

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Bivalent ligand approach on *N*-{2-[(3-methoxyphenyl)methylamino]ethyl}acetamide: Synthesis, binding affinity and intrinsic activity for MT₁ and MT₂ melatonin receptors

Gilberto Spadoni^{a,*}, Annalida Bedini^a, Pierfrancesco Orlando^a, Simone Lucarini^a, Giorgio Tarzia^a, Marco Mor^b, Silvia Rivara^b, Valeria Lucini^c, Marilou Pannacci^c, Francesco Scaglione^c

^a Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', Piazza Rinascimento 6, 61029 Urbino, Italy

^b Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti 27A, Campus Universitario, 43124 Parma, Italy

^c Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy

ARTICLE INFO

Article history: Received 29 April 2011 Revised 21 June 2011 Accepted 22 June 2011 Available online 28 June 2011

Keywords: Melatonin Melatoninergic dimers MT₁ and MT₂ receptors Bivalent ligand

ABSTRACT

We report the synthesis, binding properties and intrinsic activity at MT_1 and MT_2 melatonin receptors of new dimeric melatonin receptor ligands in which two units of the monomeric agonist *N*-{2-[(3-methoxyphenyl)methylamino]ethyl}acetamide (1) are linked together through different anchor points. Dimerization of compound 1 through the methoxy substituent leads to a substantial improvement in selectivity for the MT_1 receptor, and to a partial agonist behavior. Compound **3a**, with a trimethylene linker, was the most selective for the MT_1 subtype (112-fold selectivity) and compound **3d**, characterized by a hexamethylene spacer, had the highest MT_1 binding affinity ($pK_{iMT1} = 8.47$) and 54-fold MT_1 -selectivity. Dimerization through the aniline nitrogen of 1 abolished MT_1 selectivity, leading to compounds with either a full agonist or an antagonist behavior depending on the nature of the linker.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine, MLT, Fig. 1) is a neurohormone primarily secreted by the pineal gland at night in all species.¹ The ability of MLT to synchronize the 'circadian biological clock', by its direct action on the suprachiasmatic nucleus has led to the investigation of MLT and its analogs as a remedy for treating disordered circadian rhythms that occur in jet lag, shift work, certain types of insomnia, and some neuropsychiatric diseases. Some MLT receptor agonists are currently under clinical evaluation or have been very recently approved. The MT₁/MT₂ melatonin receptor agonist ramelteon (Rozerem[®]) was approved and launched in 2005 in the U.S. for the treatment of primary insomnia,² and other compounds,³ such as Neu-P11,⁴ TIK-301⁵ or tasimelteon⁶ are undergoing evaluation in clinical trials for their hypnotic properties. Moreover, the naphthalenic MLT bioisostere agomelatine is a novel antidepressant with an innovative pharmacological profile (MT₁/MT₂ agonist and 5HT_{2c} antagonist) which was recently approved by the EU-EMA for the treatment of major depressive disorders and is available in several European countries.⁷⁻⁹ In mammals, two melatonin receptors, MT₁ and MT₂, have been identified. They belong to the G-protein-coupled receptor superfamily and exhibit subnanomolar affinity for MLT.¹⁰ Elucidation of the distinct functions of MT₁ and MT₂ receptors in many target tissues is still under investigation and requires a continual development of specific and selective affinity ligands. Whereas some selective MT₂ receptor ligands have been recently described,^{11,12} the limited availability of MT₁ subtype-selective ligands has hampered an exhaustive elucidation of the MT₁ receptor patho/physiological role. Although, a few monomeric ligands displaying moderate MT₁-selectivity were reported,¹³ the most applied approach for the design of MT₁ selective receptor ligands relies in the preparation of symmetric dimers, by coupling two moieties deriving from known MLT receptor ligands.

Accumulating evidence indicates that most GPCRs (classically considered to function as monomers) exist as functional dimers or higher oligomeric units.¹⁴ Oligomerization may occur in native tissues and may have important consequences on receptor function. As evidenced for several other GPCRs the formation of MT₁ and MT₂ homodimers and MT₁/MT₂ heterodimers has been shown in heterologous expression systems at physiological expression levels.^{15,16} Although MT₁/MT₂ heterodimers remain to be identified in native tissues, their formation has to be taken into account by virtue of the documented co-expression of MT₁ and MT₂ receptors in many melatonin-sensitive tissues, such as the hypothalamic suprachiasmatic nucleus, retina, arteries, and adipose tissue.^{17,18}

^{*} Corresponding author. Tel.: +39 0722 303337; fax: +39 0722 303313. *E-mail address:* gilberto.spadoni@uniurb.it (G. Spadoni).

^{0968-0896/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2011.06.063

Figure 1. Melatonin and dimeric melatonin receptor ligands.

Homodimerization and heterodimerization processes could generate receptors with novel characteristics, and pharmacological properties different from any of the monomers, providing new opportunities for rational drug design and discovery.¹⁹ Different strategies have been developed to specifically target GPCR dimers. Bivalent ligands, which are composed of two functional pharmacophores linked by a spacer, are among the most promising approaches.

