m/z = 195 [M + Na]^+$.

(2S,3R)-3-(Benzoyloxy)decane-1,2-diol (13)

To a stirred solution of epoxy alcohol **12** (1.6 g, 9.3 mmol) in anhydrous CH_2Cl_2 (20 mL) was added $Ti(Oi-Pr)_4$ (2.75 mL, 13.9 mmol) under N_2 at 0 °C. The mixture was stirred for 15 min, then benzoic acid (1.7 mg, 13.9 mmol) was added and the stirring was continued for a further 1 h at 0 °C (TLC monitoring). Aq 15% tartaric acid solution (25 mL) was added and stirring was continued until the distinct phases were separated. The aqueous phase was extracted with CH_2Cl_2 (2 × 20 mL) and the combined organic phases were washed with sat. NaHCO₃ solution and brine, dried (Na_2SO_4), and concentrated in vacuo. The residue was purified by column chromatography (hexanes–EtOAc, 6:4) to yield diol **13** as a colorless oil; yield: 2.48 g (88%).

 $[\alpha]_D^{25}$ +22.3 (*c* 0.5, CHCl₃).

IR (neat): 3457, 2923, 2854, 1738, 1512, 1454, 1244, 1108, 1079, 1032, 880, 731 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 8.03–8.12 (m, 2 H), 7.52–7.62 (m, 1 H), 7.41–7.48 (m, 2 H), 5.05–5.14 (m, 1 H), 3.69–3.78 (m, 2 H), 3.60–3.66 (m, 1 H), 1.75–1.93 (m, 2 H), 1.18–1.39 (m, 10 H), 0.88 (t, *J* = 7.0 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 167.3, 133.3, 129.7, 128.4, 74.9, 73.0, 62.4, 31.7, 30.7, 29.3, 29.0, 25.4, 22.5, 14.1.

HRMS: m/z [M + H]⁺ calcd for C₁₇H₂₇O₄: 295.1903; found: 295.1896.

(2S,3R)-1,2-Bis(tert-butyldimethylsiloxy)decan-3-yl Benzoate (14)

To a stirred solution of diol **13** (2 g, 6.8 mmol) in anhydrous CH_2CI_2 (20 mL) at 0 °C was added imidazole (1 g, 14.9 mmol) and the mixture was stirred for 15 min. TBSCI (2 g, 13.6 mmol) dissolved in anhydrous CH_2CI_2 (5 mL) was added followed by DMAP (cat.) and the mixture was stirred for 1 h at r.t. (TLC monitoring). Water was added to the mixture and it was extracted with CH_2CI_2 (3 × 15 mL). The combined organic layers were washed with brine and dried (Na_2SO_4), the solvent was evaporated, and the residue was purified by column chromatography (silica gel, EtOAc–hexane, 0.5:9.5) to afford TBS ether **14** as a colorless liquid; yield: 3.37 g (95%).

 $[\alpha]_{D}^{25}$ +5.7 (*c* 0.5, CHCl₃).

IR (neat): 2953, 2856, 2311, 1720, 1467, 1271, 1253, 1108, 834, 774, 709 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 8.03–8.12 (m, 2 H), 7.52–7.62 (m, 1 H), 7.41–7.48 (m, 2 H), 5.26–5.29 (m, 1 H), 3.95–3.99 (m, 1 H), 3.55–3.66 (m, 2 H), 1.77–1.87 (m, 1 H), 1.63–1.70 (m, 1 H), 1.18–1.42 (m, 10 H), 0.91 (s, 9 H), 0.89 (s, 9 H), 0.88 (t, *J* = 7.0 Hz, 3 H), 0.06 (s, 6 H), 0.05 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 166.1, 132.6, 129.6, 128.2, 75.8, 74.3, 64.8, 31.7, 29.5, 29.1, 28.3, 25.9, 25.7, 25.5, 22.6, 14.0, -4.8, -4.4, -5.5, -5.4.

HRMS: *m*/*z* [M + H]⁺ calcd for C₂₉H₅₅O₄Si₂: 523.3633; found: 523.3604.

