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Abstract

Developing a model for predicting anticancer activity of any classes of organic compounds based on molecular structure is very important
goal for medicinal chemist. Different molecular descriptors can be used to solve this problem. Stochastic molecular descriptors so-called the
MARCH-INSIDE approach, shown to be very successful in drug design. Nevertheless, the structural diversity of compounds is so vast that
we may need non-linear models such as artificial neural networks (ANN) instead of linear ones. SmartMLP-ANN analysis used to model
the anticancer activity of organic compounds has shown high average accuracy of 93.79% (train performance) and predictability of 90.88%
(validation performance) for the 8:3-MLP topology with different training and predicting series. This ANN model favourably compares with
respect to a previous linear discriminant analysis (LDA) model [H. González-Dı́az et al., J. Mol. Model 9 (2003) 395] that showed only
80.49% of accuracy and 79.34% of predictability. The present SmartMLP approach employed shorter training times of only 10 h while previous
models give accuracies of 70e89% only after 25e46 h of training. In order to illustrate the practical use of the model in bioorganic medicinal
chemistry, we report the in silico prediction, and in vitro evaluation of six new synthetic tegafur analogues having IC50 values in a broad range
between 37.1 and 138 mg mL�1 for leukemia (L1210/0) and human T-lymphocyte (Molt4/C8, CEM/0) cells. Theoretical predictions coincide
very well with experimental results.
� 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Quantitative structureeactivity relationships (QSARs) have
emerged as a rational alternative in order to find new active
molecules including anticancer compounds [1,2]. Many topo-
logical molecular descriptors can be used to describe organic
molecular structure with QSAR aims. Almost of them, for
instance the Wiener index W, Harary number H, Randic
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invariant c, and Balaban index J may be expressed as vec-
torematrixevector forms. More recently, other interesting
topologic indices such as the so-called Marrero-Ponce qua-
dratic indices qk(X ) have been introduced [3e7]. In particular,
spectral moments of different matrices have been of special
relevance for QSAR and other studies such as Gutman and
Rosenfield studies on polymers’ graphs, mean hydrophobicity
moment, and the I3 index for proteins [8,9]. The success of the
method of moments on the field of polymers has also been
confirmed after Gónzalez M.P., et al. work on the analysis
of the mutagenic power of dental polymers [10], which pre-
ceded the very related and recent work of Morales, et al.
[11]. In general, the method of spectral moments has been
ed.
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largely used in many other different contexts of solid, theo-
retic, and bioorganic chemistry [12e14]. Gónzalez M.P. has
additionally reported interesting applications of the method
of moment in the molecular design of herbicides [15]. Other
interesting applications of the method of moments in pharma-
ceutical sciences and medicinal chemistry were reported by
Cabrera-Pérez et al. [16], and Molina et al., design of antibi-
otics [17]. Last but not least, several applications on medicinal
chemistry of the method of moments developed by Estrada
and Peña have appeared, including the design of sedative/hyp-
notic compounds and on the design of anticonvulsant drugs
[18].

Particularly, our group has worked on a Markov model that
uses stochastic spectral moments SRpk to encode molecular
structure with applications in nucleic acids, proteins and
medicinal chemistry research. In any case, it has been demon-
strated using vectorematrixevector formalism that all these
indices, including spectral moments too, are in fact very sim-
ilar [19e25].

On the other hand, the search of anticancer compounds has
always been on the desktop of molecular modelling and drug
design specialists. In spite of this intensive search, the discov-
ery of selective antitumor compounds has remained a largely
elusive goal of cancer research. Subsequently, new approaches
are needed in order to make an efficient search for candidates
to be assayed as anticancer drugs [26e31]. Further, in the
present work we have compared the LDA analysis previously
reported by our group [26] with new one based on an ANN
approach [32e34] using the database of 961 chemical com-
pounds. In brief, first we have calculated 11 stochastic spectral
moments SRpk for each compound, followed by training and
validation of new ANN using this data and finally testing
the newly synthesized molecules selected using the derived
model in order to prove the usefulness of model.

