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Group 9 metal(II) complexes are metalloradicals which have
been widely studied in organometallic chemistry.1 A well-

known example of group 9 metal(II) complexes is the metallo-
porphyrin radical (MII(por), M = Co, Rh, Ir). MII(por) exhibits
unique chemical reactivity in the bond activation of small
molecules, such as olefins,2 carbon monoxide,2b H2,

3 C(sp3)-
H,3a,4 C(sp3)-Br,5 and C(sp3)-C(sp3)6 bonds. They have also
been utilized as catalysts in various chemical transformations,
including the polymerization,7 cyclopropanation,8 and aziridina-
tion of olefins,9 as well as C-H amination.10

However, the cleavage of aryl-halogen bonds (Ar-X) by group
9 metalloporphyrin radicals is still unprecedented. To our knowl-
edge, the only reported Ar-X cleavages mediated by group 9
metalloradicals are the reaction of 2-iodopyridine with
pentacyanocobaltate(II) ([CoII(CN)5]

3-) to give [CoIII(CN)5I]
3-

and [CoIII(CN)5(2-pyridyl)]
3- 11 and the reaction of Ar-X (X

= Cl, Br, I) with (L)Co0 (L = 2,6-bis[2,6-dimethylpheny-
liminoethyl]pyridine) to give (L)CoI-X and (L)CoI-Ar,12 via
halogen atom abstraction by Co radicals. While Ar-X cleavage
via oxidative addition of Co(I),13 Rh(I),14 and Ir(I)15 to MIII-
(Ar)(X) has been commonly reported, Ar-X cleavage with
group 9 metalloradicals remains underdeveloped.

As part of our continuing interest in bond cleavage chemistry
by high-valent iridium(III) porphyrins,4d,16 we sought to inves-
tigate the aryl-bromine bond (Ar-Br) cleavage by IrIII(ttp)-
(CO)Cl (1a; ttp = tetra-p-tolylporphyrinato dianion). We found
that ArBr reacted with Ir(ttp)(CO)Cl in the presence of base to
give ipso-substituted iridium(III) porphyrin aryls (IrIII(ttp)Ar).
The reaction is apparently intriguing, as a direct metathesis
process would give an energetically uphill BrCl coproduct.
Mechanistically, the formation of any Ir(V) porphyrin inter-
mediate is difficult in electronics and sterically demanding, with
three non-porphyrin ligands located in a cis position. In exploring
this bond activation, we discovered that base can reduce Ir(ttp)-
(CO)Cl to a metalloradical dimer intermediate, [IrII(ttp)]2 (step
i in Scheme 1), which then undergoes an unprecedented radical-

type ipso substitution with Ar-Br17 via an addition-elimination
reaction to give IrIII(ttp)Ar (step ii in Scheme 1). We now report
the results and mechanistic studies of the Ar-Br cleavage.
Results and Discussion. Ir(ttp)(CO)Cl (1a) initially reacted

very slowly with PhBr (1.1 equiv) in benzene solvent at 200 �C in 7
days to give Ir(ttp)Ph (2e) in only 9% yield. Upon the addition of
K2CO3 (20 equiv), the reaction was complete in 2 days to yield 2e
quantitatively (Table 1, eq 1, entry 5). 2e was formed from Ph-Br
cleavage rather than the C-H activation of benzene, since 1a reacted
with PhBr (1.1 equiv) and K2CO3 (20 equiv) in benzene-d6 at
200 �C in10days to give2equantitativelywithout any Ir(ttp)C6D5.

18

This base-promoted reaction is general for various ArBr species to
give high yields of Ir(ttp)Ar bearing different functional groups
(Table 1). 4,40-Dibromobiphenyl also reacted with 1a and K2CO3

sequentially to give Ir(ttp)(p-C6H4)2(p-Br) (2q) and then Ir(ttp)(p-
C6H4)2Ir(ttp) (3) (Scheme 2). The new convenient synthesis of
iridium(III) porphyrin aryls eliminates the use of Grignard19 or
organolithium20 reagents required in the traditional synthesis.
In order to understand the reactionmechanism, the reaction of

1a with PhBr (1.1 equiv) and the stronger base Cs2CO3 (20
equiv) in benzene-d6 at a lower temperature of 150 �C was
monitored by 1H NMR spectroscopy to observe any intermedi-
ates formed (eq 2; Table S1 in the Supporting Information).21

After 3 h, 2e in 30% yield was formed together with intermediates
IrIII(ttp)H (4) and [IrII(ttp)]2 (5) in 13% and 1% yields,
respectively (eq 2a). After 60 h, 1a, 4, and 5 were completely
consumed to yield 2e quantitatively (eq 2b). The base has
promoted the reduction of 1a to 4 and 5.