(25,3R)-3-(Benzoyloxy)-2-(*tert*-butyldimethylsiloxy)decan-1-ol (15)

To a stirred solution of **14** (3 g, 5.7 mmol) in MeOH–CH₂Cl₂ (1:3, 24 mL) was added CSA (0.13 g, 0.57 mmol) and the mixture was stirred for 2 h. When the reaction was complete, water was added and the mixture was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were washed with brine, dried (anhyd Na₂SO₄), and concentrated under reduced pressure. The residue was purified by using column chromatography (silica gel, EtOAc–hexane, 2:8) to afford alcohol **15** as a colorless liquid; yield: 2 g (87%).

$[\alpha]_{D}^{25}$ +3.5 (*c* 0.5, CHCl₃).

IR (neat): 3450, 2927, 2856, 1717, 1465, 1274, 1108, 1050, 834, 775 $\rm cm^{-1}.$

¹H NMR (300 MHz, $CDCl_3$): δ = 8.03–8.12 (m, 2 H), 7.52–7.62 (m, 1 H), 7.41–7.48 (m, 2 H), 5.26–5.29 (m, 1 H), 3.95–3.99 (m, 1 H), 3.55–3.66 (m, 2 H), 2.02–2.05 (m, 1 H), 1.70–1.80 (m, 2 H), 1.25–1.35 (m, 10 H), 0.93 (s, 9 H), 0.88 (t, *J* = 7.0 Hz, 3 H), 0.10 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 166.3, 132.9, 129.6, 128.3, 75.1, 74.0, 63.3, 31.7, 29.9, 29.4, 29.1, 25.8, 25.5, 22.6, 14.0, -4.5, -4.7.

HRMS: *m*/*z* [M + H]⁺ calcd for C₂₃H₄₁O₄Si: 409.2768; found: 409.2757.

(3*S*,4*S*,5*R*)-5-(Benzoyloxy)-4-(*tert*-butyldimethylsiloxy)dodec-1en-3-ol (16)

To a stirred solution of oxalyl chloride (0.7 mL, 7.3 mmol) in CH_2CI_2 (40 mL) at -78 °C was added DMSO (1.14 mL, 14.7 mmol) over 20 min. The resulting mixture was stirred for an additional 15 min and

Paper

then alcohol **15** (2 g, 4.9 mmol) dissolved in CH_2CI_2 (10 mL) was added. The mixture was stirred for 30 min, and Et_3N (3.4 mL, 24.5 mmol) was added dropwise. The mixture was allowed to reach r.t. and stirred for 3 h. When the reaction was complete, the mixture was quenched with water and extracted with CH_2CI_2 (2 × 15 mL). The combined organic layers were washed with brine, dried (anhyd Na_2SO_4), and concentrated in vacuo to obtained the aldehyde.

To a stirred solution of the aldehyde (2 g, 4.9 mmol) in anhydrous THF (20 mL) was added slowly 1 M vinylmagnesium bromide in THF (9.85 mL, 9.8 mmol) at 0 °C and the mixture was stirred for 2 h (TLC monitoring). The mixture was quenched with sat. NH₄Cl and extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography (silica gel, hexanes–EtOAc, 8:2) to give chiral allyl alcohol **16** as a colorless liquid; yield: 1.75 g (85%).

 $[\alpha]_{D}^{25}$ +5.5 (*c* 0.5, CHCl₃).

IR (neat): 3450, 2927, 2856, 1717, 1568, 1453, 1320, 1274, 1106, 1053, 835, 774 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 8.01–8.10 (m, 2 H), 7.52–7.62 (m, 1 H), 7.41–7.48 (m, 2 H), 5.90–6.05 (m, 1 H), 5.45 (d, *J* = 11.0 Hz, 1 H), 5.22–5.27 (m, 1 H), 5.20 (d, *J* = 11.0 Hz, 1 H), 4.08–4.12 (m, 1 H), 3.95–4.02 (m, 1 H), 2.23 (br s, 1 H), 1.38–1.48 (m, 2 H), 1.10–1.40 (m, 10 H), 0.89 (s, 9 H), 0.88 (t, *J* = 7.0 Hz, 3 H), 0.05 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 166.3, 136.4, 132.9, 129.6, 128.3, 116.5, 76.2, 75.5, 74.4, 31.7, 29.6, 29.2, 25.9, 25.5, 22.6, 14.0, –4.4.

HRMS: m/z [M + H]⁺ calcd for C₂₅H₄₃O₄Si: 435.2925; found: 435.2910.

