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Abstract: The hetero-Diels–Alder reaction of b-vinyl-meso-
tetraphenylporphyrinatozinc(II) with quinone methides generated
in situ from Knoevenagel reaction of 2-hydroxy-1,4-naphthoqui-
none, 4-hydroxycoumarin, and 4-hydroxy-6-methylcoumarin with
paraformaldehyde and directly from o-hydroxybenzyl alcohol de-
rivatives is reported.
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Porphyrins demonstrate promising applications in various
scientific fields such as supramolecular chemistry, biomi-
metic models for photosynthesis, catalysis, and medicinal
applications, namely as photosensitizers in the photody-
namic therapy of tumors, in the treatment of age-related
macular degeneration, and in the diagnosis of neoplastic
diseases.1 The modification of a porphyrin macrocycle
leading to new derivatives, using functionalization proce-
dures, especially pericyclic reactions,2 plays a key role in
finding promising compounds with potential use as pho-
todynamic agents. 5,10-Dioxobenzo[g]chromene, 5,6-
dioxobenzo[h]chromene,3a pyrano[3,2-c]coumarin,4 and
benzopyran5 features are found in many natural products
and are associated with antitumor,3a the treatment of
Chagas disease,3b molluscicidal,4a KATP channel open-
ing,5a and myocardial ischemia5b activities. Such motifs
are being incorporated into newer scaffolds using the
domino Knoevenagel hetero-Diels–Alder reaction.6 In
this context, the synthesis of molecules by coupling enti-
ties containing well-established pharmacological activi-
ties with porphyrins may be a good strategy for the
discovery of new molecules with dual function potential.

Figure 1 Precursors of o-quinone methides

Porphyrins have been shown to be versatile reagents in
Diels–Alder reactions wherein a peripheral double bond
acts as a dienophile7 or the b-vinyl substituent of the mac-
rocycle and the neighboring peripheral double bond act as
a diene.8 We report herein the hetero-Diels–Alder reaction
of several o-quinone methides (o-QM) generated from 2-
hydroxy-1,4-naphthoquinone (1, Lawsone), 4-hydroxy-
coumarin (2a), 4-hydroxy-6-methylcoumarin (2b), o-
hydroxybenzyl alcohol (3a), and 2-hydroxy-3-methoxy-
benzyl alcohol (3b, Figure 1), with b-vinyl-meso-tet-
raphenylporphyrinatozinc(II) (4, Scheme 1).

The reaction of b-vinyl-meso-tetraphenylporphyrina-
tozinc(II)9 (4) with the quinone methide 5, generated in
situ from 2-hydroxy-1,4-naphthoquinone (1) and
paraformaldehyde, was performed in refluxing dioxane
until complete disappearance of 4 (monitored by TLC).10

Starting the reaction with one equivalent of 1 and eight
equivalents of paraformaldehyde, it was observed that
gradual addition of another two equivalents of 1 (1 equiv
each time after 12 and 36 h of reaction) and paraformalde-
hyde, in the same ratio, was required for the reaction to
reach completion after 48 hours. On workup of the reac-
tion mixture and its purification by column and prepara-
tive thin-layer chromatography two new compounds were
isolated; these were identified as the porphyrin derivatives
8 and 9 in 44% and 22% yield, respectively (entry 1,
Table 1).
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Table 1 Products and Yields of Reaction Using Vinyl Porphyrin 4 
with o-Quinone Methides 5, 6a,b, and 7a,b

Entry Product o-QM Solvent Time (h) Yields (%)

1 8
9

5 dioxane 48 44
22

2 8
9

5 dioxanea 24 50
22

3 10a 6a dioxane 1 88

4 10b 6b dioxane 1 95

5 11a
11c

7a o-DCBb 26 49
8

6 11b 7b o-DCBb 6 86

a Catalytic AcOH.
b o-DCB = o-Dichlorobenzene.
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Attempts were carried out to reduce the reaction time of 4
with 5. It was found that, by addition of a few drops of
acetic acid6c and also by one addition, after 6 hours, of o-
quinone methide precursors (1 and paraformaldehyde,
1:8), the reaction was completed in 24 hours giving rise to
compounds 8 and 9 in 50% and 22% yields, respectively
(entry 2, Table 1).