2. Results and discussion

2.1. Model train and validation

Table 1 depicts experimental results obtained from training
a network by several types of MLP, with their time of training
and the learning percentage. The results show clearly that
SmartMLP version 1.5 increases learning rate while decreases
required training time even if we use combined selection

Table 1

Variants of MLP, time of training and learning percent

Backpropagation type Training time (h) Learning (%)

Traditional 46:50:00 70

SmartMLP version 1.0 30:00:00 82

Using learning coefficient 25:00:00 89

Combining selection techniques

(RUL and Uniform)

25:00:00 87

Combining both previous

(SmartMLP version 1.5)

10:00:00 94.04

SmartMLP helped selecting an adequate network topology from several

candidates.
techniques or a learning coefficient. In order to speed up and
optimize the ANN training process, SmartMLP version 1.5 en-
hances heuristics implemented in older versions. The learning
coefficient was made a function on the size of the training set
and the size of the samples in each class. Patterns selection
heuristic over training set was improved gathering together
some techniques implemented in older versions. The training
algorithm was modified to use both uniform and RUL tech-
niques in a way that it starts applying RUL until an error
threshold was reached (e< 0.1) and then it applies uniform
selection [32,33].

In order to optimize the performance of the method we
trained the ANN using different topologies with one or two
hidden layers and a variable number of neurons. SmartMLP
1.5 exhibited the best differentiation of anticancer from non-
active compounds with 94.04% of accuracy. This topology
presented two hidden layers having eight and three neurons,
respectively, see Table 2. Changing network topology is
a way to improve the QSAR results [34].

Finally, we have tested the predictability and robustness of
the present ANN model by a re-substitution approach, which
consists of different data partition in interchangeable training
and predicting series [35]. SmartMLP 1.5 showed for all parti-
tions an average training accuracy of above 93.79% and similar
mean predictability of 90.88% in predicting series. Conversely,
the LDA model previously reported suffers a lack of accuracy
and predictability from 90.46% and 86.07% (partition 3) to av-
erages of 80.49% and 79.34%, respectively, after re-substitu-
tion approach. These results have shown without doubt, the
higher robustness of the present ANN models with respect to
the LDA one [35], see Table 3. The names, SRpk values,
observed, and predicted classification of all the compounds
used to train and test the model appears in supplementary ma-
terial file, where the compounds misclassified are highlighted
in red.

2.2. An example on the use of the model

The ANN model developed was used to predict the biolog-
ical activity of some cyclopentylpirimidine derivative ana-
logues of tegafur, a largely known anticancer drug (Fig. 1).

Table 2

SmartMLP classification percent for different topologies of one and two

hidden layers

Topologiesa SmartMLP 1.5

accuracy (%)

One hidden layer 2 70.98

5 85.30

6 87.58

8 88.60

Two hidden layers First layer Second layer

5 2 90.50

6 3 91.40

8 2 93.12

8 3 94.04

a Number of neurons in the hidden layers.
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We predicted the biological activity only for simple analogues
from which CH3, F, Cl, Br, and I substituted at the 5-carbon of
the uracil skeleton was selected (Figs. 2 and 3). This selection
was based on the simplicity and synthetic accessibility. All
these analogues were synthesized in enough quantity for bio-
logical assay. Compounds 1e3 were prepared by condensation
of the trimethylsilylated base (uracil, thymine, and fluoroura-
cil) with bromocyclopentane in 11%, 10%, and 13% yield, re-
spectively (Fig. 2) [36,37]. Compounds 4e6 were prepared
from 1 using N-chlorosuccinimide or N-bromosuccinimide in
acetic acid, or I2 in nitric acid and dioxane, with 68%, 93%,
and 94% yield, respectively (Fig. 3) [36].

The predictions coincide with the biological test result
where all the compounds showed detectable biological activity
in the three studied cellular lines namely L1210/0, Molt4/C8,
and CEM/0 (Table 4). The most interesting activity on the leu-
kemia line L1210/0 was presented by the F-tegafur analogue
(compound 3). However, results in the human lymphocyte
lines were more discrete. Interestingly, the Br-tegafur ana-
logue (compound 5) resulted more selective for the human
lymphocyte lines than the leukemia line. This result confirms
the potentialities of the MARCH-INSIDE approach to model
biological data and guide drug discovery in bioorganic medic-
inal chemistry [38,39].

