Journal of Organometallic Chemistry, 217 (1981) 315-328 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

REACTION OF TRIALKYLSTANNYLLITHIUM AND HEXAALKYLDISTANNANE. ¹H AND ¹¹⁹Sn NMR STUDIES

KAZUKO KOBAYASHI (née KUNÔ), MITUYOSI KAWANISI,

Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Sakyô-ku, Kyôto 606 (Japan)

SINPEI KOZIMA, TORAZÔ HITOMI,

Department of Chemistry, School of Liberal Arts & Sciences, Kyoto University, Sakyô-ku, Kyôto 606 (Japan)

HIIZU IWAMURA and TADASHI SUGAWARA

Division of Applied Molecular Science, Institute for Molecular Science, Okazaki 444 (Japan) (Recieved March 9th, 1981)

Summary

The reaction of hexamethyldistannane (Me₃SnSnMe₃) with metallic lithium in tetrahydrofuran (THF) has been studied by ¹H and ¹¹⁹Sn NMR spectroscopy. All spectra displayed a single peak which moved gradually from the chemical shift of Me₃SnSnMe₃ (0.22 ppm in ¹H NMR and —108.7 ppm in ¹¹⁹Sn NMR) into those of trimethylstannyllithium (Me₃SnLi, -0.37 ppm, -182.7 ppm) in 2 h. A mixture of Me₃SnSnMe₃ and Me₃SnLi in THF also showed only a single peak both in the ¹H and ¹¹⁹Sn NMR spectra. There was a linear relationship between the chemical shift of the singlet and the amount of lithium per trimethylstannyl group (Li/Me₃Sn). The equilibration of the Me₃Sn group between the two species was proposed as a plausible explanation for the apparent equivalency of Me₃Sn and was supported by investigating two mixed alkyl systems. Both the Me₃SnLi-Ft₃SnSnEt₃ and Et₃SnLi-Me₃SnSnMe₃ systems showed single Me₃Sn and Et₃Sn group resonances each in the NMR spectra. The chemical shift of Me₃Sn vs. (Li/R₃Sn) in ¹¹⁹Sn NMR spectra, however, deviated considerably to higher field from the linear relationship, while that of Et₃Sn shifted to lower field. This can be interpreted in terms of the rapid exchange between Me₃Sn and Et₃Sn in the following two equilibria.

 $Me_3SnLi + Et_3SnSnEt_3 \stackrel{K_1}{\rightleftharpoons} Et_3SnLi + Me_3SnSnEt_3$

 $Me_3SnLi + Me_3SnSnEt_3 \stackrel{K_2}{\rightleftharpoons} Et_3SnLi + Me_3SnSnMe_3$

Introduction

The electron-donating ability of a $\sigma(Sn-Sn)$ bond has been clearly shown by oxidative cleavage of hexaalkyldistannanes (R_3SnSnR_3) by various π -electron acceptors [1], and electrophiles such as halogens, oxygen, etc. [2]. On the other hand, studies of the electron acceptor ability of the $\sigma(Sn-Sn)$ bond are rather limited. The reactions of R₃SnSnR₃ with lithium metal [3,4], alkyllithiums (RLi) [5], Gringard reagents [6] or sodium alkoxides [6] fall into this category. The reaction of R₃SnSnR₃ with Li or RLi presents a facile method for the preparation of trialkylstannyllithium (R₃SnLi) [3,4,5] in which electron transfer from Li or RLi to the $\sigma(Sn-Sn)$ bond is apparently taking place. Although the synthetic utility of R₃SnLi has been widely investigated [7], the very reaction of R₃SnLi with R₃SnSnR₃, which takes place essentially in the course of the reaction between R₃SnSnR₃ and Li or RLi, appears to have been overlooked. Studies of this reaction by measuring 119Sn and 1H NMR spectra and by trapping the trialkylstannyl anion (R₃Sn⁻) have now demonstrated a rapid scrambling of R₃Sn groups due to nucleophilic attack of R₃Sn⁻ on R'₃SnSnR'₃. The following equilibration has been suggested to be operative.

 $R_3SnLi + R'_3SnSnR'_3 \stackrel{K}{=} R'_3SnLi + R_3SnSnR'_3$

Results and discussion

Three methods for the preparation of Me₃SnLi are available in the literature (eq. 1, 2 and 3). The reaction of Me₃SnX with Li metal (eq. 1) [3,4] is considered to be equivalent to that of eq. 2 [3,4], since Me₃SnSnMe₃ was shown to be

$$Me_3SnX + 2 Li \rightarrow Me_3SnLi + LiX$$
 (1)

$$Me_3SnSnMe_3 + 2 Li \rightarrow 2 Me_3SnLi$$
 (2)

$$Me_3SnSnMe_3 + BuLi \rightarrow Me_3SnLi + Me_3SnBu$$
 (3)