It was postulated that these ligands would have distinct properties, such as increased selectivity, potency and different efficacy, when compared to the activity of each monomer; therefore, there seems to be a great potential in developing new leads compounds by linking two single chemical entities to generate bivalent ligands. To date, only few reports on dimeric molecules designed to target MLT-receptors appeared in the literature. Dimers of melatonin²⁰ and agomelatine²¹ were prepared and tested for their activity on MT₁ and MT₂ melatonin receptors, showing interesting pharmacological profiles. Melatonin dimers linked through position 2 of the indole ring showed greater MT₁ and MT₂ binding affinity than dimers linked through the acylamino side chain. The most potent derivatives displayed nanomolar affinity for MT₁ and MT₂ receptors, while the intrinsic activity strongly varied with the linker length. Agomelatine dimers are characterized by a polymethylene chain connecting the oxygen atoms in position 7 on the naphthalenic nucleus. These derivatives showed a moderate to good MT₁selectivity, with an antagonist behavior reported for the compound with a trimethylene linker. Other azaindoles²² or naphthalene²³ dimeric melatonin receptor ligands were described, but they showed lower affinity and weaker selectivity when compared to the agomelatine dimers (Fig. 1). Following the same 'bivalent ligands' approach, a series of novel asymmetric heterodimers was recently reported to be selective partial agonists ($K_i MT_2/MT_1 = 70-90$) with subnanomolar affinity (Fig. 1).²⁴

Recently, we reported a new class of high affinity melatonin receptor ligands, structurally characterized by a N-(substituted-anilinoethyl)amide scaffold (**A**, Fig. 2).²⁵ We decided to apply the

'bivalent ligand' approach to this new scaffold by synthesizing the new dimeric melatonin receptor ligands highlighted in Figure 2. We linked two units of the monomeric agonist (Fig. 2, $R^1 = OMe$, $R^2 = Me$)²⁵ through different anchor points, in order to evaluate the effects of the length and position of the spacers on their ability to bind to and activate MT₁ and MT₂ receptors.

2. Chemistry

The synthesis of the new compounds is described in Schemes 1 and 2. Key intermediate in the synthesis of the target compounds **3a–f** and **4** is the phenol derivative **2**, obtained from the previously described methoxy analog **1**²⁵ by cleavage of the methyl ether using boron tribromide. Homodimers **3a–f** were prepared by reaction of the phenol derivative **2** with 0.5 equiv of the appropriate dibromoalkane in the presence of K₂CO₃ in acetonitrile. Small amounts (ca. 10–12%) of a by-product (*N*-[2-(3-allyoxyphenyl)methylamino)ethyl]acetamide) resulting from HBr elimination of the monoalkylated starting material **2**, was also observed during the homodimerization. The monovalent ligand **4** was obtained by O-alkylation of the phenol **2** with 6-bromo-1-phenoxyhexane²⁶ in the presence of sodium hydride as a base.

The dimeric ligands linked through the aniline nitrogen (**5a–b** and **6**) were synthesized by N-alkylation, or N-acylation, of *N*-[2-(3-methoxyphenylamino)ethyl]acetamide²⁵ with 0.5 equiv of the opportune dibromoalkane or adipoyl chloride, respectively (Scheme 2).

3. Biological results and discussion

The chemical structures, binding affinities at MT_1 and MT_2 receptors and the intrinsic activity of the new compounds **3a–f**, **4**, **5a–b** and **6** are reported in the Table 1. Length, position and chemical properties of the spacer connecting each pharmacophore significantly affect affinity and activity at melatonin receptors. We decided to connect the two anilinoethylamides by inserting the

Figure 2. Approaches to new dimeric melatonin receptor ligands.

Scheme 1. Reagents and conditions: (a) BBr₃, CH₂Cl₂, rt; (b) Br(CH₂)_nBr, K₂CO₃, CH₃CN, reflux; (c) NaH, PhO(CH₂)₆Br, DMF.

Scheme 2. Reagents and conditions: (a) $Br(CH_2)_nBr$, K_2CO_3 , DMF, 100 °C; (b) adipoyl chloride, TEA, THF, rt.