3. Conclusions

We can conclude that the combination of MARCH-INSIDE
with SmartMLP-ANN correctly classifies several anticancer
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Fig. 1. Tegafur.

Table 3

Comparison of ANN and LDA classification results for several partitions of

the dataset

Sets SmartMLP 1.5

learning (%)

LDA

accuracy (%)

Partition 1 Training set 93.48 77.5

Test set 91.67 78.3

Partition 2 Training set 93.62 77

Test set 90.83 76.3

Partition 3 Training set 94.01 90.46

Test set 89.75 86.07

Partition 4 Training set 94.04 77

Test set 91.25 76.7

Mean Training set 93.79 80.49

Test set 90.88 79.34
compounds from heterogeneous series. This new strategy
showed higher accuracy and robustness than LDA-based strat-
egies. MARCH-INSIDE and SmartMLP-ANN approach was
able to predict anticancer activity on leukemia and lymphocyte
lines for pyrimidine derivatives, experimentally confirmed. All
these conclusions coincide with multiple applications of Mar-
kov process in the literature [38e42].

4. Experimental section

4.1. The stochastic spectral moments

A precise definition of the descriptors generated by this
methodology can be found in several reports of its application
in the study of several biological properties. Briefly, the
method uses stochastic or Markov matrix 1P as a source of
molecular descriptor. The Markov matrix is built up as
a squared matrix n� n (n number of atoms in the molecule)
whose elements (1pij) are calculated as the ratio between the
Pauling’s electronegativity (cj) of the jth atom and the sum
of the ck values for all the atoms covalently linked to the ith
atom, including itself [40].

1pij ¼
cj,eu

Pdþ1
k¼1 ck,eu

ð1Þ

Local 3D characteristics of each atom are codified through-
out the dummy variable uj. This variable (uj) takes the value
uj¼ 1 if the atom aj is R, E or axial and takes the values
uj¼ 0, �1 whether the atom has no specific 3D properties
or is S, Z or equatorial. The symbols R, S refer to the chirality
of the atom. Alternatively, ZeE regards to the 3D
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Fig. 2. Reagents and conditions: (a) i: CH2Cl2, reflux; ii: MeOH/H2O (6:1).
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Fig. 3. Reagents and conditions: (a) NXS (X¼Cl, Br), AcOH, reflux; (b) I2,

HNO3, dioxane, 100 �C.
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characteristic for atoms involved in double bonds [41]. In clas-
sical Markov theory, these numbers are the probabilities with
which the system returns to the initial state. In the present con-
text, they are the probabilities with which electrons return to
the atoms at different distances after an arbitrary initial obser-
vation time t0 [42]. The calculation of SRpk for any organic or
inorganic molecule was carried out using the MARCH-IN-
SIDE software [43].

SRpk ¼
Xn

i¼1

kpii ð2Þ

4.2. Heuristics added to the platform
SmartMLP for ANN training

Artificial neural networks have been used to solve numer-
ous types of problems. Classification is one of the kinds of
problems where they are commonly applied. The backpropa-
gation (BP) algorithm is one of the most popularly applied
to feed-forward training of neural networks, due to its simplic-
ity, its capacity to extract useful information from samples and
to store it implicitly as weights over their connections. How-
ever, this algorithm also has its limitations of practical order,
which are generally accepted and studied by researchers.
Some of these limitations are (1) its convergence towards
a state of minimum error can be extremely slow, principally
if the size of the network is not very big in oppose to the prob-
lem to manipulate, (2) it can stagnate in local minima before
finishing the learning of all samples, (3) it is almost impossible
to select the network design a priori [32e34].

