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ABSTRACT

New and known dicoumarols may be efficiently synthesized employing p-toluenesulfonic acid (p-TSA) as a solid acid catalyst
from the reaction of 4-hydroxycoumarin with aryl glyoxal in water. This method offers direct access to structurally diverse
coumarin derivatives in moderate to good yields (up to 65%). A total of five new compounds were synthesized.
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1. Introduction

Among the analogues of vitamin K antagonists, dicoumarol,
which may be considered as bridge substituted dimers of
4-hydroxycoumarin, is a naturally occurring anticoagulant.'
This compound is used for the prevention and treatment of
thrombosis. Furthermore, dicoumarol derivatives exhibit bio-
activity as inhibitor of reductases.” The chemistry of coumarin
derivatives has recently gained much attention from chemists
owing to some interesting biological properties.>”

Dicoumarol was firstly discovered in moldy wet sweet-clover
hay subsequent to which several methods have been reported
for the development of its chemistry and synthesis of deriva-
tives. Traditionally, the most popular strategies towards the
synthesis of dicoumarols start from salicylaldehyde and formal-
dehyde® and involve the biosynthesis of dicoumarol using
micro-organisms such as Penicillium jenseni,/ or require the
Knoevenagel condensation of 4-hydroxycoumarins with
carbonyl compounds using several catalysts.*"

For many years, chemical reactions in water have attracted the
attention of chemists." From an environmental and economic
point of view, water as a solvent or media has many advantages
and usually results in excellent efficiency and selectivity."” Accord-
ingly, we describe an ecofriendly method for the synthesis of
some new and known dicoumarols containing an aryloyl group
in water as solvent.

2. Results and Discussion

Recently, we have been involved in studies involving the
synthesis of new coumarin derivatives.” In this regard, we
found that the condensation between 4-hydroxycoumarin
(1) and aryl glyoxals 2 in the presence of catalytic amounts of
p-toluenesulfonic acid (p-TSA) in water under reflux produces
new and known dicoumarols 3 (Scheme 1). p-TSA is well known
as catalyst because of its advantages, such as low corrosivity,
simple handling and it is inexpensive. It has been widely used as
an efficient catalyst in several organic reactions."

In order to establish the best conditions for the synthesis of 3
using p-TSA as catalyst, reaction between 4-hydroxycoumarin (1)
and phenyl glyoxal was selected as a model. Results indicated
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Synthesis of dicoumarols catalyzed by p-TSA.

that the reaction did not go to completion in the absence of
catalyst even after extended reaction times. Higher loadings of
catalyst did not afford a marked influence on the product yield
nor reaction rate. In another experiment, in order to illustrate the
effect of solvent or media on the reaction progress, several different
solvents were employed, the results of which are illustrated in
Table 1.

It may be concluded that protonic solvents such as EtOH,
MeOH, and H,0 can accelerate the condensation reaction.
Finally, it was found that this reaction is enhanced using p-TSA
(10 mol%) as catalyst under reflux in H,O in 70 min.

After determining the optimal reaction conditions, attention
was focused on the extension of the scope of the method. For
this, various aryl glyoxals 2 and 4-hydroxycoumarin (1) were
reacted. Results are given in Table 2 in which it is apparent
that aryl glyoxals, including those bearing electron-poor and
electron-rich substituents, were able to undergo this reaction.
Compared with a previously reported method which has used
AcOH asreaction media,’ the present method provides environ-
mentally safe conditions using water as solvent and p-TSA as
catalyst to obtain the desired products with better yields than
previous reported. Recently, organic synthesis on water has also
been reviewed by Fokin and co-workers.” Based on their study,
it would appear that this reaction type may be placed in the
category of ‘on-water’ synthetic reactions.

Based on the common mechanistic pathway of the Knoevenagel
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Table 1 Effect of catalyst amount and various solvents on the synthesis of 3a at reflux temperature.