Scheme 1. Discovery of This Work
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ABSTRACT: K2CO3 was found to promote selective aryl carbon-bromine bond
(Ar-Br) cleavage by a high-valent iridium(III) porphyrin carbonyl chloride
(IrIII(ttp)(CO)Cl, ttp = 5,10,15,20-tetra-p-tolylporphyrinato dianion) in benzene
solvent at elevated temperature to give iridium(III) porphyrin aryls (IrIII(ttp)Ar) in
high yields. Ir(ttp)(CO)Cl is reduced in alkaline media to give an [Ir(ttp)]2 intermediate. [Ir(ttp)]2 then cleaves the Ar-Br bond
via a radical-type addition-elimination reaction (radical ipso -substitution) to yield Ir(ttp)Ar and a bromine radical.
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IrII for Ar-Br Cleavage. In the base-promoted Ar-Br cleavage,
Ir(ttp)H and [Ir(ttp)]2 were the observed intermediates (eq 2a).
Ir(ttp)H rapidly underwentdehydrogenative dimerization in benzene
to give [Ir(ttp)]2 both on heating and as promoted by K2CO3, as
shown by independent experiments (eqs 3a and 3b).4d,22 Ir(ttp)-

(6), although it is not observed, could also be produced in a low
concentration in benzene via the deprotonationof Ir(ttp)Hwith base,
as Ir(ttp)H is acidic enough.16b Thus, Ir(ttp)H, [Ir(ttp)]2, and
Ir(ttp)- can coexist in equilibria in benzene.16b Their relative
reactivities with ArBr (1.1 equiv) were thus compared independently
at 200 �C in benzene-d6 to establish the intermediate for Ar-Br
cleavage (Table S4 in the Supporting Information). In Ph-Br
cleavage, the relative reaction rates of [Ir(ttp)]2, Ir(ttp)H, and
Ir(ttp)- were estimated to be about 10 000:20:1, by comparing the
time required for complete consumptionof iridiumporphyrin species.
Such a reactivity trend was also observed in the reactions with both
electron-rich (p-MeO)C6H4Br and electron-poor (p-NO2)C6H4Br.
Additionally, Ir(ttp)-Kþ was nonproductive in the Ar-Br cleavage
of (p-MeO)C6H4Br but rather reacted to give Ir(ttp)CH3, probably
via nucleophilic substitution of Me-OC6H4(p-Br).

23 Thus, [Ir(ttp)]2
is the most probable intermediate for Ar-Br cleavage to give
Ir(ttp)Ar and Ir(ttp)Br24 (Table 2, entries 3, 6, and 9).

Mechanism of Ir(ttp)(CO)Cl Reduction. We propose two
possible mechanisms for base-promoted Ar-Br cleavage by
Ir(ttp)(CO)Cl (1a) to give Ir(ttp)Ar (Scheme 3).

Mechanism 1. OH-, which can be generated from the
thermal hydrolysis of K2CO3

25 with residual H2O
26 in benzene

at 200 �C (eqs ia and ib), undergoes nucleophilic attack to the CO
ligand of 1a to give Ir(ttp)CO2H and Cl- (eq ii). Ir(ttp)CO2H
then decarboxylates to give Ir(ttp)H and CO2 (eq iii),

27,28 in line
with the known transition-metal-mediated water-gas shift
reaction.27-29

Ir(ttp)H further undergoes dehydrogenative dimerization via an
equilibrium to give [Ir(ttp)]2 (eq iv). [Ir(ttp)]2 finally reacts with
ArBr to give Ir(ttp)Ar and Ir(ttp)Br (eq v).
Mechanism 2. 1a undergoes CO dissociation to give Ir(ttp)Cl

(eq vi), which further reacts with OH- to give the proposed
Ir(ttp)OH via ligand substitution (eq vii).30 Ir(ttp)OH then gives
[Ir(ttp)]2 and H2O2 via the reduction of the IrIII center by the
hydroxo ligand (eq viii),16c,31 since the one-electron reduction of
first-row transition-metal porphyrins by OH- in aprotic solvents
has been reported.32 The H2O2 formed rapidly disproportionates
into H2O and O2, catalyzed by OH- (eq ix).33 In a low
concentration or the absence of ArBr, [Ir(ttp)]2 can react compe-
titively with residual water in benzene to give Ir(ttp)OH and the
observed Ir(ttp)H (eq x).16c,34 In a productive process, [Ir(ttp)]2
reacts with ArBr to give Ir(ttp)Ar and Ir(ttp)Br (eq xi). Ir(ttp)Br,
once formed, can further react withCOdissociated from1a to form
Ir(ttp)(CO)Br (1b) (eq xii). Both Ir(ttp)Br and Ir(ttp)(CO)Br
continue to undergo base-promoted Ar-Br cleavage to give
Ir(ttp)Ar (eqs vi-viii and xi).
Mechanism 1 is unlikely to operate. Since OH- reduces 1a to