Improving the BP algorithm constitutes currently the work
of researchers worldwide. SmartMLP version 1.5 introduces
some improvements to BP training algorithm to enhance its
performance [44]. Learning coefficient (h) as the following
one was able to accelerate the training process.

h¼ C

2
� N1þN2þ/þNm

N2
1 þN2

2 þ/þN2
m

ð3Þ

where C is the number of examples of the training set, m
the number of classes and Ni is the number of examples
that lie within the ith class. The frequency or order of the
patterns presentation also affects the training of the network.
SmartMLP has implemented three types of selection
patterns:

Table 4

Predicted, observed class and IC50 values for tegafur derivatives

Compound Predicted

class

Observed

class

IC50 (mg mL�1)

L1210/0 Molt4/C8 CEM/0

1 1 1 66.3 50.3 98.8

2 1 1 85.2 98.8 78.1

3 1 1 35.1 108 81.3

4 1 1 103 138 97.2

5 1 1 66.0 37.1 53.2

6 1 1 82.0 60.9 80.0
1 Uniform: In this selection type, each pattern is selected
randomly but the probability of being selected is the
same one for each pattern.

2 Sequentially: The examples here are selected in the same
order that appear in the training set.

3 Repeat until learning (RUL): This is a pedagogic selection
type strategy. Each example is presented to the network
depending on the error the network commits classifying
it. So that each example is selected randomly and repeated
until its error is below the error average made by the net-
work increased by a certain factor b.

b¼ d
1

M

XM

u¼1

ð3uÞ2 ð4Þ

where d¼ 1.5 and M is the number of examples, that
implies repetition of only examples with error values sub-
stantially higher than the mean. It is not very easy to find a
good initial weights set that facilitates the network training.
The union of two of these strategies (RUL and Uniform) of
selection of parameters gave very good results [44].

4.3. Design and implementation of the neural network

We have a knowledge base of 961 examples, 298 structurally
heterogeneous anticancer compounds, and 664 non-anticancer
compounds. Active compounds (labelled as 1) are those re-
ported as anticancer compounds by Martin Negwer [45]or Kle-
man et al. [46]. By the contrary, non-anticancer compounds
(labelled as 0) are selected at random from the same database.
Several neural networks were implemented with one and two
hidden layers. We use a combination of strategies for selecting
parameters: RUL and Uniform, as well as the learning coeffi-
cient previously mentioned. Finally the dataset was divided,
choosing a control sample in a random way, equivalent to
25% of the total sample. This was repeated several times and
with these datasets different neural networks were built, testing
with different network topologies. Finally, we obtain a neural
network with a 94.04% of accuracy for the training set and
91.25% for the external control set [35].

4.4. Chemistry

Melting points were determined using a Reichert Kofler
thermopan or in capillary tubes on a Büchi 510 apparatus
and are uncorrected. IR spectra were recorded on a Perkine
Elmer 1640FT spectrophotometer. 1H and 13C NMR spectra
were recorded on a Bruker AMX spectrometer at 300 and
75.47 MHz, respectively, using TMS as internal standard
(chemical shifts in d values, J in hertz). Mass spectra were ob-
tained using a HewlettePackard 5988A spectrometer.
Elemental analyses were performed using a Perkin Elmer
240B microanalyzer and were within �0.4 to þ0.4% of calcu-
lated values in all cases. Silica gel (Merck 60, 230e400 mesh)
was used for flash chromatography (FC). Analytical thin layer
chromatography (TLC) was performed on plates precoated
with silica gel (Merck 60 F254, 0.25 mm).
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4.4.1. Condensation of pyrimidine bases with
cyclopentyl bromide. General procedure

A mixture of pyrimidine (1.53 mmol) and a catalytic
amount of ammonium sulphate in hexamethyldisilazane
(12 mL) was heated at 135 �C for 12 h under an Ar atmo-
sphere. The resulting clear solution was concentrated in vacuo
under anhydrous conditions to yield the silylated pyrimidine
as a colourless oil. This oil was immediately dissolved in
dry 1,2-dichloroethane (4 mL), and a solution of cyclopentyl
bromide (1.53 mmol) in the same solvent (4 mL) was added.
This mixture was heated to reflux under an inert atmosphere
(48 h for compounds 1 and 2, and one week for compound
3) and then cooled, treated with 6:1 methanol/water and fil-
tered. The filtrate was extracted with CH2Cl2 and the solution
obtained was dried over anhydrous Na2SO4. The drying agent
was filtered out and the solvent was evaporated in vacuo; the
residue was purified by FC using 3:1 hexane/ethyl acetate as
an eluent.