formed initially from Me₃SnX and Li, as described later. Thus, every reaction

(eqs. 1—3) is based on the electron-accepting property of the σ(Sn—Sn) bond. The ¹H NMR spectrum of Me₃SnLi prepared by eq. 1 showed a singlet at —0.37 ppm [4,8], and that of Me₃SnSnMe₃ exhibited a single peak at 0.22 ppm. When a THF solution of Me₃SnLi was added to Me₃SnSnMe₃ in various ratios, the ¹H NMR spectra of the mixtures displayed a broad single peak assignable to the Me₃Sn protons in every case at a position intermediate between those of Me₃SnLi and Me₃SnSnMe₃. There was a linear relationship between the chemical shift of the peak and the amount of lithium in Me₃SnLi per total Me₃Sn groups, (Li/Me₃Sn), in solution (Fig. 1). When the ratio of Me₃SnLi was increased, the signal was shifted to higher field. A similar result was obtained in the case of the

shift of the peak and the amount of lithium in Me₃SnLi per total Me₃Sn groups, (Li/Me₃Sn), in solution (Fig. 1). When the ratio of Me₃SnLi was increased, the signal was shifted to higher field. A similar result was obtained in the case of the ¹¹⁹Sn NMR spectra of mixtures in various ratios (• points in Fig. 2). The chemical shift of the singlet was correlated to the ratio (Li/Me₃Sn), and moved between those of Me₃SnSnMe₃ (-108.7 ppm) [9] and Me₃SnLi (-182.7 ppm) [10]. The broad singlet remained unchanged for 2 h at room temperature, and gradually collapsed into several peaks in 20 h.

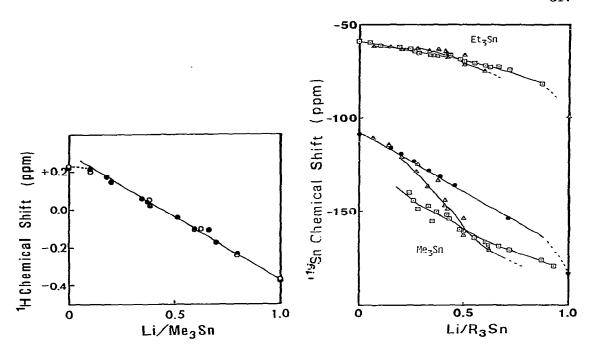


Fig. 1. Plots of the ¹H NMR chemical shift of CH₃ vs. the ratio of Li to Me₃Sn in the system, ● Me₃SnLi-Me₃SnSnMe₃; ○ BuLi-Me₃SnSnMe₃.

Fig. 2. Plots of the ¹¹⁹Sn NMR chemical shift of Me₃Sn and Et₃Sn groups vs. the ratio of Li to R₃Sn in the system, ● Me₃SnLi-Me₃SnSnMe₃; □ Me₃SnLi-Et₃SnSnEt₃; □ Et₃SnLi-Me₃SnSnMe₃.

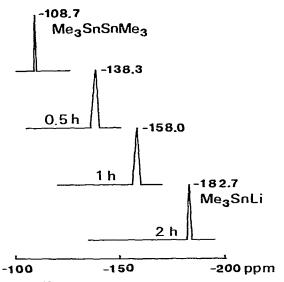


Fig. 3. 119Sn NMR spectra of the reaction mixture of Me₃SnSnMe₃ with Li in THF.

When the reaction of Me₃SnSnMe₃ with Li metal (eq. 2) [3,4] was followed by the measurement of the ¹H and ¹¹⁹Sn NMR spectra, a broad single peak assigned to the Me₃Sn group gradually moved from the position of Me₃SnSnMe₃ towards that of Me₃SnLi as the reaction proceeded (Fig. 3). When the reaction of Me₃SnCl with Li metal (eq. 1) was carried out similarly, it was confirmed by the ¹¹⁹Sn NMR spectra that Me₃SnCl first was converted to Me₃SnSnMe₃ in a few min, which then reacted gradually with Li to form Me₃SnLi in 2 h.

When a hexane solution of BuLi was added to Me₃SnSnMe₃ in THF in various ratios (eq. 3) [5], the 'H NMR spectra showed a broad single peak, whose chemical shift was found to be dependent on the ratio of BuLi to Me₃Sn groups, lying on the same straight line as shown in Fig. 1. The ¹¹⁹Sn NMR spectrum in this case was not reliable. When 0.2 mol of BuLi was added to 1 mol of Me₃SnSnMe₃, the peak of Me₃SnSnMe₃ was observed but neither the resonance of Me₃SnLi nor the corresponding peak at an intermediate position between Me₃SnSnMe₃ and Me₃SnLi could be detected. In addition, peaks due to Me_3SnBu (-1.1 ppm) [11] and Me_4Sn (0.0 ppm) were observed. When the ratio of BuLi to Me₃SnSnMe₃ was greater than 0.6, the peak due to Me₃SnSnMe₃ also disappeared and no peaks could be detected. Since the sample for the ¹¹⁹Sn NMR measurement was required by the sensitivity to be fairly concentrated, the ratio of the solvent (hexane) of BuLi to THF was larger than that used in the ¹H NMR measurement. The insoluble Me₃SnLi thus formed in the mixed solution precipitated, and the corresponding absorption of the Me₃Sn group could not be detected in ¹¹⁹Sn NMR spectra.