(3S,4R,5R)-3,4-Bis(*tert*-butyldimethylsiloxy)dodec-1-en-5-yl Benzoate (17)

To a stirred solution of allyl alcohol **16** (1.5 g, 3.5 mmol) in anhydrous CH_2Cl_2 (10 mL) was added imidazole (0.36 g, 5.3 mmol) at 0 °C followed by TBSCI (0.64 g, 4.2 mmol) dissolved in anhydrous CH_2Cl_2 (5 mL) and DMAP (cat.) and the mixture was stirred at r.t. for 1 h. After complete consumption of the starting material (TLC monitoring), water was added to the mixture and it was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic layers were washed with brine and dried (Na_2SO_4). The solvent was evaporated and the residue was purified by column chromatography (silica gel, EtOAc–hexane, 0.5:9.5) to afford TBS ether **17** as a colorless liquid; yield: 1.85 g (95%).

 $[\alpha]_D^{25}$ +4.2 (*c* 0.5, CHCl₃).

IR (neat): 2954, 2856, 1720, 1571, 1465, 1271, 1251, 1103, 1070, 925, 831, 774 $\rm cm^{-1}.$

¹H NMR (300 MHz, $CDCl_3$): $\delta = 8.04-8.10 (m, 2 H), 7.50-7.60 (m, 1 H), 7.41-7.48 (m, 2 H), 5.85-5.92 (m, 1 H), 5.30-5.36 (m, 1 H), 5.20 (d,$ *J*= 11.0 Hz, 1 H), 5.17 (d,*J*= 11.0 Hz, 1 H), 4.08-1.12 (m, 1 H), 3.85-3.90 (m, 1 H), 1.76-1.88 (m, 2 H), 1.20-1.40 (m, 10 H), 0.90 (s, 9 H), 0.89 (s, 9 H), 0.88 (t,*J*= 7.0 Hz, 3 H), 0.06 (s, 6 H), 0.05 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 166.0, 138.4, 132.7, 130.5, 129.6, 128.2, 116.9, 77.8, 76.2, 75.8, 31.7, 29.6, 29.1, 28.9, 26.0, 25.9, 25.5, 22.6, 18.3, 18.2, 14.0, 3.8, -4.0, -4.5, -4.7.

HRMS: $m/z [M + H]^+$ calcd for $C_{31}H_{57}O_4Si_2$: 549.3789; found: 549.3773.

(3S,4R,5R)-3,4-Bis(tert-butyldimethylsiloxy)dodec-1-en-5-ol (18)

To a stirred solution of benzoate **17** (1.7 g, 3.1 mmol) in MeOH (20 mL) was added K_2CO_3 (0.85 g, 6.2 mmol) at 0 °C, and the mixture was stirred for 2 h at r.t. (TLC monitoring). The mixture quenched by with H_2O (15 mL), and then MeOH was removed in vacuo and the residue was extracted with EtOAc (2 × 10 mL). The combined organic phases

were washed with brine and dried (Na_2SO_4) and the solvent was evaporated in vacuo. Residue was purified by column chromatography (EtOAc-hexane, 1:9) to obtain the pure secondary alcohol **18** as a colorless liquid; yield: 1.26 g (92%).

 $[\alpha]_{D}^{25}$ –2.5 (*c* 0.5, CHCl₃).

IR (neat): 3350, 2955, 2856, 1601, 1467, 1275, 1253, 1107, 1071, 926, 833, 749 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 5.84–5.93 (m, 1 H), 5.22 (dd, *J* = 17.2, 1.3 Hz, 1 H), 5.13 (dd, *J* = 10.3, 1.2 Hz, 1 H), 4.19–4.25 (m, 1 H), 3.65 (m, 1 H), 3.50–3.55 (m, 1 H), 1.50–1.55 (m, 2 H), 1.25–1.35 (m, 10 H), 0.90 (s, 9 H), 0.89 (s, 9 H), 0.88 (t, *J* = 7.0 Hz, 3 H), 0.06 (s, 6 H), 0.05 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 139.1, 115.9, 79.3, 76.7, 73.5, 32.6, 31.8, 29.6, 29.2, 26.0, 25.9, 22.6, 18.2, 18.1, 14.0, -3.7, -4.1, -4.5, -4.7.

HRMS: $m/z [M + H]^+$ calcd for C₂₄H₅₃O₃Si₂: 445.3527; found: 445.3513.