4.4.1.1. 1-Cyclopentyluracil (1). Compound 1 was prepared
from uracil in 11% yield, m.p. 170e172 �C. IR: 3000,
2875, 2826, 1678, 1613, 1470, 1421, 1383, 1267. 1H NMR
(CDCl3): 8.13 (1H, s, NH), 7.22 (1H, d, H-6, J¼ 8.1),
5.72 (1H, dd, H-5, J¼ 8.1 and 2.3), 4.90 (1H, m, H-10),
2.12 (2H, m, 1H-20 þ 1H-50), 1.90e1.50 (6H, 1H-20 þH-
30 þH-40 þ 1H-50). 13C NMR (CDCl3): 163.4, 151.3, 141.3,
102.8, 57.1, 31.8, 24.5. MS m/z (%): 180 (Mþ, 19), 113
([Uraþ 1]þ, 100), 112 (Uraþ, 16), 69 (11). Anal.
C9H12N2O2 (C, H, N).

4.4.1.2. 1-Cyclopentyl-5-methyluracil (2). Compound 2 was
prepared from 5-methyluracil in 10% yield, m.p. 174e
176 �C. IR: 3174, 3038, 2956, 1690, 1659, 1474, 1269. 1H
NMR (CDCl3): 9.10 (1H, s, NH), 7.01 (1H, q, H-6, J¼ 1.1),
4.91 (1H, m, H-10), 2.10 (2H, m, 1H-20 þ 1H-50), 1.93 (3H,
d, CH3, J¼ 1.1), 1.83e1.55 (6H, m, 1H-20 þH-30 þH-40 þ
1H-50). 13C NMR (CDCl3): 164.1, 151.5, 137.1, 111.3, 56.7,
31.6, 24.5. MS m/z (%): 195 ([Mþ 1]þ, 6), 127 ([Thyþ 1]þ,
63), 126 (Thyþ, 100), 83 (16). Anal. C10H14N2O2 (C, H, N).

4.4.1.3. 1-Cyclopentyl-5-fluorouracil (3). Compound 3 was
prepared from 5-fluorouracil in 13% yield, m.p. 178e
180 �C. IR: 3169, 3048, 1710, 1670, 1659, 1261. 1H NMR
(CDCl3): 9.45 (1H, s, NH), 7.27 (1H, d, H-6, J¼ 6.3),
4.93 (1H, m, H-10), 2.10 (2H, m, 1H-20 þ 1H-50), 1.85e
1.50 (6H, m, 1H-20 þH-30 þH-40 þ 1H-50). 13C NMR
(CDCl3): 157.4 and 157.1 (d, C4, J¼ 27), 150.3 (C2),
142.6 and 139.5 (d, C5, J¼ 237), 125.8 and 125.3 (d, C6,
J¼ 32), 57.4, 31.7, 24.4. MS m/z (%): 199 ([Mþ 1]þ, 4),
198 (Mþ, 25), 131 ([FUraþ 1]þ, 100), 130 (FUraþ, 30).
Anal. C9H11FN2O2 (C, H, N).

4.4.2. Halogenation of 1 using N-halosuccinimide.
General procedure

To a solution of 1 (100 mg, 0.55 mmol) in acetic acid (3 mL)
was added a solution of N-halosuccinimide (0.60 mmol) in
acetic acid (6 mL), and the mixture was heated to reflux (48 h
for compound 4, and 6 h for compound 5). After the reaction
mixture had cooled, the solvent was evaporated and the residue
was purified by FC using 4:1 hexane/ethyl acetate as an eluent.

4.4.2.1. 5-Chloro-1-cyclopentyluracil (4). Prepared from 1 and
N-chlorosuccinimide in 68% yield, m.p. 196e198 �C. IR: 3167,
3031, 2967, 1717, 1661, 1613, 1471, 1316. 1H NMR (CDCl3):
8.90 (1H, s, NH), 7.45 (1H, s, H-6), 4.90 (1H, m, H-10), 2.15
(2H, m, 1H-20 þ 1H-50), 1.95e1.55 (6H, m, 1H-20 þH-
30 þH-40 þ 1H-50). 13C NMR (CDCl3): 159.4, 150.8, 138.5,
109.3, 57.8, 31.9, 24.4. MS m/z (%): 216 ([Mþ 2]þ, 10), 214
(Mþ, 30), 149 ([ClUraþ 2]þ, 35), 148 ([ClUraþ 1]þ, 30),
147 ([ClUra]þ, 100), 146 ([ClUra� 1]þ, 72), 103 (25), 69
([M� ClUra]þ, 12), 68 ([M� ClUra� 1]þ, 10), 67
([M� ClUra� 2]þ, 15). Anal. C9H11ClN2O2 (C, H, N).