Ir(ttp)H via the consumption of CO to give CO2 (eqs ii and iii in
Scheme 3), subsequent reaction of [Ir(ttp)]2 with ArBr would
only give both Ir(ttp)Ar and Ir(ttp)Br with each of them in a
maximum yield of 50% (eq v in Scheme 3). However, no
Ir(ttp)Br (δ(pyrrole H)∼8.9 ppm)24 was observed in the crude
reaction mixtures of the base-promoted Ar-Br cleavage by 1a by
1H NMR spectroscopy, and the isolated yields of Ir(ttp)Ar are
consistently much higher than 50% (Table 1).
Instead, mechanism 2 operates. The Ir(ttp)(CO)Br (1b)35

intermediate was formed in the base-promoted Ar-Br cleavage
by 1a (Table 1), strongly supporting the CO dissociation path-
way (eq vi in Scheme 3). 1b was completely consumed to yield
Ir(ttp)Ar (Table 1), most likely because 1b is further reduced by
OH- to yield [Ir(ttp)]2 for further Ar-Br cleavage (eqs vi-viii
and xi in Scheme 3). Further studies are ongoing to gain the
understanding of the reduction of 1a and 1b by OH-.

Table 1. Substrate Scope of Ar-Br Cleavage

entrya FG time/h product (yield/%)b entrya FG time/h product (yield/%)b

1 p-OMe 9 2a (89) 9 p-Cl 24 2i (72)

2 p-tBu 15 2b (86) 10 p-CO2Me 36 2j (84)

3 p-Me 11 2c (73) 11 p-C(O)Me 19 2k (82)

4 p-SiMe3 15 2d (80) 12 p-CF3 24 2l (72)

5 p-H 48 2e (100) 13 p-NO2 6 2m (63)

6 p-NPhthc 27 2f (68) 14 m-OMe 17 2n (83)

7 p-F 20 2g (99) 15 m-Me 14 2o (85)

8 p-Br 36 2h (76) 16 m-NO2 16 2p (84)
aThe intermediate Ir(ttp)(CO)Br (1b) was observed in the course of the reaction and was completely consumed to yield Ir(ttp)Ar upon prolonged
heating. b Isolated yield. cNPhth = phthalimide.

Scheme 2. Synthesis of Ir(ttp)(p-C6H4)2Ir(ttp)
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Ar-Br Cleavage Mechanism. Ar-Br cleavage by [Ir(ttp)]2
likely goes through radical ipso substitution via the addition-
elimination reaction (ISAE) (Scheme 4) rather than a direct
bromine atom abstraction.36 We propose that [Ir(ttp)]2 initially
dissociates into an Ir(ttp) metalloradical (eq i).2b,3a Ir(ttp) then
attacks the ipso carbon of ArBr to give an Ir(ttp)-cyclohex-
adienyl radical intermediate (I), which subsequently dissociates
into Ir(ttp)Ar and a bromine atom (Br•) via radical ipso
substitution (eq ii).17 Br• further reacts with [Ir(ttp)]2 to form
Ir(ttp)Br and another Ir(ttp) for chain propagation (eq iii).
Thus, the Ar-Br cleavage operates in a radical-chain mechanism.
Consequently, some Br• can leak out from the chain reaction and
react with benzene solvent to give PhBr (eq iv).37

The ISAE of ArBr with [Ir(ttp)]2 (Scheme 4) can be sup-
ported by three lines of evidence.

(1) Higher ratio of Ir(ttp)Ar to Ir(ttp)Br. In the reactions of
[Ir(ttp)]2 with various (p-FG)C6H4Br (FG = H, OMe,
NO2), the ratios of Ir(ttp)Ar to Ir(ttp)Br are consistently
greater than 1 (Table S4 in the Supporting Information)
due to the Br• leakage (eq ii in Scheme 4).

(2) Detection of PhBr. [Ir(ttp)]2 reacted with (p-
tBu)C6H5Br

(1.1 equiv) in C6H6 at 200 �C to give Ir(ttp)C6H4(p-
tBu)

(47%), Ir(ttp)Br (∼39%), and PhBr (1%),38 as detected
by GC-MS analysis (eq 4). The detection of PhBr firmly
supports the ISAE of Ar-Br by Ir(ttp) to give Br• for
PhBr formation (eqs ii and iv in Scheme 4).

(3) Rate enhancement by para substituents (p-FGs) in ArBr.
Both the electron-rich and -poor para-substituted ArBr
promoted the rate of base-promoted Ar-Br cleavage by
1a, as shown by the V-shaped Hammett plots (Table S5
and Figure S5 in the Supporting Information). Such a
reactivity trend is attributed to the stabilization of the
Ir(ttp)-cyclohexadienyl radical intermediate via reso-
nance interactions with both the electron-donating

and -withdrawing p-FGs only, but not with the m-FGs
(Figure 1; Table S6 and Schemes S3-S7 in the Support-
ing Information).39 Indeed, such a reactivity pattern has
also been observed in radical ipso substitution of Ar-Br
with sulfur-centered radicals.17e

Conclusion. In summary, we have discovered base-promoted
selective Ar-Br cleavage by high-valent Ir(ttp)(CO)Cl. Me-
chanistic studies suggest that OH- likely promotes the reduction
of Ir(ttp)(CO)Cl to [Ir(ttp)]2, which then cleaves the Ar-Br
bond via radical ipso substitution to give Ir(ttp)Ar. Further
mechanistic studies are ongoing.
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