(3S,4R,5R)-3,4-Bis(*tert*-butyldimethylsiloxy)dodec-1-en-5-yl (S)-4-(4-Methoxybenzyloxy)hex-5-enoate (19)

To a stirred solution of acid **10** (0.33 g, 1.35 mmol) in CH_2Cl_2 (10 mL) at 0 °C was added DCC (0.35 g, 1.6 mmol) in portions followed by DMAP (cat.). The mixture was stirred for 15 min and then alcohol **18** (0.5 g, 1.1 mmol) dissolved in CH_2Cl_2 (10 mL) was added. The cooling bath was removed and stirring was continued for 3 h (TLC monitoring). The mixture was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc-hexane, 0.5:9.5) to give ester **19** as a colorless liquid; yield: 0.66 g (75%).

 $[\alpha]_{D}^{25}$ +50.7 (*c* 0.5, CHCl₃).

IR (neat): 3074, 2954, 2854, 1706, 1611, 1512, 1421, 1246, 1174, 1034, 929, 770 $\rm cm^{-1}.$

¹H NMR (300 MHz, $CDCI_3$): δ = 7.20–7.30 (m, 2 H), 6.85–6.90 (m, 2 H), 5.68–5.85 (m, 2 H), 5.10–5.30 (m, 4 H), 4.51–4.53 (m, 2 H), 4.25–4.30 (m, 1 H), 3.95–4.0 (m, 1 H), 3.81 (s, 3 H), 3.75–3.80 (m, 1 H), 3.61–3.63 (m, 1 H), 2.31–2.48 (m, 2 H), 1.82–1.95 (m, 2 H), 1.57–1.62 (m, 2 H), 1.15–1.35 (m, 10 H), 0.92 (s, 9 H), 0.90 (s, 9 H), 0.88 (t, *J* = 7.0 Hz, 3 H), 0.05 (s, 6 H), 0.03 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 173.4, 159.0, 140.4, 138.7, 130.6, 130.1, 116.9, 115.0, 80.2, 78.0, 75.9, 72.2, 72.1, 56.5, 31.7, 31.5, 30.4, 29.6, 29.2, 28.7, 26.0, 25.9, 25.5, 22.6, 14.0, –3.8, –3.9, –4.4.

HRMS: m/z [M + Na]⁺ calcd for $C_{38}H_{68}O_6NaSi_2$: 699.4452; found: 699.4484.

(3S,4R,5R)-3,4-Bis(*tert*-butyldimethylsiloxy)dodec-1-en-5-yl (S)-4-Hydroxyhex-5-enoate

To a stirred solution of ester **19** (0.6 g, 0.88 mmol) in $CH_2CI_2-H_2O$ (19:1, 20 mL) was added DDQ (0.3 g, 1.32 mmol) at 0 °C and the mixture was stirred at r.t. for 1 h (TLC monitoring). The mixture was filtered and the filtrate was washed with 5% NaHCO₃ solution and then extracted with CH_2CI_2 (2 × 10 mL). The combined organic layers were washed with water and brine, dried (Na₂SO₄), and evaporated. The crude product was purified by column chromatography (silica gel, EtOAc-hexane, 3:7) to afford the pure alcohol as a pale yellow syrup; yield: 0.39 g (80%).

 $[\alpha]_{D}^{25}$ +62.3 (*c* 0.8, CHCl₃).

IR (neat): 3462, 2927, 2856, 1778, 1741, 1640, 1372, 1242, 1168, 876, 722 $\rm cm^{-1}.$

Paper

¹H NMR (300 MHz, CDCl₃): δ = 5.75–5.90 (m, 2 H), 5.25–5.30 (m, 1 H), 5.10–5.20 (m, 4 H), 4.15–4.22 (m, 1 H), 3.95–4.03 (m, 1 H), 3.62–3.70 (m, 2 H), 2.40–2.50 (m, 2 H), 1.80–1.95 (m, 2 H), 1.60–1.70 (m, 2 H), 1.20–1.32 (m, 10 H), 0.92 (s, 9 H), 0.90 (s, 9 H), 0.88 (t, J = 7.0 Hz, 3 H), 0.05 (s, 6 H), 0.03 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 173.3, 140.3, 138.6, 116.9, 115.0, 77.9, 75.9, 75.1, 72.2, 72.1, 31.8, 31.5, 30.4, 29.6, 29.1, 28.7, 26.0, 25.8, 25.5, 22.6, 18.2, 14.0, –3.9, –4.0.

