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The introduction of a five-membered ring -disubstituted -amino acid into L-Leu-based 
heptapeptides preferentially induced right-handed (P) helical structures.  Using 5~20 mol % of a 
single helical foldamers-catalyst, enantioselective 1,4-addition reactions of dialkyl malonates to 
cycloalk-2-enones (5~7 rings) proceeded to give chiral 3-substituted cycloalkanones with 
94~99% ee in moderate chemical yields, regardless of the ring size of substrates.

2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Foldamers are “oligomers with specific compact three-
dimensional structures”.1  Recently, foldamer- and peptide-
catalyzed asymmetric reactions have been increasingly reported 
because foldamers are easily tailor-made for specific reactions, 
non-toxic, and inert toward oxygen and moisture.  For example, 
helical urea oligomer-catalyzed 1,4-addition reactions,2 N-
terminal prolylproline-peptide-catalyzed C-C bond forming 
reactions,3 turn-structure peptide-catalyzed asymmetric 
reactions,4 -peptide-catalyzed retro-aldol reactions,5 and resin-
bound helical peptide-catalyzed reactions6 have been reported.  

Previously, Toniolo group and then we reported that peptides 
with -disubstituted -amino acids (dAAs) preferentially 
formed helical secondary structures.7  Their helical-screw 
directions and the - or 310-helix of peptides were able to be 
controlled by the selections of dAAs.  Furthermore, we 
demonstrated that helical L-Leu-based peptide-foldamers having 
dAAs can be applied to chiral catalyses for enantioselective 
epoxidation8 and 1,4-addition reactions.9  The helical 
octapeptide-foldamer H-(L-Trp)2-(L-Leu-L-Leu-Ac5c)2-OMe 
(P1) (Ac5c: 1-aminocyclopentane-1-carboxylic acid) catalyzed 
enantioselective 1,4-addition reactions of nitromethane (or 
dibenzyl malonate) to -unsaturated ketones to give optically 
active 1,4-adducts with up to >99% ee (Scheme 1, eq. 1).  Some 
chiral organocatalysts with an amino functional group catalyzed 
enantioselective 1,4-addition reactions of dialkyl malonates to 
cycloalk-2-enones, however; such a small organocatalyst was 
unable to be applied to different ring sizes of cycloalk-2-
enones.10  In particular, the enantiomeric excess of 3-substituted 
cyclopentanone by small organocatalysts was often 
unsatisfactory.  On the other hand, helical octapeptide-foldamer 
P1-catalyzed 1,4-addition reaction of dibenzyl malonate to cyclic 
-unsaturated ketones gave optically active 3-substituted 
cycloalkanones (cyclopentanone: 89% ee; cyclohexanone:  93% 
ee; cycloheptanone: 98% ee) (eq. 2).  Furthermore, the 
octapeptide H-(L-Leu)4-Ac5c-(L-Leu)2-Ac5c-OMe (P2) without 
N-terminal L-Trp residues catalyzed the enantioselective 1,4-
addition reaction of dibenzyl malonate to cyclohex-2-enone, 
giving 98% ee of the 1,4-adduct (eq. 3).9  These results were 
better than those by small organocatalysts,10 but the reaction 
required high catalyst loading (20 mol %) and catalysts needed 
two dAAs.  Thus, there was room to improve the simplicity of 
the foldamer-catalyst, the enantiomeric excess, and conversions 
of 1,4-adducts.  Here, we optimized the structure of peptide-
foldamers and reaction conditions, enabling highly 
enantioselective 1,4-addition reactions of dialkyl malonates to 
varying cycloalk-2-enones.  