linker between the methoxy groups (compounds **3a–f**) or between the aniline nitrogens (**5a–b** and **6**) because large substituents in these positions have been shown to be tolerated.²² Several spacers have been generally used for dimer formation, including polymethylene, polyalkyloxy ether, polyesters, etc. We have initially selected a polymethylene spacer because of the ease of coupling of the pharmacophores to the spacer and the possibility to modulate the linker length by small increases. With the aim to find out the optimal length, we evaluated compounds **3a–f** bearing a spacer of 3, 4, 5, 6, 8 and 10 methylene units, respectively. Analysis of MT₁ and MT₂ binding data for compounds **3a–f** showed a gradual increase in MT₂ affinity with chain length, while MT₁ affinity varied in a more complex manner. All these dimers exhibited lower affinity than the monomer 1, but, interestingly, they showed pronounced MT₁ subtype selectivity. The best MT₁ affinity values were obtained for the dimers with 6 and 10 methylene units (compounds 3d and **3f**, $pK_i = 8.47$ and 8.40, respectively). The MT₁ affinity of compound 3d was slightly lower than that of the monomer 1 (four-fold), but it displayed an 54-fold selectivity for the MT₁ receptor, while monomer 1 was a non-selective ligand. The SARs observed for this series of compounds resembled those for agomelatine analogs²¹, even if agomelatine derivatives were reported to be generally more potent and more MT₁-selective than our compounds. In particular, also in the agomelatine series the most selective compounds had a trimethylene linker (K_{iMT2}/K_{iMT1} = 224), while longer chains gave significant increases in MT₁ affinity, with lower selectivity: the hexamethylene derivative of agomelatine, corresponding to 3d, has $pK_{iMT1} = 10.1$ and $K_{iMT2}/K_{iMT1} = 30$. For the sake of comparison, it should be noted that binding data may also depend on the cell line employed. For the agomelatine series, tests were performed on HEK 293 cells, and in those conditions melatonin was more MT₁-selective than in our test ($K_{iMT2}/K_{iMT1} = 4$). In order to evaluate the influence of the second amido pharmacophore unit to the binding, the monovalent ligand 4, characterized by a phenoxyhexane fragment, was synthesized. Compound 4, having a hexamethylene spacer as the most interesting dimer 3d, showed the same MT₂ affinity and a significantly lower MT_1 affinity, even if its pK_i (7.84) was among the highest values obtained on MT₁ receptors for compounds **3a–f**. While the irregular trend of pK_i values on MT₁ receptors does not allow a conclusive assessment of the role of a second MLT-like fragment, the relatively high MT₁ affinity of compound **4** suggests that a bivalent ligand is not necessary to generate MT₁ selectivity, as also shown in a recent series of agomelatine analogs.²⁴ Taken together, melatonin receptor affinity values of dimers 3a-f and of the monovalent ligand 4 indicate that the two pharma-

Table 1

Binding affinity $(pK_i)^a$ and intrinsic activity $(IA_i)^b$ of new compounds for human MT₁ and MT₂ receptors stably expressed in NIH3T3 cells

Compound	n	Human MT ₁		Human MT ₂		$K_i MT_2 / K_i MT_1$
		pK _i	IA _r ± SEM	pK _i	IA _r ± SEM	
MLT		9.58 ± 0.18	1.00 ± 0.01	9.47 ± 0.13	1.00 ± 0.02	1.3
1 ^c		9.09 ± 0.10	0.95 ± 0.08	9.19 ± 0.01	1.06 ± 0.05	0.8
3a	3	7.69 ± 0.14	0.26 ± 0.03	5.68 ± 0.10	0.33 ± 0.04	102
3b	4	7.37 ± 0.13	0.21 ± 0.03	6.00 ± 0.12	0.18 ± 0.04	23
3c	5	7.24 ± 0.09	0.46 ± 0.07	6.09 ± 0.04	0.64 ± 0.04	14
3d	6	8.47 ± 0.05	0.44 ± 0.01	6.74 ± 0.09	0.33 ± 0.06	54
3e	8	7.70 ± 0.31	0.47 ± 0.02	7.03 ± 0.12	0.38 ± 0.03	4.7
3f	10	8.40 ± 0.18	0.42 ± 0.02	7.39 ± 0.32	0.57 ± 0.02	10
4		7.84 ± 0.07	0.49 ± 0.02	6.80 ± 0.07	0.54 ± 0.04	11
5a	6	6.13 ± 0.19	-0.04 ± 0.02	7.44 ± 0.33	-0.09 ± 0.01	0.05
5b	10	6.42 ± 0.04	0.12 ± 0.05	6.51 ± 0.02	0.37 ± 0.12	0.8
6		6.54 ± 0.35	0.94 ± 0.08	6.61 ± 0.22	0.91 ± 0.05	0.85

^a pK_i values were calculated from IC₅₀ values, obtained from competition curves by the method of Cheng and Prusoff³² and are the mean of at least three determinations performed in duplicate.

^b The relative intrinsic activity values were obtained by dividing the maximum analogue-induced G-protein activation by that of MLT.

^c Ref. 25.

cophores did not bind at two neighboring MLT binding sites because none of the dimers showed higher receptor affinity than that of the monomer **1**. The actual presence of receptor dimers has not been assessed in the transfected NIH3T3 cells employed for our in vitro tests. However, in these cells the MT₁ or MT₂ receptor was expressed at high density levels (>100 fmol/mg protein^{27,28}), consistent with the formation of dimers, which had been observed in HEK293 cells at 20–100 fmol/mg protein.¹⁵ Therefore, on the basis of the above data, it can be supposed that both the linker and one pharmacophore are bound to the receptor in a region of steric tolerance, that resulted more suitable in the MT₁ binding site. The compounds show moderate MT₂ binding affinity, slightly better for longer derivatives. This is different from what observed for agomelatine dimers, whose derivatives with longer linkers retained subnanomolar MT₂ affinity.²¹

The functional activity of the new compounds has been evaluated on both receptors (GTP γ S assay) in comparison with MLT. None of the cited compounds (**3a–f**, **4**) showed full agonist activity, but they behave as partial agonists on both MT₁ and MT₂ receptors.