The reaction of Et₃SnBr with Li metal (eq. 4) [12] also was followed by

$$Et_3SnBr + 2 Li \rightarrow Et_3SnLi + LiBr$$
(4)

Et₃SnSnEt₃. As the reaction proceeded, a broad single peak assigned to the Et₃Sn group moved from the position of Et₃SnSnEt₃ (-58.8 ppm) [13] toward that of Et₃SnLi (-99.0 ppm).

The reaction of Et₃SnSnEt₃ with Et₃SnLi in various ratios gave a similar result to the Me₃SnLi-Me₃SnSnMe₃ system; i.e. a linear correlation of the chemical shifts of Et vs. the ratio (Li/Et₃Sn) as shown in Fig. 4.

In the ¹H NMR spectra of Me₃Sn-Et₃Sn mixed systems, a broad singlet assigned to Me protons and a quartet and a triplet assigned to the Et protons were observed. The ¹H NMR spectrum of an equimolar mixture of Me₃SnLi and Et₃SnSnEt₃ displayed a broad singlet at 0.00 ppm, a quartet at 0.94 ppm and a triplet at 1.23 ppm. The resonance of the Me protons (at 0.00 ppm) was found to move to higher field than that at (Li/Me₃Sn) = 0.33 on the straight line given by the Me₃SnLi-Me₃SnSnMe₃ system in Fig. 1.

The chemical shifts of Et protons in the mixed Me-Et system showed shifts to lower field than the values in the Et₃SnLi-Et₃SnSnEt₃ system in Fig. 4. The spectrum of an equimolar mixture of Et₃SnLi and Me₃SnSnMe₃ showed a singlet at 0.08 ppm assigned to the Me protons, a quartet at 0.95 ppm and a triplet at 1.22 ppm assigned to the Et protons. The chemical shift of the Me group deviated slightly from that of Me protons in Fig. 1, and the Et protons were shifted to lower field compared with the Et protons in Fig. 4.

There might be two possible explanations for the above results observed in

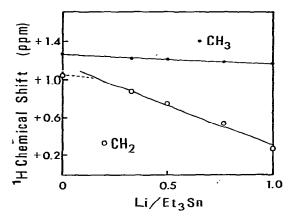


Fig. 4. Plots of the ¹H NMR chemical shifts of CH₃CH₂ vs. the ratio of Li to Et₃Sn in the system Et₃SnLi-Et₃SnSnEt₃.

the ¹H and ¹¹⁹Sn NMR spectra. First, exchange of R₃Sn groups between R₃SnLi and R'₃SnSnR'₃ could occur more rapidly than the NMR time scale (eq. 5). Thus each R₃Sn group is equilibrated. Secondly, R₃Sn or R'₃Sn groups

$$R_3 \operatorname{SnLi} + R'_3 \operatorname{SnSnR'}_3 \stackrel{K}{\rightleftharpoons} R'_3 \operatorname{SnLi} + R_3 \operatorname{SnSnR'}_3 \tag{5}$$

could be almost equivalent by the formation of a metastable associated trialkylstannyl lithium (I), whose anionic charges are shared by all R₃Sn and R'₃Sn species (eq. 6). The above mechanisms are consistent with the observation that

$$lR_3SnLi + mR'_3SnSnR'_3 \rightarrow [(R_3Sn)_l(R'_3Sn)_{2m}]^{l-}Li_l^{l+}$$
 (6)

the NMR spectra displayed single Me₃Sn and/or Et₃Sn resonances.

In an attempt to differentiate between the two possibilities, the reaction of Me₃SnLi with Me₃SnSnMe₃ was conducted at -70° C. The ¹H NMR spectrum of the mixture displayed only a single peak even at this temperature. Neither broadening nor collapse of the single peak was observed at -70° C. Dilution of the sample by the addition of THF did not cause any change in the ¹H and ¹¹⁹Sn NMR spectra even at -95° C. If the equilibrium (eq. 5) is operative in the mixture, the exchange rate must be very fast even at -95° C.

The ¹¹⁹Sn NMR spectra of mixtures of R₃SnLi and R'₃SnSnR'₃ in various ratios were measured at —20°C within 10 min. Every ¹¹⁹Sn NMR spectrum of the Me₃SnLi-Et₃SnSnEt₃ and Et₃SnLi-Me₃SnSnMe₃ systems displayed two singlets assigned to Me₃Sn and Et₃Sn groups. The correlation of the chemical shift to the ratio (Li/R₃Sn) is shown in Fig. 2. A deviation of the chemical shift of the Me₃Sn group from the straight line in the Me₃SnLi-Me₃SnSnMe₃ system to higher field was found. When the ratio (Li/R₃Sn) was less than 0.50, the extent of the deviation in the Me₃SnLi-Et₃SnSnEt₃ system was larger than that in the Et₃SnLi-Me₃SnSnMe₃ system. When the ratio (Li/R₃Sn) was greater than 0.50, the deviation was smaller in the former system than that in the latter.