54

Entry Catalyst amount/mol% Solvent Time/min Yield/% *
1 10 MeOH (50 mL) 50 78
2 10 EtOH (50 mL) 45 80
3 10 THF (50 mL) 50 75
4 10 CH,CI, (50 mL) 120 50
5 10 EtOH/H,O (1/1) (50 mL) 60 82
6 10 H,O (50 mL) 70 80
7 - H,O (50 mL) 180 30
8 5 H,O (50 mL) 180 75
9 20 H,O (50 mL) 50 77

* Values provided are the average of three experiments.

Table 2 Synthesis of dicoumarols using p-TSA (10 mol%) under reflux in
H,0

Entry  Ar Time (min)  Yield/% * [Lit.] Mp/°C [Lit.]
3a CH; 70 82 (74)° 197-199
(200-202)°
3b 4-F-CH, 65 78 273-235
3c 4-Br-C;H, 70 81 (79)° 240-242
(236-238)°
3d 4-NO,-CH, 60 80 (76)° 243-245
(240-242)°
3e 4-MeO-CH, 55 78 265-267
3f 3-MeO-CH, 75 70 205-207
3g 4-CI-CH, 70 75 250-252
b
3h O 60 84 255-257
#Isolated yields.

and Michael reaction,®" we propose a reasonable mechanism

involving the protonic acid-catalyzed reaction of aryl glyoxal 2
with 4-hydroxycoumarin (1), as depicted in Scheme 2. Firstly,

1
(0)
-H,O \/‘_
42=> Y |JQH —
Ar: H
40\
o;7H
(6] \‘/
(6]
1

Knoevenagel condensation between 4-hydroxycoumarin
(oxonium ions not depicted in mechanism) and the aryl glyoxal
generates the non-isolable «,-unsaturated carbonyl com-
pound 4. Attack of the next 4-hydroxycoumarin molecule
(1) through a Michael-type addition to 4 and subsequent, the
enolization of adduct 5, gives the final product 3.

3. Experimental

3.1. General

All chemicals were purchased from Merck and Aldrich. Aryl
gloxals were synthesized in accord with our previous method.”
The reactions were monitored by thin layer chromatography
(TLC; silica-gel 60 F,;,, n-hexane: ethyl acetate). IR spectra
were recorded on a FT-IR JASCO-680 and the 'H NMR and
PC NMR spectra were recorded on a Bruker Avance Ultra Shield
spectrometer respectively at 400, 300,100, and 75 MHz. The Vario
EL-III CHNS elemental analyzer from Isfahan Industrial Univer-
sity was used for elemental analysis. The structures and purity of
the products were deduced from their IR, elemental analysis,
and NMR spectral data.

3.2. Preparation of Dicoumarols 3
A mixture of 4-hydroxycoumarin 1 (20 mmol, 3.2 g), aryl
glyoxals 2 (10 mmol) and p-TSA (10 mol%) in H,O (50 mL) was

Scheme 2
Plausible mechanism for p-TSA-catalyzed condensation of 4-hydroxycoumarin with aryl glyoxal (H* transfers not depicted).
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refluxed for an appropriate time mentioned in Table 2. The
progress of the reaction was monitored by TLC (EtOAc/hexane,
1:1). After completion, the mixture was poured on ice and the
precipitate was filtered and purified by recrystallization from
EtOH/THF (2:1). In some cases, column chromatography is
needed (EtOAc/hexane, 1:1).

Benzoyl[bis(4-hydroxycoumarin-3-yl) Jmethane (3a): Recrystallized
from EtOH/THF (TLC n-hexane:ethyl acetate, 1:1, Rf = 0.12);
M.p. 197-199 °C (Lit.” 200-202 °C); IR (KBr) » = 3400-2900, 3073,
1698, 1659, 1618, 1566, 1271, 1100 cm™; 'H NMR (DMSO-d,,
400 MHz): 6 = 10.95 (s, 2H), 7.92 (dd, 2H, ], = 7.8, ], = 2.8 Hz),
7.63-7.58 (m, 2H), 7.43 (d, 2H, ] = 7.2 Hz), 7.39-7.31 (m, 7H), 6.31
(s, 1H).