Scheme 1 

2. Results and Discussion 

First, we examined the 1,4-addition reaction of dibenzyl 
malonate 4a to cyclohex-2-enone 1 using 20 mol % L-Leu-based 
peptides (P3-P9) with an Ac5c in the presence of benzoic acid in 
THF (Table 1).  Although it has been reported that peptide-
catalysts having two Ac5c with the sequence -(L-Leu-L-Leu-
Ac5c)2- formed helical structure, the peptides P3-P9 have only 
one helicogenic -disubstituted -amino acid Ac5c.  The 
position of an Ac5c in L-Leu-based heptapeptides only slightly 
influenced the enantiomeric excess of 1,4-adduct 5a, except in 
the case of N-terminal Ac5c.  The N-terminal Ac5c (P3) was 
detrimental to the 1,4-addition reaction because the amino group 
at the quaternary carbon may be sterically hindered.  Among the 
heptapeptides (P3-P8) with an Ac5c examined, the peptide P5 
with an Ac5c at the third position from the N-terminus exhibited 
the greatest enantiomeric excess.  Shortened tetrapeptide P9 
reduced the enantiomeric excess of the 1,4-adduct to 81% ee, 
whereas L-Leu heptapeptide P10 without an Ac5c gave 20% ee.  
These low enantiomeric excesses may be due to neither a peptide 
P9 nor P10 being able to form stable helical structures (vide 
infra).  The tetrapeptide P9 is too short to form a helical structure 
and L-Leu-homopeptide P10 is too flexible to form a stable 
helical secondary conformation.11  Replacement of the two N-
terminal L-Leu with L-Ala (P11) slightly reduced the 
enantioselectivity (81% ee).  The amount of peptide P5 loading 
was reduced to 5 mol % without decreasing the enantiomeric 
excess (94% ee); however the use of 1 mol % catalyst P5 reduced 
the enantiomeric excess to 75% ee.  In the reaction of 1, benzoic 
acid was not necessary, and without benzoic acid, the 1,4-
addition reaction using P5 proceeded well to give the 1,4-adduct 
5a with 97% ee in a good conversion.  

The effects of solvents on the 1,4-addition reaction of 
cyclohex-2-enone 1 using 10 mol % of P5 are shown in Table 2.  
The reaction slowly proceeded at a concentration of 0.1 M, and 
conversions were generally moderate.  The use of MeOH was 
detrimental to the enantiomeric excess, but other solvents {THF, 
EtOAc, 1,4-dioxane, CHCl3, MeCN, and cyclohexane (cHex)} 
were suitable for the enantioselective reaction.  cHex improved 
the conversion, and the use of a mixture of THF and cHex (1 : 9) 
at the concentration of 0.4 M greatly improved both the 
conversion (>99%) and the enantiomeric excess (97% ee).  
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a10 mol % catalyst and PhCO2H (0.50 equiv) were used (48 h).
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10 mol % P5

1
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Table 1.  Peptide-foldamer-catalyzed enantioselective 1,4-addition reaction of dibenzyl malonate to cyclohex-2-enone.  

Table 2.  Effects of solvents. 

We examined different ring sizes of cycloalk-2-enones 1~3 as 
1,4-addition acceptors and dialkyl malonates 4a~4d as donors 
using peptide P5, as shown in Table 3.  Cyclohex-2-enone 1 

worked as an excellent 1,4-addition acceptor.  Using 5 mol % 
peptide P5, 1,4-addition reactions with varying dialkyl malonates 
proceeded to give 1,4-adducts with excellent enantiomeric 
excesses in good isolated yields (entries 1-3).  In the case of 
diisopropyl malonate 4d, 5 mol % peptide P5 gave a low 
chemical yield, and 10 mol % P5 was needed for a good 
chemical yield (entry 4).  This result may have been due to the 
bulkiness of the diisopropyl group because di-tert-butyl malonate 
did not react, although the electric properties of 4d may also be 
concerned.  Although the enantioselective 1,4-addition reaction 
of cyclopent-2-enone 2 using small chiral organocatalysts often 
gave a low enantiomeric excess of 1,4-adducts,10 the reactions 
using 10 mol % peptide P5 with different dialkyl malonates 
produced high enantiomeric excesses of 3-substituted 
cyclopentanones 6 in moderate chemical yields (entries 5-8).  
The 1,4-addition reaction of cyclohept-2-enone 3 using 10 mol % 
peptide P5 with dibenzyl malonate also gave a 1,4-addition 
product with a high enantiomeric excess, but the chemical yield 
was low and the starting material was recovered.  The isolated 
chemical yield was improved to 61% using 20 mol % peptide P5 
in THF.  The 1,4-addition reactions of 3 with different dialkyl 
malonates using 20 mol % peptide P5 gave excellent 
enantiomeric excesses of 1,4-adducts, but the reaction was very 
slow (5 days) and the isolated yields were unsatisfactory.  

