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ABSTRACT: An application of dechalcogenization of aryl dichalcogenides via copper catalysis to synthesize aryl 
chalcogenides is disclosed. This approach is highlighted by the practical conditions, broad substrates scope and good 
functional group tolerance with several sensitive groups such as aldehyde, ketone, ester, amide, cyanide, alkene, nitro and 
methylsulfonyl. Furthermore, the robustness of this methodology is depicted by the late-stage modification of estrone and 
synthesis of vortioxetine. Remarkably, synthesis of more challenging organic materials with large ring tension under milder 
conditions and synthesis of some halogen contained diaryl sulfides which could not be synthesized using metal-catalyzed coupling 
reactions of aryl halogen are successfully accomplished with this protocol.

KEYWORDS: Aryl chalcogenides, aryl dichalcogenides, copper catalysis, dechalcogenization, organic materials 

Aryl chalcogen-containing compounds have captured 
widespread attention due to their essential and manifold 
applications in biologically active molecules,1 
pharmaceuticals2 and organic materials.3 For instance 
(Figure 1), aryl chalcogenides could be found in 5-
lipoxygenase inhibitor AZD4407,1a antitumor drug 
Axitinib, and organic electronic material 
triselenasumanene.3c In view of their significance 
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Figure 1. Examples of aryl chalcogen-containing bioactive 
compounds, pharmaceutical molecules and organic materials.

in such broad fields, various methods for synthesizing aryl 
sulfides have been developed,4 mainly including the 
following three strategies: a) transition-metal-catalyzed 
coupling5 of aryl halides, arylboronic acids or other metal 
reagents with thiols, disulfides or functionalized sulfurs6 
(Scheme 1a), several of these protocols use precious metal, 
pre-functionalized sulfur and sensitive metallic reagent; b) 
metal-catalyzed functionalization of C-H bonds,7 
application and substrates scope of some of which have 
been restricted for the difficulty of directing group 
escaping (Scheme 1b); c) nucleophilic substitution (SNAr) 
reactions,8 which are exclusively applicable for 
electrophilic aromatics (Scheme 1c). Despite significant 
progress has been made in aryl sulfides synthesis, the 
longstanding issues existed in the above-mentioned 

strategies should not be overlooked, thus alternatives are 
in great need.

b) C-H Activation/Functionalization
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Scheme 1. Methods for Synthesis of Aryl Sulfides

According to the previous literature, desulfurization of 
aryl disulfides to hydrocarbons has been uncovered,9 
whereas, selective remove of one sulfur in aryl disulfides is 
challenging. At present, selective dechalcogenization of 
aryl dichalcogenides en route to aryl chalcogenides is 
mainly applied to synthesize organic materials with large 

Page 1 of 6

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ring tension, moreover, high temperature (200 - 300 oC) 
and excessive copper powder are required but the yield is 
unsatisfying.3c, 10 Remarkably, there is no precedent on 
dechalcogenization of ordinary aryl dichalcogenides to 
ordinary aryl chalcogenides, which are important moieties 
of many biological molecules. In this context, we herein 
reveal the unprecedented application of 
dechalcogenization of aryl dichalcogenides in synthesizing 
aryl chalcogen-ides and bowl-shaped organic materials 
under milder conditions.

Giving the fact that copper species could insert into C–C 
bond through extrusion of CO2 to form a stable aryl-copper 
intermediate in decarboxylative coupling reactions,11 we 
wonder if copper salts are also amenable to show similar 
effects in the extrusion of SO2. To verify our hypothesis, we 
commenced our study by performing desulfurization of 
1,2-di-p-tolyldisulfane (1b) in the presence of 20 mol % 
Cu(OAc)2, 40 mol % 1,10-phenanthroline, and 3 
equivalents of K2CO3 under air atmosphere at 120 oC for 24 
h, and the desired product 2b was obtained in 40% yield 
(Table 1, entry 1). Subsequently, optimization of the 
reaction conditions was carried out by evaluating a variety 
of reaction parameters. At first, copper salts were screened 
and CuI was the best to generate product 2b in 48% yield 
(Table 1, entries 2 – 3; Table S1). Solvents (Table 1, entries 
4 – 5; Table S2) and base (Table 1, entries 6 – 7; Table S3) 
were
Table 1. Optimization of The Reaction Conditionsa