We also evaluated the possibility to link the two monomers 1 through their aniline nitrogens rather than their methoxy substituent, as we previously showed that N-substitution with a large hydrophobic substituent is favorable for binding to MT₂ receptor.² Compounds **5a** and **5b** (*n* = 6 and 10 respectively) displayed affinity values at MT₂ receptor in the same range as the corresponding dimers (3d, 3f) connected through the methoxy substituent, but they exhibited considerably lower MT₁ binding affinity. This drop of MT₁ affinity is consistent with the reduced steric tolerance in the corresponding region of previously developed pharmacophore and 3D-QSAR models.²⁹ In fact, the shorter derivative, **5a**, is a moderately MT₂-selective full antagonist, even if the longer derivative, **5b**, also loses affinity for the MT₂ receptor. The steric arrangement of the linker chain with respect to the aniline scaffold also proved important for interaction with the melatonin receptors. Indeed, a linker connected through two planar amide groups led to a lack of subtype selectivity and to an increase in intrinsic activity. Compound **6**, despite its low binding affinity, behaves as a full agonist at both receptor subtypes.

4. Conclusions

We have synthesized the new MLT receptor ligands 3a-f, 5a-b and 6, that were designed according to the 'bivalent ligand' approach by linking two moieties of the MT₁/MT₂ melatonin agonist *N*-{2-[(3-methoxyphenyl)methylamino]ethyl}acetamide (1), through their methoxy substituent or their aniline nitrogen, by polymethylene chains of variable length, with the aim to increase affinity and MT₁/MT₂ subtype selectivity. The dimers did not show MLT receptor affinities higher than that of the monomer 1, and the similar binding profile shown by the asymmetric analog 4 suggests that they do not interact with two independent recognition sites; therefore, the bivalent ligand approach failed, in this case, to achieve more potent compounds. On the contrary, it is clear that dimerization of compound 1 through the methoxy substituent leads to an improvement in selectivity for MT₁ receptors. Considering that the development of MT₁ melatonin selective ligands can be still considered a difficult task to achieve, the most selective C₃dimer **3a** (112-fold MT₁-selectivity) and dimer **3d** with a C₆ spacer $(pK_{iMT1} = 8.47 \text{ and } 54\text{-fold } MT_1 \text{ preference over } MT_2 \text{ receptors})$ could be considered interesting lead molecules in the development of selective MT₁ ligands, the most selective C₃-dimer **3a** and dimer **3d** with a C₆ spacer (pK_{iMT1} = 8.47 and 54-fold MT₁ preference over MT₂ receptors) could be considered interesting lead molecules in the development of selective MT₁ ligands.

5. Experimental section

5.1. Chemistry

Melting points were determined on a Büchi SMP-510 capillary melting point apparatus and are uncorrected. ¹H NMR spectra were recorded on a Bruker AC 200 spectrometer; chemical shifts (δ scale) are reported in parts per million (ppm) relative to the central peak of the solvent. Coupling constants (*J* values) are given in hertz (Hz). ESI-MS spectra were taken on a Waters Micromass ZQ instrument; only molecular ions (M+1) are given. EI-MS spectra (70 eV) were taken on a Fisons Trio 1000 spectrometer; only molecular ions (M⁺) and base peaks are given. Infrared spectra were obtained on a Nicolet Avatar 360 FT-IR spectrometer; absorbances are reported in ν (cm⁻¹). Analyses indicated by the symbols of the elements (C, H, N) are within 0.4% of the theoretical values. Column chromatography purifications were performed under 'flash' conditions using Merck 230–400 mesh silica gel. Analytical thin-layer chromatography (TLC) was carried out on Merck silica gel 60 F₂₅₄ plates.

5.1.1. *N*-{2-[(3-Hydroxyphenyl)methylamino]ethyl}acetamide (2)

A solution of BBr₃ (12.6 mmol) in dry CH₂Cl₂ (60 mL) was added dropwise to a solution of *N*-{2-[(3-methoxyphenyl)methylamino]ethyl}acetamide²⁵ (1.4 g, 6.3 mmol) in dry CH₂Cl₂ (47 mL) at 0 °C and the resulting mixture was stirred at room temperature for 18 h. The solvent was evaporated, the residue was neutralized with an aqueous saturated solution of NaHCO₃ and extracted with EtOAc. The organic phases were combined, washed once with brine, dried (Na₂SO₄) and concentrated under reduced pressure to give a crude residue, which was purified by flash chromatography (CH₂Cl₂–MeOH, 98:2 as eluent) and crystallization. Pink solid, 76% yield; mp 74–76 °C (Et₂O–light pet.). MS (EI): *m/z* 208 (M⁺), 136 (100). ¹H NMR (CDCl₃) is in line with previous report.³⁰

5.1.2. General procedure for the synthesis of dimeric derivatives 3a–f

 K_2CO_3 (0.300 g, 2.17 mmol) was added to a solution of **2** (0.150 g, 0.72 mmol) in acetonitrile (2.5 mL). The resulting mixture was refluxed for 30 min and then the required dibromo-derivative (0.36 mmol) was added dropwise. The reaction mixture was refluxed 16 h, quenched with water and extracted with EtOAc. The organic phases were combined, washed once with brine, dried (Na₂SO₄) and concentrated under reduced pressure to yield a crude residue which was purified by flash chromatography (EtOAc-MeOH, 95:5 as eluent) and crystallization.