Table 3.  Scope of substrates for enantioselective reactions.  

entry solvent time 
(h)

conv 
(%) % ee

1 THF 89 52 97
2 MeOH 89 57 63
3 EtOAc 89 52 95
4 1,4-dioxane 89 57 94
5 CHCl3 89 26 93
6 MeCN 89 30 90
7 cHex 89 >99 92
8 THF/cHex (3 : 1) 72 85 96
9 THF/cHex (1 : 1) 72 92 98
10 THF/cHex (1 : 3) 72 98 98
11 THF/cHex (1 : 9, 0.4 M) 23 >99 97



Tetrahedron Letters4

5~20 mol % P5CH2(CO2R)2 4
(3 equiv)+

40 °C, 72~120 h
(0.4 M)

( )n

O

( )n

O

1-3
n = 0~2

CO2R

CO2R
5-7

+ THF/cHex (1 : 9)
40 °C, 144 h

(2)

O
O

CO2Bn

CO2Bn
9a

81% ee, 32% yield

20 mol % P5

8

4a
(3 equiv)

+ THF/cHex (1 : 9)
40 °C, 96 h

(1)

O

CO2Bn

CO2Bn
5e

99% ee, 33% yield

10 mol % P5

1
MeCH(CO2Bn)2 4e

(3 equiv)
Me

Me

Me

+

THF
rt, 22 h

(3)

O
O

CO2Bn

CO2Bn

trans-11a (93% ee) : cis-11a (98% ee) = 2.2 : 1
48% conv

10 mol % P5

10

4a
(3 equiv)

Me
Me

O

CO2Bn

CO2BnMe

+
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(n =) R = mol % solvent

isolated 
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(%)

% 
ee

1 1: (1) Bn 5
THF/cHex 

(1 : 9)
5a: 

86
97

2 1: (1) Me 5
THF/cHex 

(1 : 9)
5b: 
79

98

3 1: (1) Et 5
THF/cHex 

(1 : 9)
5c: 
74

99

4 1: (1) iPr 10
THF/cHex 

(1 : 9)
5d: 
78

99

5 a 2: (0) Bn 10
THF/cHex 

(1 : 3)
6a: 
78

97

6 a 2: (0) Me 10
THF/cHex 

(1 : 3)
6b: 
40

94

7 a 2: (0) Et 10
THF/cHex 

(1 : 3)
6c: 
50

96

8 a 2: (0) iPr 10
THF/cHex 

(1 : 3)
6d: 
41

98

9 3: (2) Bn 10
THF/cHex 

(1 : 9)
7a: 
24

99

10 3: (2) Bn 10 THF 7a: 

37
97

11 3: (2) Bn 20 THF 7a: 

61
98

12 3: (2) Me 20 THF 7b: 

74
99

13 3: (2) Et 20 THF 7c: 

51
99

14 3: (2) iPr 20 THF 7d: 

26
99

a The reaction was performed at 30ºC. 

We examined 1,4-addition reactions for the construction of the 
quaternary center (Scheme 2).  The 1,4-addition reaction of 1 
with dibenzyl 2-methylmalonate 4e using 10 mol % P5 gave a 
highly enantiomeric excess 1,4-adduct (99% ee) with a 
quaternary carbon at a yield of 33%.  On the other hand, the 
enantioselective 1,4-addition reaction of 3-methylcyclohex-2-
enone 8 with dibenzyl malonate 4a using 20 mol % P5 slowly 
proceeded to give a 1,4-adduct (moderate 81% ee) with a 
quaternary stereogenic center at a yield of 32%.  The reaction of 
racemic 4-methylcyclohex-2-enone 10 with 4a using 10 mol % 
P5 proceeded to give 3,4-trans-11a (93% ee) and 3,4-cis-11a 
(98% ee) in the ratio of 2.2 to 1, accompanied by the recovery of 
10 (48% ee) in a conversion of 48%.  The 1,4-addition reaction 
enantioselectively proceeded, but the kinetic resolution of 
racemate 10 was moderate, and a mixture of the diastereomers 
trans-11a and cis-11a was obtained.  

