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Antibacterial compounds with novel modes of action are needed for management of bacterial infections. Here we describe a
high-content screen of 9,800 compounds identifying acylated sulfonamides as novel growth inhibitors of the sexually transmit-
ted pathogen Chlamydia trachomatis. The effect was bactericidal and distinct from that of sulfonamide antibiotics, as para-ami-
nobenzoic acid did not reduce efficacy. Chemical inhibitors play an important role in Chlamydia research as probes of potential
targets and as drug development starting points.

Chlamydia trachomatis causes sexually transmitted disease that
can lead to infertility (1) and increased susceptibility to other

sexually transmitted pathogens such as HIV (2). Chlamydophila
pneumoniae is a respiratory pathogen that can cause pneumonia
(1). These common infections are treated with broad-spectrum
antibiotics such as doxycycline and azithromycin which can select
for resistant strains (3). Specific treatments would affect the nor-
mal bacterial flora less and reduce the use of these important an-
tibiotics. High-content screening (HCS) uses cell-based assays,
automated microscopy, and image analysis to collect complex in-
formation (4) and is well suited to screen for compounds for use
against the obligate intracellular bacterium Chlamydia (5). Inhib-
itors of Chlamydia have been used to investigate the Chlamydia
life cycle (6–11) and have been suggested for prevention of trans-
mission (12–14).

HCS of 9,800 compounds gave 12 hits that inhibited C. tra-
chomatis growth without visual changes in morphology of HeLa
cell nuclei. The compound collection (Chembridge Corporation,
San Diego, CA) was selected based on chemical diversity and drug
similarities. In 96-well plates, 104 HeLa 229 cells (CCL-2.1;
ATCC) were infected with 3,000 CFU C. trachomatis serovar L2
(VR-902B; ATCC) in 30 �l Hanks balanced salt solution (HBSS)
(14). After 1 h, HBSS was replaced with 100 �l RPMI cell culture
medium with 50 �M test compounds or 1% dimethyl sulfoxide
(DMSO) and incubated for 18 h. DAPI (4=,6-diamidino-2-phenylin-
dole) was used for staining together with fluorescein isothiocyanate
(FITC) (Molecular Probes, Eugene, OR)-conjugated purified serum
IgG (Melon Gel IgG Spin Purification kit; Thermo Scientific) from
rabbit (Agrisera AB, Vännäs, Sweden) immunized with formalin-
fixed C. trachomatis L2 elementary bodies (15). Photomicrographs
were generated (20� objective), and the number and area of Chla-
mydia inclusions were determined (spot detection method) using
an ArrayScan VTi HCA Reader (Thermo Fisher Scientific, Pitts-
burgh, PA). Artifacts and cellular toxicity were judged visually. Six
hits were excluded due to the lack of a dose response or visible
toxicity to the host cells. Two potent hits, compounds 1 and 2,
were selected for further investigation (Table 1).

Statistical molecular design (16), cherry-picking, and chemical
synthesis (see the supplemental material) were used to select 28
and 44 analogs of compounds 1 and 2, respectively. MICs for C.
trachomatis were determined for all compounds (14). No potent

analogs of compound 2 were identified (data available upon re-
quest), while analogs of compound 1 had a range of MIC values
(Table 1). Basic structure-activity relationships for these acylated
sulfonamides demonstrated that the 5-methyl-3-isoxazolyl group
is preferred to the 3,4-dimethyl-5-isoxazolyl group (cf. com-
pounds 1 and 19, 3 and 21, and 17 and 18). Truncation as in the
case of compounds 7 and 10 or introduction of furane as in the
case of compounds 8, 9, 22, and 25 was not beneficial. Compound
18 with a benzothiophene-2-carboxamide group was the most
potent inhibitor (MIC, 6 �M). The antichlamydial effect was not
caused by general toxicity to the host cells. HeLa cell viability after
24 to 48 h at 50 �M was �70% for most compounds as deter-
mined using an XTT cell proliferation assay kit (ATCC) and un-
colored Dulbecco’s modified Eagle’s medium (DMEM) (Table 2).
A parahalogenated aryl ring in place of the isoxazole ring (com-
pounds 26 to 29) was associated with cytotoxicity.