The two curves in both system crossed at $(\text{Li/R}_3\text{Sn}) = 0.50$. On the other hand, the chemical shift of the Et₃Sn group shifted to lower field to a similar degree in both systems. If a rapid equilibration occurs, two successive equilibria (eqs. 7, 8) could be considered in both systems. When some values are allotted to

$$Me_3SnLi + Et_3SnSnEt_3 \stackrel{K_1}{\rightleftharpoons} Et_3SnLi + Me_3SnSnEt_3$$
 (7)

$$Me_3SnLi + Me_3SnSnEt_3 \stackrel{K_2}{\rightleftharpoons} Et_3SnLi + Me_3SnSnMe_3$$
 (8)

the equilibrium constants, K_1 and K_2 , the ratio of the molar concentration of each component can be calculated from eqs. 9 and 10. Then, we are able to predict the chemical shifts of the Me₃Sn and Et₃Sn groups by the weighted means

$$K_1 = \frac{[\text{Et}_3\text{SnLi}][\text{Me}_3\text{SnSnEt}_3]}{[\text{Me}_3\text{SnLi}][\text{Et}_3\text{SnSnEt}_3]}$$
(9)

$$K_2 = \frac{[\text{Et}_3\text{SnLi}][\text{Me}_3\text{SnSnMe}_3]}{[\text{Me}_3\text{SnLi}][\text{Me}_3\text{SnSnEt}_3]}$$
(10)

of each chemical shift of the components (see Appendix). Empirical optimization of K_1 and K_2 with respect to chemical shifts gave the combination of K_1 = 0.5 and K_2 = 0.2 which reproduced the observed curves (Fig. 5). When the ratio (Li/R₃Sn) is less than 0.5, the calculated values of the Me₃Sn group in the Me₃SnLi-Et₃SnSnEt₃ system shift to higher field than the other. In the case of (Li/R₃Sn) > 0.5, the calculated chemical shifts of Me₃Sn group in the former

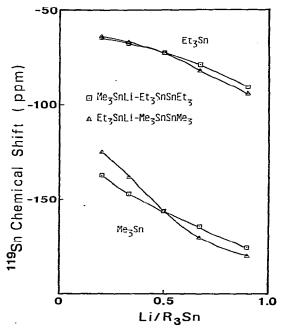


Fig. 5. Plots of the calculated chemical shifts ($K_1 = 0.5$, $K_2 = 0.2$ in eqs. 7 and 8) of ¹¹⁹Sn vs. Li/R₃Sn.

Treatments of the mixtures of r3snli and R'3snsnl', with R"X. Glc analyses (molar ratio) TABLE 1

System	Li/R ₃ Sn	R"X	Me3SnR	Me ₃ SnSnMe ₃	Me3 SnSnEt3	Et3SnR	Et3SnSnEt3
Me3SnLi-Et3SnSnEt3	0.33	3	31	A	18	20	27
		Ω	25	פנ	24	10	36
		Calcd, c	26	ぜ	13	24	31
	0.50	æ	43	**	15	23	14
		þ	42	 6	30	6.	18
		Calcd.	43	-	14	23	15
Et3SnLi-Me3SnSnMe3	0.33	æ	39	15	27	7	12
		Ω	35	17	32	ıO	I
		Calcd.	41	19	22	6	10
	0.50	a	38	82	16	23	14
		d	45	ī	22	11	16
		Calcd.	43	ın	1.4	24	15

 $^{\rm q}$ Me₃SiCl. $^{\rm b}$ PhCH₂Cl. $^{\rm c}$ K $_{\rm l}$ = 0.50, K $_{\rm 2}$ = 0.20 in eqs. 7 and 8.

were at slightly lower field than the latter. The two curves crossed at $(\text{Li/R}_3\text{Sn}) = 0.50$. This is consistent with observation in both systems. The calculated chemical shifts of the Et_3Sn group also were close to the observed one. The deviation in the mixed alkyl systems from the straight line can be interpreted by the sequence of equilibria (eqs. 7, 8), where K_1 and K_2 are 0.5 and 0.2, respectively.

The above equilibration has been supported also by the quantitative analysis of all components in the mixtures. Both Me₃SnLi and Et₃SnLi were trapped by reaction with trimethylchlorosilane (Me₃SiCl) or benzyl chloride (PhCH₂Cl) at -20°C (to give R₃SnSiMe₃ or R₃SnCH₂Ph), while R₃SnSnR₃ was inert toward Me₃SiCl and PhCH₂Cl. Equimolar mixtures of R₃SnLi and R'₃SnSnR'₃ (R = Me₃ R' = Et, and R = Et, R' = Me, $Li/R_3Sn = 0.33$), and mixtures of two molar equivalents of R_3 SnLi and one of R'_3 SnSn R'_3 (Li/ R_3 Sn = 0.50) were treated with these reagents, and the reaction mixtures were subjected to GLC analysis. The molar ratio of each compound was compared with the value of each component calculated from eqs. 7 and 8 (Table 1). The molar ratio determined by the treatment with Me₃SiCl was close to the calculated one in each case, but the experiments with PhCH₂Cl did not give satisfactory results. When a mixture of 2 mol of Me₃SnLi and 1 mol of Et₃SnSnEt₃ (Li/R₃Sn = 0.50) was treated with Me₃SiCl, the molar distribution of each product coincided fairly well not only with the calculated one but also with the result from the Et₃SnLi-Me₃- $SnSnMe_3$ (2:1) system. In the case of (Li/R₃Sn) = 0.50, the similar distribution of each compound in both systems corresponds to the crossing of the two curves at $(Li/R_3Sn) = 0.50$ in Fig. 2.