HRMS: m/z [M + H]⁺ calcd for C₃₀H₆₁O₅Si₂: 557.3979; found: 557.3992.

(55,85,9R,10R,E)-8,9-Bis(*tert*-butyldimethylsiloxy)-10-heptyl-5hydroxy-3,4,5,8,9,10-hexahydro-2*H*-oxecin-2-one (20)

A stirred solution of the diene compound (0.39 g, 0.7 mmol) in anhydrous CH_2Cl_2 (100 mL) was degassed for 20 min by argon bubbling. Then Grubbs' 2nd generation catalyst (0.057 mg, 0.07 mmol) was added and the mixture was degassed for a further 15 min and then refluxed for 12 h (TLC monitoring). The mixture was allowed to cool to r.t. and the solvent was evaporated under reduced pressure. The crude material was adsorbed on silica gel and purified by column chromatography (silica gel, EtOAc-hexane, 9:1) to give lactone **20** as a colorless liquid; yield: 0.23 g (62%).

 $[\alpha]_D^{25}$ +48.7 (*c* 1.0, CHCl₃).

IR: 3456, 2925, 2851, 1737, 1394, 1247, 1215, 1173, 1096, 930, 830, 770 $\rm cm^{-1}$

¹H NMR (300 MHz, CDCl₃): δ = 5.83 (dd, *J* = 15.6, 3.1 Hz, 1 H), 5.64 (dd, *J* = 9.2, 1.9 Hz, 1 H), 5.20 (t, *J* = 7.5 Hz, 1 H), 4.15–4.22 (m, 1 H), 4.02 (t, *J* = 7.5 Hz, 1 H), 3.65–3.70 (m, 2 H), 2.30–2.45 (m, 2 H), 1.82–1.95 (m, 2 H), 1.62–1.68 (m, 2 H), 1.20–1.32 (m, 10 H), 0.92 (s, 9 H), 0.90 (s, 9 H), 0.88 (t, *J* = 7.0 Hz, 3 H), 0.05 (s, 6 H), 0.03 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 172.1, 134.4, 133.5, 80.5, 78.0, 73.8, 71.9, 34.5, 31.8, 31.5, 29.3, 29.1, 25.9, 22.6, 14.0, –1.9, –3.4.

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{28}H_{57}O_5Si_2$: 529.3667; found: 529.3657.

4-{[55,85,9R,10R,E]-8,9-Bis(*tert*-butyldimethylsiloxy)-10-heptyl-2oxo-3,4,5,8,9,10-hexahydro-2*H*-oxecin-5-yl]oxy}-4-oxobutanoic Acid (21)

To a stirred solution of the lactone **20** (0.22 g, 0.41 mmol) in CH_2CI_2 (2 mL) was added succinic anhydride (0.041 g, 0.41 mmol), pyridine (33 mg, 0.41 mmol) and DMAP (10 mg, 0.08 mmol) at 0 °C and the mixture was stirred at r.t. for 12 h (TLC monitoring). The mixture was poured into CH_2CI_2 (20 mL) and phosphate buffer (pH 3.6) with vigorous stirring. The layers were separated and the aqueous layer was extracted with CH_2CI_2 (2 × 10 mL). The combined extracts were dried (Na_2SO_4) and concentrated to give the crude product, which was purified by chromatography (silica gel, benzene–acetone) to afford acid **21** as a colorless oil; yield: 238 mg (91%).

 $[\alpha]_D^{25}$ +35.2 (*c* 0.5, CHCl₃).

IR: 3486, 2987, 2923, 2853, 1741, 1692, 1513, 1373, 1246, 1035, 1048, 822, 772 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 6.30–6.50 (m, 2 H), 4.40–4.50 (m, 1 H), 3.98 (t, *J* = 7.0 Hz, 1 H), 3.80–3.90 (m, 2 H), 2.50–2.60 (m, 2 H), 2.35– 2.45 (m, 2 H), 1.85–1.95 (m, 2 H), 1.65–1.75 (m, 1 H), 1.48–1.58 (m, 2 H), 1.20–1.32 (m, 12 H), 0.92 (s, 9 H), 0.90 (s, 9 H), 0.88 (t, *J* = 7.0 Hz, 3 H), 0.05 (s, 6 H), 0.03 (s, 6 H). ¹³C NMR (75 MHz, CDCl₃): δ = 175.0, 174.0, 172.6, 133.4, 129.7, 79.5, 74.9, 73.0, 62.4, 31.7, 30.7, 29.3, 29.0, 25.4, 22.5, 14.0, -1.4, -1.9. HRMS (ESI): m/z [M + H]⁺ calcd for C₃₂H₆₁O₈Si₂: 629.3826; found: 629.3818.