This result shows that this reaction is highly regioselective
and site-selective, as observed for similar systems.6c,d,11

The structures of the new porphyrin derivatives 8 and 9
were confirmed by NMR and UV/vis spectroscopy and
high-resolution mass spectrometry.12 The mass spectra of
8 and 9 show the same peak at m/z = 889.2143 and
889.2122, respectively, corresponding to the [M + H]+

ion. The 1H NMR of isomer 8 shows multiplets in the re-
gion d = 2.12–2.79 ppm for the H-3¢ and H-4¢ protons and
a doublet at d = 4.95 ppm for the H-2¢ proton. In the HSQC
spectrum, the H-2¢ proton correlates with the resonance at
d = 75.8 ppm which indicates the presence of a dihydro-
pyran ring. The 1H NMR spectrum of isomer 9 shows sim-
ilarities with the one from 8 concerning the porphyrin
macrocycle, pyran ring, and the aromatic signals of naph-
thoquinone part. Detailed analysis of the NMR spectra al-
lowed us to assign the product with higher Rf as being
isomer 8 and the other as the isomer 9. The 2D HMBC
clearly showed correlations of the aromatic protons (H-6¢
and H-9¢) of the naphthalene moiety with the carbonyl
groups (C-5¢ and C-10¢) in 8 and the aliphatic (H-4¢) and
aromatic proton (H-7¢) with the carbonyl groups (C-5¢ and
C-6¢) in 9.

This reaction was extended to 4-hydroxycoumarin (2a)
and 4-hydroxy-6-methylcoumarin (2b). In these cases we
observed that the o-quinone methides (6a and 6b,
Scheme 1) of these coumarins are more reactive than the
o-quinone methide 5. This is evident from the shorter re-
action times and higher yields (entries 3 and 4, Table 1).
The reaction of porphyrin 4 with intermediates 6a and 6b
showed complete consumption of 4 in one hour (TLC),
and after workup and column purification the adducts
10a13 (88% yield) and 10b (95% yield) were isolated. In
both cases just one equivalent of the corresponding quino-
ne methide precursor was sufficient for reaction comple-
tion. The 1H NMR spectra show similarities except for the
appearance of a singlet for the methyl group at d = 2.33
ppm in 10b. The analysis of the 13C NMR spectrum of 10a
indicated a peak at d = 163.4 ppm for the coumarin carbo-
nyl group. This shows that the addition occurred selec-
tively at the 3,4-position of the coumarin nucleus. This
was confirmed by HMBC correlation of the H-4¢ protons
with the carbonyl carbon C-5¢ (d = 163.4 ppm), the qua-
ternary carbon C-10¢b (d = 160.7 ppm) and the C-2¢ (d =
75.9 ppm) of the dihydropyran ring.

A simple hetero-Diels–Alder reaction wherein the qui-
none methide can be formed in situ from the appropriately
substituted o-hydroxybenzyl alcohols14 was also studied.
The reaction of porphyrin 4 with o-hydroxybenzyl alcohol
(3a), which generates quinone methide 7a (Scheme 1), in
refluxing o-dichlorobenzene (o-DCB) and subsequent
gradual addition of a further equivalent of the alcohol 3a
after 6 and 24 hours showed complete consumption of
starting porphyrin 4 (26 h) and gave two new compounds,

Scheme 1 Reactions of porphyrin 4 with the o-quinone methides
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which were separated by column and preparative thin-
layer chromatography.15

The major product (with higher Rf) was identified as being
the adduct 11a16 (49% yield). The product with lower Rf

11c17 (8% yield) showed a molecular ion at m/z =
914.2583. Its 1H NMR spectrum shows a multiplet for 4 H
at d = 2.17–2.75 ppm, two doublets at d = 3.79 and 3.92
ppm for 1 H each (J = 14.4 Hz) and a double doublet at
d = 4.97 ppm for 1 H. The aromatic region shows a double
doublet at d = 6.47 ppm (1 H), a double triplet at d = 6.75
ppm (1 H), a triplet at d = 6.84 ppm (1 H), a singlet for a
phenolic proton at d = 6.87 ppm, multiplet at d = 6.93–
6.97 ppm (2 H), and two double doublets at d = 7.12 ppm
and d = 7.20 ppm for 1 H each, indicating there was addi-
tion of a second molecule of 3a.