Scheme 2

The preferred secondary structures of catalyst P5 in solution 
and in the crystalline state were next examined.  In the 1H NMR 
spectra of P5 in THF-d8, NOE correlations between the N(i)-H 
and N(i+1)-H (i = 3~6) protons were observed.  These NOE 
correlations suggested the formation of a helical conformation by 
these residues (3~7), although discrimination of a 310- or -helix 
was not possible (Figure S1).12  The FT-IR absorption spectra of 
Boc-protected P5 and P5 demonstrated weak absorption at 3430 
cm-1 and strong absorption at 3330 cm-1 in Boc-protected P5, and 
strong absorption at 3330 cm-1 in P5, suggesting a helical 
conformation (Figure S2).13  Although the CD spectra of P6, P7, 
and P8 in 2,2,2-trifluoroethanol solution (50 M) exhibited 
negative maxima at around 205 nm and 222 nm, characteristic for 
right-handed helical structures,14 the CD spectrum of P5 had a 
negative maximum at 200 nm and very weak negative maximum 
at around 230 nm, suggesting a helical structure together with 
other conformations.  The CD spectra of P9 and P10 did not 
exhibit characteristic maxima for helical structure (Figure S3).  

Recrystallization of catalyst P5 from MeCN/H2O gave 
crystals suitable for X-ray crystallographic analysis (Table S1).  
The structure was solved in a triclinic P1 space group to visualize 
two crystallographically independent molecules, A and B, in the 
asymmetric unit.15  The molecules A and B were right-handed (P) 
helical structures, and their peptide backbones were generally 
similar (Figure 1).  The averaged  and  torsion angles of 
residues 2-7 were -78.7° and -31.6° in molecule A, and -79.7° 
and -39.9° in molecule B, respectively.  These values slightly 
differed from those of an ideal right-handed 310-helix (-60°; -30°) 
or -helix (-57°; -47°) (Table S2).16  The intramolecular 
hydrogen bonds of N(i+3)-H···O=C(i) (i = 1~3) type (310-helix), 
and those of N(i+4)-H···O=C(i) (i = 1~3) type (-helix) were 
observed in both molecules A and B.  Thus, N(5)-H was bound 
by bifurcated hydrogen bonds to O(1)=C(1) and O(2)=C(2), and 
N(6)-H was bound by bifurcated hydrogen bonds to O(2)=C(2) 
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and O(3)=C(3), although the distance of N(6)···O(3) was long, 
and it was a weak hydrogen bond in both molecules A and B 
(Table S3).     

Figure 1.  Superimposed structures of molecules A and B 
determined by the X-ray crystallographic analysis of P5.  

3. Conclusion  

In summary, we demonstrated that an L-Leu-based 
heptapeptide having only one cyclic -disubstituted -amino 
acid Ac5c preferentially formed a right-handed (P) helical 
structure.  The peptide-foldamer P5 was able to catalyze the 
enantioselective 1,4-addition reaction of varying dialkyl 
malonates to cycloalk-2-enones with excellent enantiomeric 
excesses, regardless of the ring sizes of substrates.  
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L-Leu-based helical structure was constructed using 
only one cyclic amino acid 

Helical peptide catalyzed asymmetric 1,4-addition 
reactions to varying cyclic enones 

High enantiomeric excesses of 3-substituted 
cycloalkanones (5~7 rings) were obtained  

Reaction proceeded under mild reaction conditions 
(40ºC) and no additive was needed 