4.4.2.2. 5-Bromo-1-cyclopentyluracil (5). Prepared from 1 and
N-bromosuccinimide in 93% yield, m.p. 200e202 �C. IR:
3160, 3028, 2965, 2840, 1718, 1654, 1606, 1466, 1272. 1H
NMR (CDCl3): 8.82 (1H, s, NH), 7.52 (1H, s, H-6), 4.90
(1H, m, H-10), 2.14 (2H, m, 1H-20 þ 1H-50), 1.90e1.50 (6H,
m, 1H-20 þH-30 þH-40 þ 1H-50). 13C NMR (CDCl3): 159.6,
151.1, 141.1, 97.1, 57.9, 31.9, 24.4. MS m/z (%): 260
([Mþ 2]þ, 36), 258 (Mþ, 36), 193 ([BrUraþ 3]þ, 100), 192
([BrUraþ 2]þ, 91), 191 ([BrUraþ 1]þ, 98), 190 (BrUraþ,
84), 149 (33), 147 (30), 69 ([M� BrUra]þ, 13), 68
([M� BrUra� 1]þ, 11), 67 ([M� BrUra� 2]þ, 16), 53
(13). Anal. C9H11BrN2O2 (C, H, N).

4.4.2.3. 1-Cyclopentyl-5-iodouracil (6). A mixture of 1
(93 mg, 0.52 mmol), iodine (260 mg, 1.04 mmol) and
0.75 M nitric acid (0.68 mL) in dioxane (8 mL) was stirred
for 2 h at 100 �C. After the reaction mixture had cooled, the
solvent was evaporated in vacuo and the residue was purified
by FC using 4:1 hexane/ethyl acetate as an eluent which gave
6 (148 mg, 94% yield), m.p. 220e222 �C. IR: 3148, 1955,
1839, 1699, 1664, 1599, 1427, 1271. 1H NMR (CDCl3):
9.09 (1H, s, NH), 7.61 (1H, s, H-6), 4.88 (1H, m, H-10), 2.13
(2H, m, 1H-20 þ 1H-50), 1.90e1.53 (6H, m, 1H-20 þH-30 þ
H-40 þ 1H-50). 13C NMR (CDCl3): 160.3, 151.1, 146.2, 68.3,
57.9, 31.9, 24.4. MS m/z (%): 306 (Mþ, 43), 239 ([IUraþ 1]þ,
48), 238 (IUraþ, 100), 195 (34). Anal. C9H11IN2O2 (C, H, N).

4.5. Biological activity data and assay

All assays were performed in a flat-bottomed 96-well mi-
crotiter plates. To each well were added 5� 104 L1210/0, or
7.5� 104 CEM/0, or Molt4/C8 cells and a certain amount of
the test compound. The cells were allowed to proliferate for
48 h (L1210/0) or 72 h (CEM/0, and Molt4/C8) at 37 �C in
a humidified CO2 controlled atmosphere. At the end of the
incubation period, the cells were counted in a Coulter counter
(Coulter electronics Ltd., Harpenden, Herts, England). The
IC50 was defined as the concentration of the compound that
reduced the number of living cells by 50% [47].
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[15] M.P. González, H. González-Dı́az, R. Molina, M.A. Cabrera-Pérez,
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J. Chem. Inf. Comput. Sci. 44 (2004) 515.

[18] E. Estrada, A. Peña, Bioorg. Med. Chem. 8 (2000) 2755.
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[23] H. González-Dı́az, A.R. Ramos de, R.R. Molina, Bull. Math. Biol. 65

(2003) 991.
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[38] H. González-Dı́az, R.R. Molina, E. Uriarte, Bioorg. Med. Chem. Lett. 14

(2004) 4691.
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