5.1.2.1. *N*-(2-{[3-(3-{3-[(2-Acetylaminoethyl)methylamino] phenoxy}propoxy)phenyl]methylamino}ethyl)acetamide (3a) White solid, 61% yield; mp 120–121 °C (EtOAc–light pet.). ESI-MS (*m*/*z*): 457 (M+1). ¹H NMR (DMSO-*d*₆): δ 1.76 (s, 6H), 2.11 (m, 2H), 2.85 (s, 6H), 3.14 (m, 4H), 3.31 (m, 4H), 4.07 (t, 4H *J* = 6.0 Hz), 6.19–6.32 (m, 6H), 7.03 (t, 2H, *J* = 8.0 Hz), 7.93 (br t, 2H). IR (cm⁻¹, Nujol): 3314, 1635, 1614. Anal. Calcd for C₂₅H₃₆N₄O₄: C, 67.77; H, 7.95; N, 12.27. Found: C, 67.61; H, 7.80; N, 12.31.

5.1.2.2. *N*-(2-{[3-(4-{3-[(2-Acetylaminoethyl)methylamino] phenoxy}butoxy)phenyl]methylamino}ethyl)acetamide (3b) White solid, 29% yield; mp 137–138 °C (EtOAc). ESI-MS (m/z): 471 (M+1). ¹H NMR (DMSO- d_6): δ 1.76 (s, 6H), 1.83 (m, 4H), 2.86 (s, 6H), 3.15 (m, 4H), 3.31 (m, 4H), 3.98 (m, 4H), 6.18–6.32 (m, 6H), 7.03 (t, 2H *J* = 8.0 Hz), 7.93 (br t, 2H). IR (cm⁻¹, Nujol): 3321, 1649, 1614. Anal. Calcd for C₂₆H₃₈N₄O₄: C, 66.36; H, 8.14; N, 11.91. Found: C, 66.29; H, 7.95; N, 12.05.

5.1.2.3. *N*-(2-{[3-(5-{3-[(2-Acetylaminoethyl)methylamino] phenoxy}pentyloxy)phenyl]methylamino}ethyl)acetamide (3c) White solid, 49% yield; mp 109–111 °C (EtOAc). ESI-MS (*m/z*): 485 (M+1). ¹H NMR (DMSO-*d*₆): δ 1.55 (m, 2H), 1.76 (s, 6H), 1.80 (m, 4H), 2.85 (s, 6H), 3.14 (m, 4H), 3.29 (m, 4H), 3.93 (m,

4H), 6.16–6.30 (m, 6H), 7.01 (t, 2H *J* = 8.0 Hz), 7.95 (br t, 2H). IR (cm⁻¹, Nujol): 3319,1650, 1616. Anal. Calcd for $C_{27}H_{40}N_4O_4$: C, 66.92; H, 8.32; N, 11.56. Found: C, 66.67; H, 8.45; N, 11.84.

5.1.2.4. *N*-(2-{[3-(6-{3-[(2-Acetylaminoethyl)methylamino] phenoxy}hexyloxy)phenyl]methylamino}ethyl)acetamide (3d) White solid, 48% yield; mp 118–120 °C (EtOAc). ESI-MS (*m*/z): 499 (M+1). ¹H NMR (DMSO-*d*₆): δ 1.46 (m, 4H), 1.71 (m, 4H), 1.76 (s, 6H), 2.85 (s, 6H), 3.14 (m, 4H), 3.33 (m, 4H), 3.92 (t, 4H *J* = 6.5 Hz), 6.16–6.32 (m, 6H), 7.02 (t, 2H *J* = 8.0 Hz), 7.93 (br t, 2H). IR (cm⁻¹, Nujol): 3322, 1650, 1615. Anal. Calcd for C₂₈H₄₂N₄O₄: C, 67.44; H, 8.49; N, 11.24. Found: C, 67.52; H, 8.57; N, 11.08.

5.1.2.5. *N*-(2-{[3-(8-{3-[(2-Acetylaminoethyl)methylamino] phenoxy}otyloxy)phenyl]methylamino}ethyl)acetamide (3e) White solid, 60% yield; mp 108–110 °C (EtOAc). ESI-MS (*m*/*z*): 527 (M+1). ¹H NMR (DMSO-*d*₆): δ 1.35 (m, 8H), 1.67 (m, 4H), 1.76 (s, 6H), 2.85 (s, 6H), 3.14 (m, 4H), 3.30 (m, 4H), 3.89 (t, 4H *J* = 6.5 Hz), 6.15–6.30 (m, 6H), 7.01 (t, 2H *J* = 8.0 Hz), 7.94 (br t, 2H). IR (cm⁻¹, Nujol): 3321, 1650, 1615. Anal. Calcd for C₃₀H₄₆N₄O₄: C, 68.41; H, 8.80; N, 10.64. Found: C, 68.21; H, 8.59; N, 10.48.

5.1.2.6. *N*-(2-{[3-(10-{3-[(2-Acetylaminoethyl)methylamino] phenoxy}decyloxy)phenyl]methylamino}ethyl)acetamide (3f) White solid, 63% yield; mp 105–107 °C (EtOAc). ESI-MS (*m*/*z*): 555 (M+1). ¹H NMR (DMSO-*d*₆): δ 1.28 (m, 12H), 1.66 (m, 4H), 1.76 (s, 6H), 2.84 (s, 6H), 3.14 (m, 4H), 3.28 (m, 4H), 3.88 (t, 4H *J* = 6.5 Hz), 6.15–6.30 (m, 6H), 7.01 (t, 2H *J* = 8.0 Hz), 7.94 (br t, 2H). IR (cm⁻¹, Nujol): 3320, 1649, 1615. Anal. Calcd for C₃₂H₅₀N₄O₄: C, 69.28; H, 9.08; N, 10.10. Found: C, 69.20; H, 9.01; N, 10.26.