The 50% inhibitory concentration (IC50) in C. trachomatis and
C. pneumoniae was determined for well-tolerated compounds
with MIC � 25 �M (Table 2). C. pneumoniae T45 (17) was grown
in HEp-2 cells (CCL-23; ATCC) for 70 h in the presence of 0.5
�g/ml cycloheximide (14). Inclusion counts were logarithmized
and normalized. Nonlinear regression was used, and the IC50s
were derived from fitted curves (18). Dose-dependent activity was
demonstrated for C. trachomatis (see Fig. S2 and S3 in the supple-
mental material) and less prominent with C. pneumoniae, indicat-
ing lower specificity in C. pneumoniae and differences in the mo-
lecular targets. Compounds listed in Table 2 were bacterial, as
formation of infectious progeny was completely inhibited. No in-
clusions were detected by immunostaining after passage of C. tra-
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TABLE 1 Structures and MICs against C. trachomatis for hit 1 and hit 2
and for the analogs of hit 1, compounds 3 to 30

Compound Structure
MIC
(�M)

1 25

2 50

3 50

4 12

5 50

6 �50

7 �50

8 �50

9 �50

10 �50

11 25

12 25

TABLE 1 (Continued)

Compound Structure
MIC
(�M)

13 �50

14 �50

15 50

16 25

17 50

18 6

19 12

20 12

21 25

22 �50

23 12

24 12

(Continued on following page)
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chomatis grown 44 h with 25 �M compound and harvested by
freeze-thawing in sterile water.

All compounds follow Lipinski’s rules of five (19) with minor
exceptions for compounds 22 and 25. Even though the aqueous sol-
ubility was low, good oral absorption was predicted in silico (20)
mainly due to favorable cellular permeability (see Table S2 in the
supplemental material). The predicted numbers of metabolites (0 to
5) are comparable to those of average drugs (21). Acylated sulfon-
amides share the structural core with the orally bioavailable sulfon-
amide antibiotics sulfafurazole and sulfamethoxazole. The acylated
sulfonamides are, however, more lipophilic and might concentrate
more readily in chlamydial inclusions.

Sulfonamide antibiotics inhibit folate synthesis by competing
with the substrate para-aminobenzoic acid (PABA) (22). Chla-
mydiae are capable of synthesizing folate, and levels of suscepti-
bility to sulfonamide antibiotics have been reported to differ
among species and strains (23–25). Compounds 1, 18, and 23 had
identical MICs in DMEM with or without 10 �M PABA (50, 12.5,
and 25 �M, respectively), while sulfamethoxazole inhibited C.
trachomatis growth only in PABA-free DMEM (25% inhibition at
100 �M). Our compounds did not inhibit growth of Escherichia
coli and Straphylococcus aureus (in-house strains), except com-
pound 14, which inhibited E. coli 80% at 100 �M. Overnight
growth curves were recorded in Mueller-Hinton broth with 100 to
1.56 �M test compounds or 1% DMSO (600 nm absorbance)
(Tecan Safire microplate reader; Tecan, Männerdorf, Switzer-
land), and sulfamethoxazole IC50s were 12 and 6 �M for E. coli
and S. aureus, respectively. These data suggest that acylated sul-
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fonamides do not affect folate synthesis. The different mecha-
nisms of action are likely due to the fact that acylated derivatives
lack the free amine of sulfonamide antibiotics that fits the active
site in dihydropteroate synthetase (22).

Acylated and benzylidene sulfonamides with structural simi-
larity to compound 10 in this study have recently been reported to
inhibit mycobacteria and staphylococci (26). However, 10 com-
pletely lacked antichlamydial and antistaphylococcal activities.
Except for compound 14, our compounds did not inhibit growth
of representative extracellular bacteria, and further investigation
is needed to determine if the antimicrobial spectrum is narrow.

The compounds presented here are promising starting points
for development of novel antichlamydial drugs. Specific treat-
ments for these common infections would reduce the risks of dis-
turbing the normal flora or spreading antibiotic resistance. The
mode of action is unknown but may be identified by selection for
resistant mutants and subsequent whole-genome sequencing (9,
27). Novel antichlamydial compounds may also be of importance
as probes to validate potential drug targets and may thereby reveal
new insights into Chlamydia biology.
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