4-{[(55,85,95,10R,E)-10-Heptyl-8,9-dihydroxy-2-oxo-3,4,5,8,9,10-hexahydro-2H-oxecin-5-yl]oxy}4-oxobutanoic Acid (1)

To a stirred solution of acid **21** (230 mg, 0.37 mmol) in anhydrous THF (5 ml) was added 2 M HCl (0.5 mL) at r.t. and the mixture was stirred for 4 h (TLC monitoring). Then water and solvent were removed under reduced pressure. The residue was extracted with EtOAc (2×10 mL) and the combined organic layers were washed with NaHCO₃ solution and brine, dried (Na₂SO₄), and concentrated. The crude product was purified by column chromatography (silica gel, EtOAc–hexane, 1:1) to afford the target molecule xyolide **1** as a colorless syrup; yield: 100 mg (73%).

 $[\alpha]_{D}^{25}$ +10.4 (c 0.7, CHCl₃) [Lit.^{7c} $[\alpha]_{D}^{28}$ +10.1 (c 0.8, CHCl₃)].

IR (neat): 3395, 2954, 2928, 2856, 1742, 1465, 1368, 1222, 1036, 834, 772 $\rm cm^{-1}$.

¹H NMR (300 MHz, CDCl₃): δ = 5.86 (dd, *J* = 15.2, 1.7 Hz, 1 H), 5.49 (dd, *J* = 15.8, 1.9 Hz, 1 H), 5.04–5.12 (m, 1 H), 4.98 (m, 1 H), 4.45 (br s, 1 H), 3.50 (dd, *J* = 9.6, 1.9 Hz, 1 H), 2.50–2.62 (m, 4 H), 2.31–2.40 (m, 1 H), 1.95–2.10 (m, 3 H), 1.80–1.90 (m, 1 H), 1.50–1.60 (m, 1 H), 1.33–1.20 (m, 10 H), 0.87 (t, *J* = 6.7 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 176.1, 174.5, 171.6, 132.8, 123.4, 74.8, 73.6, 72.6, 70.9, 31.8, 31.5, 31.2, 29.5, 29.4, 29.3, 29.1, 28.8, 24.6, 22.6, 14.0.

HRMS (ESI): $m/z \ [M + NH_4]^+$ calcd for $C_{20}H_{36}O_8N$: 418.2435; found: 418.2459.

Acknowledgement

S.B.W. and R.S.G. thank CSIR-New Delhi for providing a fellowship and A.V.N. thanks CSIR-New Delhi for financial support as part of XII five year plan under the title DENOVA (CSC-0205).

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380780.

References

- (a) Nicolaou, K. C.; Chen, J. S.; Dalby, S. M. Bioorg. Med. Chem. 2009, 17, 2290. (b) Greve, H.; Schupp, P. J.; Eguereva, E.; Kehraus, S.; König, G. M. J. Nat. Prod. 2008, 71, 1651. (c) Piel, J. Nat. Prod. Rep. 2009, 26, 338. (d) Riatto, V. B.; Pilli, R. A.; Victor, M. M. Tetrahedron 2008, 64, 2279. (e) Surat, B.; Prasat, K.; Masahiko, I.; Daraporn, P.; Morakot, T.; Yodhathai, T. J. Nat. Prod. 2001, 64, 965.
- (2) Ratnayake, A. S.; Yoshida, W. Y.; Mooberry, S. L.; Hemscheidt, T. Org. Lett. 2001, 3, 3479.
- (3) Bodo, B.; Molho, L.; Davoust, D.; Molho, D. Phytochemistry 1983, 22, 447.
- (4) Weber, D.; Sterner, O.; Anke, T.; Gorzalczancy, S.; Martino, V.; Acevedo, C. J. Antibiot. **2004**, *57*, 559.