N
N

N
N

N
N

Br

Br
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S

Me Me

[Cu], Ligand, base,

Sol., 120 oC

1b 2b

aReaction conditions: 1b (0.10 mmol, 1.0 equiv), [Cu] (0.02 
mmol, 20 mol %), Ligand (0.04 mmol, 40 mol %), Base (0.30 
mmol, 3.0 equiv), solvent (1.0 mL), air, 120 oC. bIsolated yields. 

c50 µL H2O (DMSO : H2O = 20 : 1) was added. dAir was 
replaced by Ar. Mes. = Mesitylene; L = Ligand

ensuing tested, but no enhancement on the yield was 
observed. Considering the low solubility of base in DMSO, 
we attempted to increase the solubility of the base by 
adding water. As we predicted, the yield dramatically 
jumped to 80% and the reaction time was shortened to 7h 
(Table 1, entry 8; Table S3). Next, we managed to arise the 
yield by screening a variety of ligands, but no satisfactory 
result was presented (Table 1, entries 9 – 11; Table S4). In 
the absence of CuI or base or ligand or air, no product was 
detected (Table 1, entries 12 - 15), indicating the necessity 
of copper salt, base, ligand and air. 

With the optimized conditions in hand, we assessed the 
r e a c t i o n  s c o p e  w i t h  v a r i o u s  s y m m e t r i c a l  a r y l  
dichalcogenides (Scheme 2). In terms of electronical effect, 
both electron-donating and electron-withdrawing 
substituents at para-, meta- and ortho-positions of benzene 
ring provided the desired products in good to excellent 
yields (2a -  2q, 75% - 94%).  In general ,  electron-
withdrawing groups on the phenyl ring were apt to 
generate products in high yields than electron-donating 
ones. As for steric hindrance effect, 2, 6-dimethylated 1r, 
fused aromatic rings 1s and 1t showed good compatibility 
in this reaction to give rise to the corresponding products 
in good yields (2r – 2t, 80% - 85%), which suggested steric 
hindrance of substrates had marginal influence on yields. 
Several heterocycle disulfides were also feasible to afford 
the products in good yields (2u - 2w, 76% - 82%). Of 
particular note was that 4-methoxybenzyl disulfide 2x 
proceeded well under standard conditions to offer the 
desulfurated product in 80% yield. Some sensitive 
functional groups including amide and ester were well 
tolerant, providing 2y and 2z in 80% and 78% yields 
r e s p e c t i v e l y .  M o r e o v e r ,  t h e  o r g a n i c  s y n -  
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Scheme 2. Substrates Scope of Symmetrical Aryl 
Dichalcogenides.a, b aReaction conditions: 1 (0.10 mmol, 1.0 

entry [Cu] sol. base l. time/h yield/%b 

1 Cu(OAc)2 DMSO K2CO3 L1 24 40

2 CuBr DMSO K2CO3 L1 24 30

3 CuI DMSO K2CO3 L1 24 48

4 CuI DMF K2CO3 L1 24 4

5 CuI Mes. K2CO3 L1 24 0

6 CuI DMSO Cs2CO3 L1 24 35

7 CuI DMSO KOH L1 24 Trace

8c CuI DMSO K2CO3 L1 7 80

9c CuI DMSO K2CO3 L2 7 55

10c CuI DMSO K2CO3 L3 7 20

11c CuI DMSO K2CO3 L4 7 Trace

12c - DMSO K2CO3 L1 7 0

13c CuI DMSO - L1 7 0

14c CuI DMSO K2CO3 - 7 0

15c, d CuI DMSO K2CO3 L1 7 Trace
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equiv), CuI (0.02 mmol, 20 mol %), 1,10-phenanthroline (0.04 
mmol, 40 mol %), K2CO3 (0.30 mmol, 3.0 equiv), DMSO : H2O = 
20 : 1, air, 120 oC. bIsolated yields. 