5.1.3. *N*-(2-{Methyl[3-(6-phenoxyhexyloxy)phenyl]amino} ethyl)acetamide (4)

Sodium hydride (80% in mineral oil, 0.02 g, 0.66 mmol) and 6bromo-1-phenoxyhexane²⁶ (0.265 g, 1.03 mmol) were added to a solution of **2** (0.13 g, 0.62 mmol) in dry DMF (2.6 mL) at -10 °C under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 18 h, poured onto ice cooled water and extracted three times with EtOAc. The organic phases were combined, dried (Na₂SO₄), and evaporated to give a crude residue which was purified by flash chromatography (EtOAc as eluent) and crystallization. White solid, 79% yield; mp 67–68 °C (Et₂O–light pet.). MS (EI): *m/z* 384 (M⁺), 94 (100). ¹H NMR (CDCl₃): δ 1.59 (m, 4H), 1.83 (m, 4H), 1.94 (s, 3H), 2.94 (s, 3H), 3.46 (m, 4H), 3.98 (m, 4H), 5.60 (br s, 1H), 6.29–6.40 (m, 3H), 6.88–6.97 (m, 3H), 7.14 (t, 1H *J* = 8.0 Hz), 7.25– 7.32 (m, 2H). IR (cm⁻¹, Nujol): 3266, 1641, 1611. Anal. Calcd for C₂₃H₃₂N₂O₃: C, 71.84; H, 8.39; N, 7.29. Found: C, 72.05; H, 8.53; N, 7.51.

5.1.4. General procedure for the synthesis of dimeric ligands 5a,b

 K_2CO_3 (0.36 g, 2.61 mmol) followed by the opportune dibromoderivative (0.87 mmol) were added to a solution of *N*-[2-(3methoxyphenylamino)ethyl]acetamide²⁵ (0.358 g, 1.74 mmol) in DMF (2 mL). The resulting mixture was heated at 100 °C for 24 h, quenched with water and extracted with EtOAc. The combined organic phases were washed once with brine, dried (Na₂SO₄) and concentrated under reduced pressure to yield a crude residue which was purified by flash chromatography (EtOAc as eluent) and crystallization. About 65% of non-reacted starting aniline was recovered after chromatography. **5.1.4.1.** *N*-{2-[{6-[(2-Acetylaminoethyl)-(3-methoxyphenyl) amino]hexyl}-(3-methoxyphenyl)amino]ethyl}acetamide (5a) White solid, 15% yield; mp 123–124 °C (EtOAc–Et₂O). ESI-MS (*m*/*z*): 499 (M+1). ¹H NMR (CDCl₃): δ 1.33 (m, 4H), 1.58 (m, 4H), 1.95 (s, 6H), 3.25 (m, 4H), 3.42 (m, 8H), 3.79 (s, 6H), 5.74 (br s, 2H), 6.25–6.36 (m, 6H), 7.13 (t, 2H *J* = 8.5 Hz). IR (cm⁻¹, Nujol): 3256, 1638, 1609. Anal. Calcd for C₂₈H₄₂N₄O₄: C, 67.44; H, 8.49; N, 11.24. Found: C, 67.73; H, 8.72; N, 11.60.

5.1.4.2. *N*-{2-[{10-[(2-Acetylaminoethyl)-(3-methoxyphenyl) amino]decyl}-(3-methoxyphenyl)amino]ethyl}acetamide (5b) White solid, 13% yield; mp 101–102 °C (EtOAc–Et₂O). ESI-MS (*m*/*z*): 555 (M+1). ¹H NMR (CDCl₃): δ 1.28 (m, 12H), 1.55 (m, 4H), 1.95 (s, 6H), 3.25 (m, 4H), 3.42 (m, 8H), 3.79 (s, 6H), 5.64 (br s, 2H), 6.24–6.37 (m, 6H), 7.13 (t, 2H *J* = 8.5 Hz). IR (cm⁻¹, Nujol): 3256, 1638, 1608. Anal. Calcd for C₃₂H₅₀N₄O₄: C, 69.28; H, 9.08; N, 10.10. Found: C, 68.98; H, 8.95; N, 10.01.

5.1.5. Hexanedioic acid bis[(2-acetylaminoethyl)-(3-methoxy-phenyl)amide] (6)

To a solution of *N*-[2-(3-methoxyphenylamino)ethyl]acetamide²⁵ (0.14 g, 0.67 mmol) and TEA (0.12 mL, 0.86 mmol) in dry THF (4 mL) was added adipoyl chloride (0.05 mL, 0.34 mmol). The resulting mixture was stirred at room temperature for 2 h, quenched with water and extracted three times with hot EtOAc. The organic phases were combined, dried (Na₂SO₄) and concentrated under reduced pressure to yield a crude solid which was triturated with EtOAc and filtered. White solid, 45% yield; mp 219–221 °C. ESI-MS (*m*/*z*): 527 (M+1). ¹H NMR (DMSO-*d*₆): δ 1.35 (m, 4H), 1.75 (s, 6H), 1.90 (m, 4H), 3.17 (m, 4H), 3.62 (m, 4H), 3.80 (s, 6H), 6.84–7.00 (m, 6H), 7.36 (t, 2H *J* = 8.0 Hz), 7.92 (br t, 7.92). IR (cm⁻¹, Nujol): 3307, 1647, 1604. Anal. Calcd for C₂₈H₃₈N₄O₆: C, 63.86; H, 7.27; N, 10.64. Found: C, 63.56; H, 7.35; N, 10.79.