4-Flourobenzoyl[bis(4-hydroxycoumarin-3-yl) Jmethane (3b): Recrys-
tallized from EtOH/THF (TLC n-hexane:ethyl acetate, 1:1, Rf =
0.15);M.p. 235-237 °C; IR (KBr) v = 3500-3300, 3066, 2887, 1695,
1650, 1619, 1600, 1567, 1271, 1225, 1107 cm™; 'H NMR (CDCL,
300 MHz): 6 = 11.15 (s, 2H), 7.89 (dd, 2H, ], = 8.2, ], = 1.6 Hz),
7.79-7.75 (m, 2H), 7.56-7.50 (m, 2H), 7.33-7.24 (m, 4H), 6.94 (t, 2H,
J = 8.6 Hz). ®C NMR (CDCl,, 75 MHz): 6= 192.9, 165.4, 152.4,
133.2, 132.0, 130.7, 130.6, 125.0, 124.5, 116.7, 116.3, 115.9, 115.6,
42.8. Anal. Calcd. for C,;H,;FO,: C, 68.12; H, 3.30. Found: C, 68.30;
H, 3.22.

4-Bromobenzoyl[bis(4-hydroxycoumarin-3-yl) Jmethane (3c): Recrys-
tallized from EtOH/THF (TLC n-hexane:ethyl acetate, 1:1, Rf =
0.11); M.p. 240-242 °C (Lit." 236-238 °C); IR (KBr) v = 3400-2900,
1711, 1651, 1614, 1564, 1497, 1267, 1099 cm™; "H NMR (DMSO-d,,
400MHz): 6 = 10.56 (s, 2H),7.89 (d,2H, ] = 7.6 Hz),7.59 (t,2H,] =
7.6 Hz), 7.40-7.29 (m, 6 H), 7.11 (d, 2H), 6.28 (s, 1H).

4-Nitrobenzoyl[bis(4-hydroxycoumarin-3-yl) Jmethane (3d): Recrys-
tallized from EtOH/THEF (TLC n-hexane:ethyl acetate, 1:1, Rf =
0.12); M.p. 243-245 °C (Lit.” 240-242 °C); IR (KBr) v = 3400-2900,
2883, 1715, 1650, 1614, 1565, 1518, 1341, 1266, 1102 cm™; 10.95 (s,
2H),7.92(dd, 2H, ], = 7.8 Hz, ], = 2.8 Hz), 7.63-7.58 (m, 2H), 7.43
(d, 2H, ] = 7.2 Hz), 7.39-7.31 (m, 7H), 6.31 (s, 1H).

4-Methoxybenzoyl[bis(4-hydroxycoumarin-3-yl) Imethane (3e): Pu-
rified by column chromatography (EtOAc/hexane, 1:1) (TLC
n-hexane:ethyl acetate, 1:1, Rf = 0.16); M.p. 265-267 °C; IR (KBr)
v = 3500 3300, 3076, 2978, 1684, 1650, 1620, 1601, 1571, 1263 yu™;
"H NMR (CDCl,, 300 MHz): 6 = 11.22 (s, 2H), 8.00 (dd, 2H, J, =
8.2, ], = 1.6 Hz), 7.77-7.72 (m, 2H), 7.55-7.49 (m, 2H), 7.32-7.24
(m, 4H), 6.77-6.72 (m, 2H), 6.00 (s, 1H), 3.71 (s, 3H); *C NMR
(CDCl,, 75 MHz): 6 = 193.1,165.2,163.5, 152.4, 133.0, 130.4, 128.3,
124.9, 124.5, 116.6, 116.4, 113.8, 55.4, 42.6. Anal. Calcd. for
C,,H,;O4: C, 68.94; H, 3.86. Found: C, 69.10; H, 3.69.