thesis intermediates 2aa and 2ab could be obtained in 
85% and 20% yields respectively. Interestingly, even 
deselenization and detellurization were also successfully 
achieved to produce the desirable products in moderate to 
good yields (2ac: 60%; 2ad: 80%; 2ae: 82%).

Next, we further assessed the scope of unsymmetrical 
aryl disulfides (Scheme 3a). Desulfuration of 3a - 3k 
bearing an electron-withdrawing group (-F, -Cl -Br) or an 
electron-donating group (Me) on ortho, mate or para-
position of benzene ring provided 4a - 4k in moderate to 
good yields (60% - 80%), and similar results (4l - 4p, 65% 
-73%) were disclosed when using unsymmetrical aryl 
disulfides
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Scheme 3. Substrates Scope of Unsymmetrical Aryl 
Dichalcogenides.a, b aReaction conditions: 3/5 (0.10 mmol, 
1.0 equiv), CuI (0.02 mmol, 20 mol %), 1,10-phenanthroline 
(0.04 mmol, 40 mol %), K2CO3 (0.30 mmol, 3.0 equiv), DMSO: 
H2O = 20 : 1, air, 120 oC. bIsolated yields.

derived from 4-methoxyphenyl and several 4-substituted 
phenyls (3l - 3p). Additionally, unsymmetrical aryl 
disulfides created from the combination of 3-
methoxyphenyls (3q - 3u) or 2-methoxyphenyls (3v - 3z) 
with several 4-substituted phenyls were compatible in this 
transformation to provide 4q - 4z in good yields (65% - 
78%); unsymmetrical aryl disulfides originated from 2-
methyl benzoate and several 4-substituted phenyls (3aa - 
3ad) proceeded well to allow access to the expected 
products in good yields as well (4aa - 4ad, 70% - 75%). 
Significantly, several more complicated molecules (4ae - 
4ah) were obtained in moderate yields, and various 
functional groups such as alkenyl (4ai), methylsulfonyl 
(4aj), aldehyde (4ak), ketone (4al) and nitrile (4am) were 
all tolerant in this reaction. Overall, this protocol provides 
a convenient way to synthesize various unsymmetrical aryl 
sulfides. 

Having obtained many symmetrical and unsymmetrical 
chalcogenides by dechalcogenization, we wondered if 
there was any preference between desulfuration and 
deselenization, thus dechalcogenization of a series of 
selanylsulfanes were examined (Scheme 3b). To our 
surprise, when we exploited (4-methoxyphenyl) 
(phenylselanyl)sulfane 5a as the starting material, the 
desulfurization product 6a was obtained in 63% yield. 
However, the deselenization product was too little to 
obtain but only permitted to be observed in GC-MS. 
Subsequently, several selanylsulfanes were tested and all 
examples provided desulfuration products 6b - 6f in 
moderate to good yields (60 - 78%). This transformation 
affords a feasible alternative to remove sulfur, where both 
sulfur and selenium existed in one compound. 

The robustness of this method was shown by the late-
stage modification of biological molecule and synthesis of 
pharmaceutical (Scheme 4). Estrone as an estrogen 
secreted by human and animals, was modified by 
desulfuration of 7 under our optimal conditions and 
rendered aryl sulfide 8 in 55% yield. Subsequently, 
vortioxetine as a new medicine for treating depression was 
also synthesized. Starting from disulfide 9, the key 
precursor 10 was synthesized using our protocol, which 
then could be trans-formed into vortioxetine via 
palladium-catalyzed Buchwald-Hartwig cross coupling12 
and deprotection of amine13 in 63% yield for two steps.