5.2. Pharmacological evaluation

Binding affinities were determined using 2-[¹²⁵I]iodomelatonin as the labeled ligand in competition experiments on cloned human MT₁ and MT₂ receptors expressed in NIH3T3 rat fibroblast cells. The characterization of NIH3T3-MT1 and MT2 cells was already described in detail.^{27,28} Membranes were incubated for 90 min at 37 °C in binding buffer (Tris/HCl 50 mM, pH 7.4). The final membrane concentration was 5–10 µg of protein per tube. The membrane protein level was determined in accordance with a previously reported method.³¹ 2-[¹²⁵I]Iodomelatonin (100 pM) and different concentrations of the new compounds were incubated with the receptor preparation for 90 min at 37 °C. Nonspecific binding was assessed with 10 µM melatonin; IC₅₀ values were determined by nonlinear fitting strategies with the program PRISM (GraphPad SoftWare Inc., San Diego, CA). The pK_i values were calculated from the IC₅₀ values in accordance with the Cheng–Prusoff equation.³² The pK_i values are the mean of at least three independent determinations performed in duplicate.

To define the functional activity of the new compounds at MT_1 and MT_2 receptor subtypes, [^{35}S]GTP γS binding assays in NIH3T3 cells expressing human-cloned MT_1 or MT_2 receptors were performed. The amount of bound [^{35}S]GTP γS is proportional to the level of the analog-induced G-protein activation and is related to the intrinsic activity of the compound under study. The detailed description and validation of this method were reported elsewhere.^{27,28} Membranes (15–25 µg of protein, final incubation volume 100 µL) were incubated at 30 °C for 30 min in the presence and in the absence of melatonin analogs, in an assay buffer consisting of [^{35}S]GTP γS (0.3–0.5 nM), GDP

(50 µM), NaCl (100 mM), and MgCl₂ (3 mM). Nonspecific binding was defined using $[^{35}S]GTP\gamma S$ (10 μ M). In cell lines expressing human MT₁ or MT₂ receptors, melatonin produced a concentration dependent stimulation of basal $[^{35}S]GTP\gamma S$ binding with a maximal stimulation, above basal levels, of 370% and 250% in MT₁ and MT₂ receptors, respectively. Basal stimulation is the amount of [35S]GTPyS specifically bound in the absence of compounds and it was taken as 100%. The maximal G-protein activation was measured in each experiment by using melatonin (100 nM). Compounds were added at three different concentrations (one concentration was equivalent to 100 nM melatonin, a second one 10 times smaller, and a third one 10 times larger), and the percent stimulation above basal was determined. The equivalent concentration was estimated on the basis of the ratio of the affinity of the test compound over that of melatonin. It was assumed that at the equivalent concentration the test compound occupies the same number of receptors as 100 nM melatonin. All of the measurements were performed in triplicate. The relative intrinsic activity (IAr) values were obtained by dividing the maximum ligand-induced stimulation of [35S]GTP_yS binding by that of melatonin as measured in the same experiment.

The two radioligands 2-[¹²⁵I]iodomelatonin (specific activity, 2000 Ci/mmol) and [³⁵S]GTP γ S ([³⁵S]guanosine-5'-O-(3-thio-triphosphate); specific activity, 1000 Ci/mmol) were purchased from Amersham Pharmacia Biotech (Italy).

Acknowledgments

This work was supported by grants from the Italian Ministero dell'Università e della Ricerca and University of Urbino 'Carlo Bo'.