3-Methoxybenzoyl[bis(4-hydroxycoumarin-3-yl) [methane (3f): Pu-
rified by column chromatography (EtOAc/hexane, 1:1) (TLC-
n-hexane:ethyl acetate, 1:1, Rf = 0.15); M.p. 205-207 °C; IR (KBr)
v = 3500-3300, 1693, 1655, 1619, 1602, 1567, 1273, 1427 cm™;
'H NMR (CDCl,, 300 MHz): 6 = 11.16 (s, 1H), 8.00 (dd, 2H, ], =
8.2,], = 1.6 Hz), 7.55-7.49 (m, 2H), 7.34-7.24 (m, 6H), 7.12 (t, 1H,
J = 8.2Hz), 6.94-6.90 (m, 1H), 6.00 (s, 1H), 3.69 (s, 3H); *C NMR
(CDCl, 75 MHz): 6 = 194.2,165.2,159.7,152.4,136.9, 133.1,129.4,
125.0,124.5,120.2,120.1, 116.7, 116.4, 112.4, 42.9. Anal. Calcd. for
C,,H;3O; : C, 68.94; H, 3.86. Found: C, 69.06; H, 3.65.

4-Chlorobenzoyl[bis(4-hydroxycoumarin-3-yl) Imethane (3g): Puri-
fied by column chromatography (EtOAc/hexane, 1:1) (TLC n-
hexane:ethyl acetate, 1:1, Rf = 0.18); M.p. 250-252 °C; IR (KBr)
v = 3500-3300, 3080, 2884, 1713, 1665, 1650, 1614, 1564, 1266, 1090,
767 cm™; '"HNMR (DMSO-d,, 400 MHz): 6 = 11.10 (s, 2H),7.85 (d,

2H, ] = 6.0 Hz), 7.72 (d, 2H, ] = 5.2 Hz), 7.62-7.52 (m, 4H),
7.31-7.25 (m, 4H), 6.28 (s, 1H); *C NMR (DMSO-d,, 100 MHz):
0=196.1,165.9,163.3,152.2,135.9,131.6,131.2,129.3,125.9,123.8,
1234, 118.0, 115.8, 101.6, 42.9. Anal. Calcd. for C,;H,.ClO.: C,
65.76; H, 3.18. Found: C, 65.91; H, 3.03.

2-Naphthoyl[bis(4-hydroxycoumarin-3-yl) Jmethane (3h): Recrys-
tallized from EtOH/THF (TLC n-hexane:ethyl acetate, 1:1, Rf =
0.11); M.p. 255-257 °C; IR (KBr) v = 3550-3300, 1694, 1653, 1617,
1565, 1454, 1280 cm™; "H NMR (CDCl,, 300 MHz): 6 = 11.24 (s,
2H), 8.27 (s, 1H), 8.01 (dd, 2H, J, = 8.2, ], = 1.6 Hz), 7.83-7.72 (m,
4H), 7.54-7.43 (m, 4H), 7.33-7.23 (m, 4H), 6.19 (s, 1TH). *C NMR
(DMSO-d,, 75 MHz): 6 = 177.3, 166.6, 163.6, 152.3, 134.4, 134.3,
131.8, 131.5, 129.1, 127.9, 127.5, 126.7, 124.1, 123.9, 123.3, 118.5,
115.7, 101.6, 43.1. Anal. Calcd. for C,;H,;O,: C, 73.47; H, 3.70.
Found: C, 73.68; H, 3.75.

4. Conclusion

An improved route for the synthesis of dicoumarols contain-
ing an aryloyl group from simple substrates and p-TSA catalyst
has been achieved with a very high atom economy for the
preparation of pharmaceutically relevant heterocyclic systems.
Importantly, use of water as a cheap and clean media for reaction
should place this chemistry in the category of Green Chemistry.
A total of five new compounds were obtained.

Supplementary material
The 'H and "C spectra of all the novel compounds are given in
the online supplement.
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Figure 8 °C NMR spectrum of 3g
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Figure 9 'H NMR spectrum of 3h
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Figure 10 °C NMR spectrum of 3h
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