The ¹¹⁹Sn NMR data and the molar distribution determined with Me₃SiCl might support the presence of two kinds of equilibria (eqs. 7, 8), whose equilibrium constants, K_1 and K_2 , are about 0.5 and 0.2, respectively. Although the possibility of the existence of the associated trialkylstannyl anion (I) cannot be rigorously excluded, we conclude that most of the results described herein can be rationalized in terms of such equilibration.

Experimental

All reactions were carried out under a nitrogen atmosphere. ¹H NMR spectra were obtained on a JEOL-JNM-C60HL spectrometer (60 MHz) and a Varian-EM390 (90 MHz). ¹¹⁹Sn NMR spectra were measured in the pulse Fourier transform mode using a Varian-FT80A spectrometer (29.66 MHz) and a JEOL-FX90Q (33.41 MHz) consisted of 4 K or 8 K data points with spectral width 8000 Hz and aquisition time 0.253 sec. ¹H chemical shifts were determined from that of β-methylene protons of THF (1.75 ppm) and are reported as ppm in the TMS scale. ¹¹⁹Sn chemical shifts were related to Me₄Sn. Gas-liquid chromatography (GLC) was run on a Silicone DC HV column.

Me₃SnLi was prepared as described [3,4,5] by the reaction of Me₃SnX (X = Cl, Br) or Me₃SnSnMe₃ with Li metal and of Me₃SnSnMe₃ with BuLi. Et₃SnLi was prepared from Et₃SnBr and Li metal [12].

Reaction of Me₃SnLi with Me₃SnSnMe₃ in various ratios

A THF solution of Me₃SnLi was prepared by the reaction of Me₃SnBr with Li metal. In a typical reaction, 0.20 mmol of Me₃SnLi in 0.40 ml of THF was

added by means of syringe to 65.0 mg (0.20 mmol) of Me₃SnSnMe₃ at room temperature in a ¹H NMR tube of 5 mm o.d. The reactions were carried out using various ratios of Me₃SnLi to Me₃SnSnMe₃. The samples for ¹¹⁹Sn NMR spectra were prepared by the successive addition of 98.3 mg (0.30 mmol) portions of Me₃SnSnMe₃ to 1.5 mmol of Me₃SnLi in 1.5 ml of THF in a sample tube of 10 mm o.d. The ¹H and ¹¹⁹Sn NMR spectra of these samples showed a broad single peak in every case. The chemical shifts of the singlet had a linear relationship against Li/Me₃Sn in both ¹H and ¹¹⁹Sn NMR spectra as shown in Figs. 1 and 2 (point •). The NMR spectra were measured within 0.2 h after the addition. The spectra did not change for 2 h.

The addition of Me₃SnLi to Me₃SnSnMe₃ (Li/Me₃Sn = 0.18, 0.35 and 0.52) was conducted at room temperature, and the ¹H NMR spectrum in each case showed a singlet at δ 0.17, 0.06 and -0.03 ppm, respectively, at room temperature. When the ¹H NMR spectra of these samples were measured at -30° C and -70° C, a singlet was observed at the same position as at room temperature in every case. The ¹¹⁹Sn NMR spectrum of the mixture in the case of (Li/Me₃Sn) = 0.90 showed a singlet at -167.8 ppm at 2°C but neither chemical shift nor the form of the peak changed even at -95° C.

When the addition of Me₃SnLi to Me₃SnSnMe₃ (Li/Me₃Sn = 0.38 and 0.70) was carried out at -70°C, the ¹H NMR spectrum at -70°C exhibited a single peak at 0.01 and -0.18 ppm, respectively. These singlets measured at -70°C had the same chemical shifts as those obtained at room temperature.

Reaction of BuLi with Me₃SnSnMe₃

To a solution of 20.0 mg (0.06 mmol) of Me₃SnSnMe₃ in 0.25 ml of THF in an NMR tube was added 0.01 ml of a 1.54 M hexane solution (0.015 mmol) of BuLi at 0°C. After the measurement of the ¹H NMR spectrum of the sample, further successive additions of 0.01 ml (0.015 mmol) portions of BuLi and the measurements of the ¹H NMR spectrum of each mixture were carried out. ¹H NMR: δ 0.17 (BuLi = 0.01 ml), 0.03 (BuLi = 0.02 ml), -0.10 (BuLi = 0.03 ml) and -0.37 ppm (Me₃SnLi; BuLi = 0.04). The chemical shifts of the broad singlet have a linear relationship against Li/Me₃Sn as shown in Fig. 1 (point o).

Reaction of Me₃SnSnMe₃ with Li metal

A solution of 40.0 mg (0.12 mmol) of Me₃SnSnMe₃ in 0.4 ml of THF was added to an excess of Li metal dispersion in a ¹H NMR tube. The solution turned yellow in a minute. ¹H NMR spectrum of the solution measured after 10 min displayed a broad singlet at 0.00 ppm. The ¹H NMR spectrum of the solution after 20 min showed a singlet at —0.10 ppm and the spectrum after 25 min gave a singlet at —0.26 ppm. Over the course of 1.5 h the singlet moved to higher field and stopped at the position of Me₃SnLi (—0.37 ppm).