- (5) (a) Yuzikhin, O.; Mitina, G.; Berestetskiy, A. J. Agric. Food Chem.
 2007, 55, 7707. (b) Evidente, A.; Cimmino, A.; Berestetskiy, A.; Mitina, G.; Andolfi, A.; Motta, A. J. Nat. Prod. 2008, 71, 31.
 (c) Cruz, J. S. R.; Macías, M.; Rojas, C. M. C. G.; Mata, R. J. Nat. Prod. 2003, 66, 511.
- (6) Baraban, E. G.; Morin, J. B.; Phillips, G. M.; Phillips, A. J.; Strobel, S. A.; Handelsman, J. *Tetrahedron Lett.* **2013**, *54*, 4058.
- (7) (a) Reddy, B. V. S.; Reddy, P. S.; Reddy, B. P.; Yadav, J. S.; Ghamdi, A. A. K. A. *Tetrahedron Lett.* **2013**, *54*, 5758. (b) Mohapatra, D. K.; Reddy, D. P.; Karhale, D. S.; Yadav, J. S. *Synlett* **2013**, *24*, 2679. (c) Rej, K. R.; Jana, A.; Nanda, S. *Tetrahedron* **2014**, *70*, 2634.
- (8) (a) Ghogare, R. S.; Wadavrao, S. B.; Narsaiah, A. V. Tetrahedron Lett. 2013, 54, 5674. (b) Wadavrao, S. B.; Narikimalli, A.; Narsaiah, A. V. Synthesis 2013, 45, 3383. (c) Kumar, J. K.; Narsaiah, A. V. Org. Commun. 2014, 7, 28. (d) Nagaiah, B.; Narsaiah, A. V. Synth. Commun. 2014, 44, 1227.
- (9) (a) McDougal, P. G.; Rico, J. G.; Oh, Y. I.; Condon, B. D. J. Org. Chem. **1986**, *51*, 3388. (b) Lee, A. H. F.; Chan, A. S. C.; Li, T. Tetrahedron **2003**, *59*, 833.
- (10) (a) Brown, H. C.; Murthy, S. K. Tetrahedron 1979, 35, 567.
 (b) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.
- (11) (a) Wittig, G.; Schollkopf, U. Chem. Ber. **1954**, 87, 1318.
 (b) Hoffmann, R. W. Angew. Chem. Int. Ed. **2001**, 40, 1411.
- (12) Kim, S.; Ahn, K. H. J. Org. Chem. **1984**, 49, 1717.

(13) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
(b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.

Paper

- (14) Reddy, L. V. R.; Sagar, R.; Shaw, A. K. *Tetrahedron Lett.* **2006**, *47*, 1753.
- (15) Brossi, A.; Mayer, H.; Kappeler, N. Org. Synth. 1978, 58, 4.
- (16) Dalcanale, E.; Montanari, F. J. Org. Chem. 1986, 51, 567.
- (17) (a) Giri, A. G.; Mondal, M. A.; Puranik, V. G.; Ramana, C. V. Org. Biomol. Chem. 2010, 8, 398. (b) Jana, N.; Mahapatra, T.; Nanda, S. Tetrahedron: Asymmetry 2009, 20, 2622. (c) Rao, K. S.; Chattapadhyay, A. K.; Ghosh, S. Synlett 2010, 3078.
- (18) (a) Krishna, P. R.; Ramana, D. V. J. Org. Chem. 2012, 77, 674.
 (b) Reddy, C. R.; Suman, D.; Rao, N. N. Eur. J. Org. Chem. 2013, 3786. (c) Krishna, P. R.; Nomula, R.; Krishna, K. V. S. R. Tetrahedron Lett. 2014, 55, 3381. (d) Sakamoto, Y.; Okazaki, M.; Miyamoto, K.; Nakata, T. Tetrahedron Lett. 2001, 42, 7633.
- (19) Murga, J.; Falomir, E.; Fortanet, J. G.; Carda, M.; Marco, J. A. Org. *Lett.* **2002**, *4*, 3447.
- (20) (a) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446. (b) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199. (c) Schmidt, B.; Kunz, O.; Petersen, M. H. J. Org. Chem. 2012, 77, 10897.
- (21) Kobayashi, Y.; Okui, H. J. Org. Chem. 2000, 65, 612.
- (22) Fu, R.; Ye, J.-L.; Dai, X.-J.; Ruan, Y.-P.; Huang, P.-Q. J. Org. Chem. **2010**, 75, 4230.