References and notes

- 1. Barrenetxe, J.; Delagrange, P.; Martinez, J. A. J. Physiol. Biochem. 2004, 60, 61.
- 2. Miyamoto, M. CNS Neurosci. Ther. **2009**, 15, 32.
- (a) Rivara, S.; Mor, M.; Bedini, A.; Spadoni, G.; Tarzia, G. Curr. Top. Med. Chem.
 2008, 8, 954; (b) Mor, M.; Rivara, S.; Pala, D.; Bedini, A.; Spadoni, G.; Tarzia, G. Expert Opin. Ther. Pat. 2010, 20, 1059.
- Yalkinoglu, Ö.; Zisapel, N.; Nir, T.; Piechatzek, R.; Schorr-Neufing, U.; Bitterlich, N.; Oertel, R.; Allgaier, C.; Kluge, A.; Laudon, M. Sleep 2010, 33(Suppl.), A220 (abstract 0656).
- 5. Zemlan, F. P.; Mulchahey, J. J.; Scharf, M. B.; Mayleben, D. W.; Rosenberg, R.; Lankford, A. J. Clin. Psychiatry **2005**, 66, 384.
- Rajaratnam, S. M.; Polymeropoulos, M. H.; Fisher, D. M.; Roth, T.; Scott, C.; Birznieks, G.; Klerman, E. B. Lancet 2009, 373, 482.
- 7. Dubocovich, M. L. Curr. Opin. Investig. Drugs 2006, 7, 670.
- http://www.agomelatine.org/2009-valdoxan.html: Servier Press Release: 25 February 2009 (29 April 2011).
- de Bodinat, C.; Guardiola-Lemaitre, B.; Mocaër, E.; Renard, P.; Muñoz, C.; Millan, M. J. Nat. Rev. Drug Discov. 2010, 9, 628.
- Dubocovich, M. L.; Delagrange, P.; Krause, D. N.; Sugden, D.; Cardinali, D. P.; Olcese, J. Pharmacol. Rev. 2010, 62, 343.
- 11. Zlotos, D. P. Arch. Pharm. Chem. Life Sci. 2005, 338, 229.
- 12. Garratt, P. J.; Tsotinis, A. Mini-Rev. Med. Chem. 2007, 7, 1075.
- Sun, L.-Q.; Chen, J.; Bruce, M.; Deskus, J. A.; Epperson, J. R.; Takaki, K.; Johnson, G.; Iben, L.; Mahle, C. D.; Ryan, E.; Xu, C. *Bioorg. Med. Chem. Lett.* 2004, 14, 3799.
- 14. Bulenger, S.; Marullo, S.; Bouvier, M. Trends Pharmacol. Sci. 2005, 26, 131.
- Ayoub, M. A.; Couturier, C.; Lucas-Meunier, E.; Angers, S.; Fossier, P.; Bouvier, M.; Jockers, R. J. Biol. Chem. 2002, 277, 21522.
- Ayoub, M. A.; Levoye, A.; Delagrange, P.; Jockers, R. Mol. Pharmacol. 2004, 66, 312.
- Daulat, A. M.; Maurice, P.; Froment, C.; Guillaume, J. L.; Broussard, C.; Monsarrat, B.; Delagrange, P.; Jockers, R. *Mol. Cell. Proteomics* 2007, *6*, 835.
- Jockers, R.; Maurice, P.; Boutin, J. A.; Delagrange, P. Br. J. Pharmacol. 2008, 154, 1182.
- 19. George, S. R.; O'Dowd, B.; Lee, S. P. Nat. Rev. Drug Discov. 2002, 1, 808.
- Di Giacomo, B.; Bedini, A.; Spadoni, G.; Tarzia, G.; Fraschini, F.; Pannacci, M.; Lucini, V. Bioorg. Med. Chem. 2007, 15, 4643.
- Descamps-Francois, C.; Yous, S.; Chavatte, P.; Audinot, V.; Bonnaud, A.; Boutin, J. A.; Delagrange, P.; Bennejean, C.; Renard, P.; Lesieur, D. J. Med. Chem. 2003, 46, 1127.
- Larraya, C.; Guillard, J.; Renard, P.; Audinot, V.; Boutin, J. A.; Delagrange, P.; Bennejean, C.; Viaud-Massuard, M. C. Eur. J. Med. Chem. 2004, 39, 515.
- Audinot, V.; Mailliet, F.; Lahaye-Brasseur, C.; Bonnaud, A.; Le Gall, A.; Amosse, C.; Dromaint, S.; Rodriguez, M.; Nagel, N.; Galizzi, J. P.; Malpaux, B.;

Guillaumet, G.; Lesieur, D.; Lefoulon, F.; Renard, P.; Delagrange, P.; Boutin, J. A. Naunyn Schmiedebergs Arch. Pharmacol. **2003**, 367, 553.

- Mesangeau, C.; Peres, B.; Descamps-Francois, C.; Chavatte, P.; Audinot, V.; Coumailleau, S.; Boutin, J. A.; Delagrange, P.; Bennejean, C.; Renard, P.; Caignard, D. H.; Berthelot, P.; Yous, S. *Bioorg. Med. Chem.* **2010**, *18*, 3426.
- Rivara, S.; Lodola, A.; Mor, M.; Bedini, A.; Spadoni, G.; Lucini, V.; Pannacci, M.; Fraschini, F.; Scaglione, F.; Sanchez, R. O.; Gobbi, G.; Tarzia, G. J. Med. Chem. 2007, 50, 6618.
- 26. Hutchinson, T. L.; Brouillette, W. J. Bioorg. Med. Chem. 1998, 6, 2133.
- Nonno, R.; Lucini, V.; Pannacci, M.; Mazzucchelli, C.; Angeloni, D.; Fraschini, F.; Stankov, B. M. Br. J. Pharmacol. 1998, 124, 485.
- Nonno, R.; Pannacci, M.; Lucini, V.; Angeloni, D.; Fraschini, F.; Stankov, B. M. Br. J. Pharmacol. 1999, 127, 1288.
 Rivara, S.; Mor, M.; Silva, C.; Zuliani, V.; Vacondio, F.; Spadoni, G.; Bedini, A.;
- Rivara, S.; Mor, M.; Silva, C.; Zuliani, V.; Vacondio, F.; Spadoni, G.; Bedini, A.; Tarzia, G.; Lucini, V.; Pannacci, M.; Fraschini, F.; Plazzi, P. V. *J. Med. Chem.* **2003**, 46, 1429.
- 30. Hirayama, T.; Iyoshi, S.; Taki, M.; Maeda, Y.; Yamamoto, Y. Org. Biomol. Chem. 2007, 5, 2040.
- 31. Bradford, M. M. Anal. Biochem. 1976, 72, 248.
- 32. Cheng, Y. C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.