¹¹⁹Sn NMR spectra were measured in more concentrated solution. The mixture of 0.404 g (1.23 mmol) of Me₃SnSnMe₃ and excess Li metal in 2 ml of THF showed a singlet at –128.0 ppm after 20 min, at –155.0 ppm after 55 min and at –182.7 ppm (Me₃SnLi) after 2 h.

Reaction of Me₃SnCl or Et₃SnBr with Li metal

A solution of 0.418 g (2.10 mmol) of Me₃SnCl in 2 ml of THF was added to

an excess of Li metal in an NMR tube. After 5 min, the ¹¹⁹Sn NMR spectrum of the solution displayed a singlet assigned to Me₃SnSnMe₃ at -108.0 ppm. Then the peak moved up to the position of Me₃SnLi in 2 h.

To a solution of 0.595 g (2.0 mmol) of Et₃SnBr in 2 ml of THF was added an excess of Li metal. The ¹¹⁹Sn NMR spectrum of the mixture, measured after 5 min at -20°C, showed a singlet at -58.8 ppm (Et₃SnSnEt₃) which moved gradually to higher field and stopped at the position of Et₃SnLi.

Reaction of Me₃SnLi and Et₃SnSnEt₃

Me₃SnLi was prepared by the reaction of Me₃SnSnMe₃ or Me₃SnCl with Li metal at −20°C. To 0.359 g (0.87 mmol) of Et₃SnSnEt₃ in 0.5 ml of THF was added 0.1 ml (0.1 mmol) portions of 1 M Me₃SnLi solution, and the ¹¹⁹Sn NMR spectrum of each sample mixed in various ratios (Li/R₃Sn) was measured at −20°C. The spectra showed two singlet assigned to Me₃Sn and Et₃Sn in every case. The relation between the chemical shifts of Me₃Sn and Et₃Sn groups and the ratio (Li/R₃Sn) was shown in Fig. 2 (point □).

Reaction of Et₃SnLi and Me₃SnSnMe₃

To a solution of 1 ml (1 mmol) of 1 M Et₃SnLi were added 98.3 mg (0.3 mmol) portions of Me₃SnSnMe₃. The ¹¹⁹Sn NMR spectrum of the mixture in each case exhibited two singlets assigned to Me₃Sn and Et₃Sn. The relationship of the chemical shift to the ratio (Li/R₃Sn) was shown in Fig. 2 (point \triangle).

Treatment of Me₃SnLi-Et₃SnSnEt₃ system with Me₃SiCl or PhCH₂Cl

Two samples whose ratios (Li/R₃Sn) were 0.33 and 0.50, were prepared by the addition of 86.5 mg (0.2 mmol) of Et₃SnSnEt₃ to 0.20 ml of 1 M Me₃SnLi solution, and by that of 56.0 mg (0.14 mmol) of Et₃SnSnEt₃ to 0.28 ml of 1 M Me₃SnLi solution. After 10 min, half of each mixture was added to Me₃SiCl at -20°C and was subjected to GLC analysis. The other half of each mixture was treated with PhCH₂Cl at -20°C. The distribution of the products is shown in Table 1.

Treatment of Et₃SnLi-Me₃SnSnMe₃ system with Me₃SiCl or PhCH₂Cl

Two solutions of Et₃SnLi (0.17 mmol and 0.30 mmol) were added to 56.0 mg (0.17 mmol) and 49 mg (0.15 mmol) of Me₃SnSnMe₃, respectively (Li/R₃Sn = 0.33 and 0.50). After 10 min, half of each mixture was treated with Me₃SiCl at -20°C and was subjected to GLC analysis. The other half of each mixture was treated with PhCH₂Cl. The molar ratio of the products is shown

Appendix

in Table 1.

Determination of the equilibrium constants K_1 and K_2 . Calculation of the ¹¹⁹Sn chemical shifts and the distribution of each component

a) Me_3SnLi - $Et_3SnSnEt_3$ system. If the ratio of Li (g-atom) to R_3Sn group (mol) is taken as n, that is $(Li/R_3Sn) = n$, the initially added molar amounts of Me_3SnLi and $Et_3SnSnEt_3$ are presented as n and (1-n)/2, respectively. When the molar amounts of the reacted $Et_3SnSnEt_3$ and the formed $Me_3SnSnMe_3$ are

taken as x mol and y mol, respectively, the molar concentration of each component in eqs. 7 and 8 is represented as follows.

$$[Me_3SnLi] = n - x - y$$

$$[Et3SnSnEt3] = \frac{1-n}{2} - x$$

$$[Me_3SnSnEt_3] = x - y$$

$$[Et_3SnLi] = x + y$$

 $[Me_3SnSnMe_3] = y$

These are substituted in eqs. 9 and 10 to give two equations (eqs. 11, 12).

$$K_{1} = \frac{[\text{Et}_{3}\text{SnLi}][\text{Me}_{3}\text{SnSn}\text{Et}_{3}]}{[\text{Me}_{3}\text{SnLi}][\text{Et}_{3}\text{SnSn}\text{Et}_{3}]} = \frac{(x+y)(x-y)}{(n-x-y)\left(\frac{1-n}{2}-x\right)}$$
(11)

$$K_{2} = \frac{[\text{Et}_{3}\text{SnLi}][\text{Me}_{3}\text{SnSnMe}_{3}]}{[\text{Me}_{3}\text{SnLi}][\text{Me}_{3}\text{SnSnEt}_{3}]} = \frac{(x+y)y}{(n-x-y)(x-y)}$$
(12)

