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ABSTRACT: Lewis basic salts promote benzyltrimethylsilane coupling with (hetero)aryl nitriles, sulfones, and chlorides as a new
route to 1,1-diarylalkanes. This method combines the substrate modularity and selectivity characteristic of cross-coupling with the
practicality of a base-promoted protocol. In addition, a Lewis base strategy enables a complementary scope to existing methods,
employs stable and easily prepared organosilanes, and achieves selective arylation in the presence of acidic functional groups. The
utility of this method is demonstrated by the synthesis of pharmaceutical analogues and its use in multicomponent reactions.

1,1-Diarylalkanes are valuable compounds often prepared by
coupling functionalized benzylic reagents with aromatic
electrophiles.1 In practice, the benzylic coupling partner and
mechanism for achieving C−C bond formation define the
scope and suitability of a given method. A widely used strategy
is transition metal-catalyzed coupling of aryl (pseudo)halides
with benzyl magnesium, zinc, and boron compounds.2,3 This
approach enables robust and predictable reactivity often at the
expense of using reactive benzylic reagents prepared in situ.
Significant effort has therefore been focused on alternative
coupling partners and strategies to increase the efficiency and
scope of 1,1-diarylalkane synthesis.1,4−6

Benzylic deprotonation represents one such attractive
strategy that generates carbanion intermediates for metal-
catalyzed7 and catalyst-free8 reactions with aryl electrophiles
(Figure 1, left). Direct deprotonative arylation is perhaps ideal,
as no catalyst is needed and only inexpensive reagents are used.
However, this approach often leads to multiarylation side
products and typically requires acidic pronucleophiles such as
diarylmethanes.8 Deprotonative activation also limits the
coupling scope to relatively simple substrates in which the
most acidic proton is at the desired benzylic position.
We sought a new benzylic arylation method that blends the

modularity and selectivity of cross-coupling with the
practicality of a base-promoted protocol. This drew our
attention toward Lewis base activation of Lewis acidic benzyl
compounds, an underdeveloped approach for aryl Csp2−Csp3
coupling.9 In this regard, benzyltrimethylsilanes could be ideal
coupling partners as they are air stable, nonhygroscopic, and
easily accessed in great diversity.10 Furthermore, distinct
synthetic routes are available to complex benzyltrimethylsilanes
that cannot be used to access analogous organometallic
reagents.11 To date, the high stability of benzyltrimethylsilanes
has rendered them unreactive in metal-catalyzed cross-
coupling,12 and thus their use in arylation reactions is
limited.13 More specialized silanes are required to overcome
this challenge in conjunction with Pd- and metallaphotoredox-
catalyzed methodology (Figure 1, right).14

We herein report that Lewis basic salts promote the direct
coupling of benzyltrimethylsilanes to a range of aromatic
electrophiles (Figure 1, bottom). Benzylic arylation out-
competes potential anionic side reactions to enable mono-
selective coupling in the presence of acidic and electrophilic
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Figure 1. Background and motivation for Lewis base-promoted aryl
coupling reactions of organotrimethylsilanes.
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functional groups. This strategy can be extended to other
organosilanes and reaction sequences, including the tandem
arylation/isomerization of allylsilanes as a new route to alkenyl
arenes. Thus, Lewis base-promoted arylation provides a
practical coupling protocol with a reaction scope that
complements established methods.
We recently reported the monoselective defluoroallylation of

trifluoromethylarenes enabled by fluoride activation of
allyltrimethylsilanes (Scheme 1a).15 This reaction is proposed
to operate through an anionic allyl intermediate that undergoes
single electron transfer (SET) to the trifluoromethylarene,
leading to C−F bond cleavage and allylation of the resulting
difluorobenzylic radical. This sequence has similarities to
photoinduced electron transfer (PET) allylation of 1,4-
dicyanoarenes using allyltrimethylsilane, namely SET prior to
C−C bond formation.16 Benzyltrimethylsilane has also been
examined in PET studies, although these reactions suffer from
low regioselectivity and side product formation while requiring
use of ultraviolet light (Scheme 1b).16a,17 On the basis of these
precedents, we hypothesized Lewis base activation of organo-
trimethylsilanes could promote their direct coupling with
aromatic electrophiles beyond trifluoromethylarenes.

To test this hypothesis, we examined the reaction of 4-
cyanopyridine (1) with benzyltrimethylsilane (2) and found
18-crown-6-ligated cesium fluoride promotes monoselective
coupling in 3 h at room temperature (rt) in DMSO (95% yield,
Scheme 1c). Less basic anions, including carbonate, bifluoride,
and phosphate salts, promote arylation in moderate yields.
Conditions in the boxes of Scheme 1c show the ability to
adjust reaction parameters depending on priority, ranging from
the use of fluoride-free salts without 18-crown-6 to short
reaction times or large reaction scale.

Table 1 contains a product scope for benzyltrimethylsilane
coupling with cyanoarenes using CsF and 18-crown-6 in
DMSO. Primary, secondary, and tertiary benzylsilanes react
with 2- and 4-cyanopyridines and electron-deficient cyano-
benzenes (Table 1a,b). The products feature redox-active and
electrophilic aryl substituents such as alkynes (6), styrenes (9),
nitriles (7, 10, 12, 16), sulfones (8), trifluoromethyl groups
(11), and activated halides (17, 18, 20, 22, and 25−27).

Scheme 1. Organosilane Reactions with Aryl Electrophiles
and Development of Base-Promoted Arylationa

aYields determined by 1H NMR spectroscopy; 18-crown-6 added as a
1 M solution in THF. 18 h time for salts other than CsF. bYields
improve to 57% and 84% at 100 °C without 18-crown-6 for Cs2CO3
and KF, respectively.