Encouraged by the above outcomes, our method was 
further extended for synthesis of more challenging bowl- 
shaped organic materials with great ring tension (Scheme 
5).3c Deselenization of 11 was achieved with 12 obtained 
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Scheme 4. Modification of Estrone and Synthesis of 
Vortioxetine. a. Pd2(dba)3 (2.5 mol %), BINAP (10 mol %), t-
BuONa (1.4 equiv), toluene, 100 oC, tert-butyl piperazine-1-
carboxylate (1.2 equiv). b. TFA, DCM, R.T., 63% over two 
steps.

in 95% yield. Then desulfurization of 13 was explored and 
afforded 15 in 40% yield, along with 20% of 14, which 
could be further transformed into 15 by desulfurization. In 
lieu of a large amount of copper powder and high 
temperature needed in previous reports, catalytic amount 
of CuI and a lower reaction temperature were used in our 
protocol, this milder condition provides a new way for 
synthesis of these chalcogenides-containing organic 
materials.
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Scheme 5. Synthesis of Triselenasumanene 12 and 
Trithiasumanene 15. a. CuI (20 mol %), 1,10-
phenanthroline (40 mol %), K2CO3 (3.0 equiv), DMSO : H2O = 
20 : 1, air, 160 oC. b. CuI (40 mol %), 1,10-phenanthroline (80 
mol %), K2CO3 (6.0 equiv), DMSO : H2O = 20 : 1, air, 160 oC. 

To dig in on the mechanism details, two control 
experiments were designed and conducted. When TEMPO 
was added to the reaction system, the 2,2,6,6-tetramethyl-
1-((p-tolylthio)oxy)piperidine 1b′ was obtained (Scheme 
6a) and the desired product 2b was not observed at all, 
depicting this protocol might involve a radical process. 
Subsequently, S-p-tolyl benzenesulfonothioate (16) was 
prepared and employed in this reaction, to our delight, the 
resulting product 17 was obtained in 70% yield, along 
with 2b in 8% yield, which demonstrated that compound 
16 may be the intermediate of this reaction (Scheme 6b). 
The plausible mechanism is shown in Supporting 
Information (Scheme S1) and further detailed studies are 
still required to verify.

S

S
S

2b 8%
O

O
Standard Conditions

16

S

17 70%

S N
O

S
S

TEMPO

(a)

(b)
1b 1b' 70%

S

2b 0%

Standard Conditions

Scheme 6. Control Experiments

In conclusion, we revealed an unprecedented 
dechalcogenization of aryl dichalcogenides via copper 
catalysis for the synthesis of aryl chalcogenides in 
moderate to excellent yields, using simple and accessible 
aryl dichalcogenides as starting materials rather than 
odorous thiophenols. This approach featured the practical 
conditions, broad substrates scope and excellent functional 
group tolerance, even compatible with several sensitive 
groups such as aldehyde, ketone, ester, amide, cyanide, 
alkene, nitro and methylsulfonyl. Moreover, the robustness 
of this strategy was confirmed by successful modification 
of estrone and synthesis of vortioxetine. There are two 
innovations of this work which are over the previously 
reported synthetic methods of diaryl sulfides using metal-
catalyzed C-S coupling reactions: 1) one is this protocol 
could be served as an important and new supplementary 
method for synthesis of diaryl sulfides, especially for the 
synthesis of challenging bowl-shaped organic materials 
with great ring tension and for the synthesis of some 
halogen contained diaryl sulfides which could not be 
synthesized by using metal-catalyzed coupling reactions of 
aryl halogen with sulfur sources; 2) the other one is this 
transformation affords a feasible alternative to remove 
sulfur, where both sulfur and selenium atoms existed in 
one compound. The powerful strategy holds a promise to 
apply in biological sulfur-containing lead compound 
discovery, sulfur-containing medicine and functional 
organic materials synthesis. Related works are under way 
in our laboratory. 
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