If x is eliminated from eqs. 11, 12, a cubic equation for y is obtained (eq. 13),

$$ay^3 + by^2 + cy + d = 0 ag{13}$$

where a-d are presented as follows.

$$a = (4K_2 - K_1) \left(K_1 + \frac{1 - K_1}{K_2} \right)$$

$$b = K_1(1 - 2K_2) + K_1(K_1 - 2K_2 - 1) \left(n + \frac{1 - n}{2K_2}\right)$$

$$c = \frac{1 - n^2}{4} K_1^2 + n^2 K_1 K_2 - n(1 - n) K_1 (K_1 - 2K_2 - 1)$$

$$d = -\frac{n^2(1-n)}{2}K_1K_2$$

Numerical values were substituted into K_1 and K_2 , then y and x were calculated in the case of n = 0.20, 0.33, 0.50, 0.67, 0.90 by using an electronic computer. Predicted chemical shifts of Me₃Sn and Et₃Sn were calculated by the weighted means of the chemical shift of each component in eqs. 7 and 8 as follows.

$$\delta(\text{Me}_3Sn) = \delta(\text{Me}_3Sn\text{Li}) \frac{n - x - y}{n} + \delta(\text{Me}_3Sn\text{SnEt}_3) \frac{x - y}{n} + \delta(\text{Me}_3SnSn\text{Me}_3) \frac{2y}{n}$$

$$\delta(\text{Et}_3Sn) = \delta(\text{Et}_3Sn\text{Li})\frac{x+y}{1-n} + \delta(\text{Me}_3\text{Sn}Sn\text{Et}_3)\frac{x-y}{1-n} + \delta(\text{Et}_3SnSn\text{Et}_3)\frac{1-n-2x}{1-n}$$
(15)

TABLE 2

CALCULATED VALUES OF x, y AND CHEMICAL SHIFTS OF Me ₃ Sn AND Et ₃ Sn in the case of	
$K_1 = 0.5, K_2 = 0.2$	

System	$(\text{Li/R}_3\text{Sn}) = n$	x	У	δ(Me ₃ Sn)	δ(Et ₃ Sn)
Me ₃ SnLi-Et ₃ SnSnEt ₃	0.20	0.108	0.013	-137.7	-65.2
	0.33	0.134	0.024	-147.1	68.8
	0.50	0.139	0.037	-156.5	-73.6
	0.67	0.118	0.045	-164.6	-79.4
	0.90	0.047	0.032	-176.2	-91.0
Et ₃ SnLi-Me ₃ SnSnMe ₃	0.20	0.155	0.027	-125.4	-64.5
	0.33	0.206	0.064	-138.4	-67.4
	0.50	0.213	0.111	156.5	-73.6
	0.67	0.159	0.118	-170.7	-82.6
	0.90	0.050	0.047	-180.5	-94.7

where

$$\delta(\text{Me}_3Sn\text{Li}) = -182.7 \text{ ppm}$$

$$\delta(\text{Me}_3SnSn\text{Me}_3) = -108.7 \text{ ppm}$$

$$\delta(\text{Me}_3Sn\text{SnEt}_3) = -108.1 \text{ ppm}$$

$$\delta(\text{Me}_3\text{Sn}Sn\text{Et}_3) = -61.8 \text{ ppm}$$

$$\delta(\text{Et}_3 Sn \text{Li}) = -99.0 \text{ ppm}$$

$$\delta(Et_3SnSnEt_3) = -58.8 \text{ ppm}$$

The combination values given to the K_1 and K_2 were $K_1 = 0.5$, $K_2 = 0.3$, 0.2, 0.1 and $K_1 = 0.6$, $K_2 = 0.3$, 0.2. The case of $K_1 = 0.5$, $K_2 = 0.2$ was shown in Table 2 and Fig. 5 (point \square).

b) $Et_3SnLi-Me_3SnSnMe_3$ system. The molar amount of the reacted Me₃SnSn-Me₃, x, and the molar amount of the formed $Et_3SnSnEt_3$, y, were calculated similarly to the system a).

$$[Et_3SnLi] = n - x - y$$

$$[Me3SnSnMe3] = \frac{1-n}{2} - x$$

$$[Me_3SnSnEt_3] = x - y$$

$$[Me_3SnLi] = x + y$$

$$[Et_3SnSnEt_3] = y$$

$$K_1 = \frac{(n - x - y)(x - y)}{(x + y)y} \tag{16}$$

$$K_{2} = \frac{(n-x-y)\left(\frac{1-n}{2}-x\right)}{(x+y)(x-y)} \tag{17}$$

If x is eliminated from eqs. 16 and 17, the following equation (eq. 18) is obtained.