Table 1. Product Scope Using Cyanoarene Electrophilesa

aIsolated yields from reactions using 1.0 mmol of cyanoarene; 18-
crown-6 added as a 1 M solution in THF. b1.5 equiv of silane. c2.0
equiv of silane.
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Acidic and electrophilic functional groups, including alkyl
benzoates (17), phthalimides (18), alkenes (19), alkylpyr-
idines (19−21, 28), and esters (22−24) are also tolerated.
Table 1c shows products of α-heteroatom benzylsilanes (25−
27) and with paroxetine (28) and bepotastine (29) drug
substructures. Product 27, derived from an α,α-difluorobenzyl-
trimethylsilane prepared via trifluoromethylarene defluorosily-
lation, illustrates a benzylic coupling partner unique to this
method.11a,18 In sum, the scope features substitution patterns
and functionalities that are difficult to access or not tolerated in
alternative arylation strategies.
We next examined aryl electrophiles that do not generate

cyanide byproducts (Scheme 2a). 2-Chloro-1,3-azoles are
effective coupling partners (30−32), as are chlorides with
extended π-systems, such as 1,3-dichloroisoquinoline (33), 9-
chloroacridine (34), and the 2-chloroquinoline derivative of
the antitumor drug imiquimod (35). Although 4-halopyridines
do not react under these conditions, 4-sulfonylpyridines
provide good yields (Scheme 2b).19 To show the benefits of
this finding, 4-chloropyridine 37, for which the 4-cyano
congener is not commercially available, was converted to
sulfone 38 on a multigram scale without chromatography
(Scheme 2c).20 Benzylsilane coupling to 38 under the standard
conditions without crown ether yielded 5.9 g of diarylalkane
39. Thus, base-promoted benzylation is applicable to
heteroaryl halides either directly or after sulfonyl group
installation.

This method can facilitate access to 1,1-diarylalkane
compound libraries from abundantly available cyano- and
chloroarenes. We selected the antihistamine chlorpheniramine
to demonstrate this concept, for which the corresponding
benzylsilane precursor 40 was readily prepared on 75 mmol
scale (Figure 2).21 Coupling of 40 with eight arene
electrophiles generated diverse chlorpheniramine analogues,
including trifluoromethyl- (41), methyl- (42), halo- (43, 44)
and aryl-substituted (46) variants. A 2-chloro-1,3-benzothia-
zole (45), a 4-cyanoquinazoline (47), and 4-chloroquinoline
(48) also reacted to access greater structural variety.

We next performed studies on the reaction selectivity for
arylation over other anionic processes. When the aryl
electrophile is removed from the standard conditions, toluene
forms in 80% yield after 2 h (Scheme 3a).22 This suggests
benzylic protonation is a competing pathway with arylation;
however, it is interesting to note that benzylation of 4-
cyanopyridine occurs in solvents significantly more acidic than
toluene (Scheme 3b).23,24 Furthermore, separate reactions of
two benzylsilane isomers (50 and 52) led to regiospecific
arylation for the original position of the −SiMe3 group
(Scheme 3c). These results demonstrate arylation occurs
preferentially over potential proton transfer events.25 An
important implication is that deprotonation of acidic diary-
lalkane products is minimized, thus preventing multiarylation
side reactions. These findings also illustrate critical advantages
of a Lewis base-promoted arylation method, as a Brønsted base
approach would not generate benzylic carbanions in the
presence of more acidic protons, and would likely lead to
multiarylation and poor selectivities in substrates with multiple
benzylic positions.26

To explain the high arylation selectivity, we propose an
anionic benzylic intermediate25 undergoes rapid aromatic
substitution via a polar or SET-based mechanism (Figure
3).27 The SET mechanism is the base-promoted analogous
pathway to PET reactions of organosilanes with 1,4-
dicyanoarenes.17,28,29 A polar process is also plausible as
cyano- and sulfonylarenes can participate in typical addition−
elimination substitution reactions.30 Distinguishing between
these processes is known to be challenging for addition of
anionic reagents to similar electrophiles,31,32 and we have made
observations explainable by both pathways.33 The coupling
mode may also be substrate dependent, although arylation

Scheme 2. Expansion of Aryl Electrophile Scopea

aIsolated product yields. bYields determined by 1H NMR spectros-
copy of crude reaction mixtures. 18-Crown-6 added as a 1 M solution
in THF.

Figure 2. Synthesis of chlorpheniramine analogues. Yields shown are
of purified products. 18-Crown-6 added as a 1 M solution in THF.
aChloroarene substrate used.
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uniformly outcompetes other potential anionic side reac-
tions.34

From these studies, we realized organosilane arylation could
be incorporated into tandem base-promoted reaction sequen-
ces. First, we found allyltrimethylsilanes react to form allyl
arene intermediates that undergo stereoselective isomerization
to aryl alkenes 54, 55, and 56 (Scheme 4a).35,36 Next, we
targeted a three-component coupling process between organo-
silanes, aryl electrophiles, and Michael acceptors. We
hypothesized selective benzylic arylation would occur and
the remaining catalytic organosilane/fluoride combination
could initiate a Michael addition reaction (Scheme 4b).37

Thus, γ,γ-diaryl amides 57 and 58 can be prepared via this
strategy. Using methallyltrimethylsilane, tetrasubstituted alkene
59 forms through three selective base-promoted processes
(arylation, addition, and alkene isomerization).
In conclusion, Lewis basic salts provide a practical means of

engaging benzyl- and allyltrimethylsilanes in aryl coupling
reactions. This approach enables regio- and monoselective
access to 1,1-diarylalkane and aryl alkene products with
complementary scope to existing methods. The strategic
application of multiple base-promoted processes also facilitates
advanced coupling sequences, a prospect we continue to
explore.
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Figure 3. Potential pathways and rationale for selective arylation.
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