$$ay^{3} + by^{2} + cy + d = 0$$

$$a = 4K_{1}^{2} + (K_{1} - 1)(K_{1}/K_{2})^{2} - (K_{1}^{2} + 4K_{1} - 4)K_{1}/K_{2}$$

$$b = \left(n + \frac{1 - n}{2}K_{1}\right)(K_{1}/K_{2})^{2} - \left(2n + 2 + \frac{1 - n}{2}K_{1}^{2}\right)K_{1}/K_{2}$$

$$c = \left(2n^{2} - n + \frac{1 - n^{2}}{4}K_{1}/K_{2}\right)K_{1}/K_{2} + n(1 - n)(K_{1} + 2)$$

$$d = -\frac{1 - n}{2}n^{2}K_{1}/K_{2}$$
(18)

Some values were substituted to K_1 , K_2 and n, then x and y were calculated similarly to the case in Me₃SnLi-Et₃SnSnEt₃ system. Chemical shifts of Me₃Sn and Et₃Sn were predicted as follows.

$$\delta(\text{Me}_{3}Sn) = \delta(\text{Me}_{3}Sn\text{Li}) \frac{x+y}{1-n} + \delta(\text{Me}_{3}Sn\text{SnEt}_{3}) \frac{x-y}{1-n} + \delta(\text{Me}_{3}SnSn\text{Me}_{3}) \frac{1-n-2x}{1-n}$$

$$(19)$$

$$\delta(\text{Et}_{3}Sn) = \delta(\text{Et}_{3}Sn\text{Li}) \frac{n-x-y}{n} + \delta(\text{Me}_{3}SnSn\text{Et}_{3}) \frac{x-y}{n} + \delta(\text{Et}_{3}SnSn\text{Et}_{3}) \frac{2y}{n}$$

$$(20)$$

The results in the case of $K_1 = 0.5$, $K_2 = 0.2$, were shown in Table 2 and Fig. 5 (point \triangle).

Acknowledgment

We are deeply indebted to Mr. Kazuhiro Matsushita of JEOL Ltd. for measurement of some of the ¹¹⁹Sn NMR spectra. Out thanks are also extended to Dr. T. Imagawa of the Department of Industrial Chemistry, Kyoto University, for stimulating discussions. Finally, Professor J.J. Eisch of the State University of New York at Binghamton is thanked for helpful suggestions and critical reading of the manuscript.

References

¹ S. Kozima, H. Fujita, T. Hitomi, K. Kobayashi, K. Kobayashi (née Kunô) and M. Kawanisi, Bull. Chem. Soc. Jpn., 53 (1980) 2953; and refs. therein.

 ⁽a) G. Tagliavini, S. Faleschini, G. Pilloni and G. Plazzogna, J. Organometal. Chem., 5 (1966) 136;
 (b) H.H. Anderson, Inorg. Chem., 3 (1964) 108;
 (c) P. Bamberg, B. Ekström and B. Sjöberg, Acta Chem. Scand., 22 (1968) 367;
 (d) G. Tagliavini and L. Doretti, Chem. Commun., (1966) 562;
 (e) L. Doretti and G. Tagliavini, J. Organometal. Chem., 12 (1968) 203;
 (f) N.A.D. Carey and H.C. Clark, Can. J. Chem., 46 (1968) 643;
 (g) A. Peloso, J. Organometal. Chem., 67 (1974) 423;
 74 (1974) 59.

³ C. Tamborski, F.E. Ford and E.J. Soloski, J. Org. Chem., 28 (1963) 237.

⁴ W.L. Wells and T.L. Brown, J. Organometal. Chem., 11 (1968) 271.

- 5 W.C. Still, J. Amer. Chem. Soc., 99 (1977) 4836.
- 6 E.J. Bulten and H.A. Budding, J. Organometal. Chem., 78 (1974) 385.
- 7 (a) D.D. Davis and C.E. Gray, Organometal. Chem. Rev., A, 6 (1970) 283; (b) K.R. Wursthorn, H.G. Kuivila and G.F. Smith, J. Amer. Chem. Soc., 100 (1978) 2779; (c) J.P. Quintard, S. Hauvette-Frey and M. Pereyre, J. Organometal. Chem., 159 (1978) 147; and refs. therein.
- 8 A.T. Weibel and J.P. Oliver, J. Organometal. Chem., 82 (1974) 281.
- 9 T.N. Mitchell and G. Walter, J. Chem. Soc. Perkin II, (1977) 1842.
- 10 (a) J.D. Kennedy and W. McFarlane, J. Chem. Soc. Chem. Commun., (1974) 983; (b) P.G. Harrison, S.E. Ulrich and J.J. Zuckerman, J. Amer. Chem. Soc., 93 (1971) 5398.
- 11 A.G. Davies, P.G. Harrison, J.D. Kennedy, T.N. Mitchell, R.J. Puddephatt and W. McFarlane, J. Chem. Soc., (C), (1969) 1136.
- (a) V.S. Zavgorodnii, B.I. Ionin and A.A. Petrov, Zh. Obshch. Khim., 37 (1967) 949; Chem. Abstr.,
 68 (1968) 39754; (b) S.Y. Sim., Ph. D. Thesis, Iowa State Univ., (1966); Diss. Abstr., B 27 (1966)
 1430; Chem. Abstr., 66 (1967) 85836.
- 13 T.N. Mitchell, J. Organometal. Chem., 70 (1974) C1.