It was observed by TLC that compound 11c is formed in
the reaction mixture within two hours of reaction time.
Therefore a reaction of compound 11a with excess of al-
cohol 3a was carried out under similar conditions, but it
resulted in total recovery of starting material, thus indicat-
ing that 11a is not a precursor of 11c. Therefore the for-
mation of this compound under the observed experimental
conditions can be justified by the formation of the conden-
sation dimer, 2,2¢-dihydroxy-3-(hydroxymethyl)diphe-
nylmethane, which has been previously identified by GC-
MS analysis18 as a product on heating alcohol 3a above
200 °C. This dimer may form the quinone methide 12 in
situ which can react with porphyrin 4 to give product 11c.

Reaction of 4 and 2-hydroxy-3-methoxybenzyl alcohol
3b, followed by three additions of one equivalent of that
alcohol after one, three, and five hours gave compound
11b (86% yield) after six hours reaction time.

In conclusion, the hetero-Diels–Alder reaction has been
successfully used in the derivatization of b-vinyl-meso-
tetraphenylporphyrin leading to macrocycles containing
5,10-dioxobenzo[g]chromene, 5,6-dioxobenzo[h]-
chromene, pyrano[3,2-c]coumarin, and benzopyran
motifs at the b-position. Studies on the reaction of these o-
quinone methides with natural vinylporphyrins are under
investigation in our laboratory.
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H, Hm,p-Ph, H-7¢ and H-8¢),  8.07–8.11 (m, 2 H, H-6¢ and H-
9¢), 8.14–8.23 (m, 8 H, Ho-Ph), 8.73 (d, J = 4.8 Hz, 1 H, H-
b), 8.89 (d, J = 4.8 Hz, 1 H, H-b), 8.92 (d, J = 4.8 Hz, 1 H, 
H-b), 8.93 (s, 2 H, H-12 and H-13), 8.95 (d, J = 4.8 Hz, 1 H, 
H-b), 9.12 (s, 1 H, H-3). 13C NMR (75 MHz, CDCl3): 
d = 20.2 (C-4¢), 29.4 (C-3¢), 75.8 (C-2¢), 120.4, 121.1, 121.2, 
121.5, 121.7 (C-4¢a and 2 C-quat), 126.0, 126.2, 126.3, 
126.4, 126.6, 126.65, 126.7, 127.5, 128.3 (Co-Ph, Cm,p-Ph, 
C-6¢, C-9¢), 131.1; 131.6, 132.0, 132.2, 132.2, 132.5 (C-b), 
132.9 (Co-Ph, C-3), 133.0, 133.3, 133.8, 134.4, 134.42, 
134.7 (C-7¢, C-8¢, Co-Ph, Cm,p-Ph), 142.5, 142.6, 
142.7,143.3 (C-1), 145.8, 147.9, 150.3, 150.4, 150.5, 150.6, 
150.9, 156.2 (C-10a¢), 179.5 (C-5¢), 184.5 (C-10¢); UV/vis 
(CHCl3): lmax (log e) = 424 (4.94), 554 (4.57), 597 (3.96) 
nm. HRMS (ESI+): m/z [M + H]+ calcd for C57H37N4O3Zn: 
889.2152; found: 889.2143.
Data for {2-(5,6-Dioxo-3,4,5,6-tetrahydro-2H-
benzo[h]chromen-2-yl)-5,10,15,20-
tetraphenylporphyrinato}zinc(II) (9)
1H NMR (500 MHz, CDCl3): d = 2.16–2.24 (m, 2 H, H-3¢ 
and H-4¢), 2.58–2.61 (m, 1 H, H-3¢), 2.71–2.75 (m, 1 H, H-
4¢), 5.08 (d, J = 10.2 Hz, 1 H, H-2¢), 7.47–7.51 (m, 2 H, H-
8¢, 1 Hp-Ph), 7.55 (dt, J = 7.6, 1.6 Hz, 1 H, H-9¢), 7.71–7.81 
(m, 12 H, Hm,p-Ph, H-10¢), 8.09 (dd, J = 7.6, 1.3 Hz, 1 H, H-
7¢), 8.16–8.24 (m, 8 H, Ho-Ph), 8.76 (d, J = 4.6 Hz, 1 H, H-
b), 8.91 (d, J = 4.6 Hz, 1 H, H-b), 8.95 (s, 2 H, H-12 and H-
13), 8.96 (d, J = 4.6 Hz, 1 H, H-b), 8.97 (d, J = 4.6 Hz, 1 H, 
H-b), 9.14 (d, J = 0.7 Hz, 1 H, H-3). 13C NMR (125 MHz, 
CDCl3): d = 19.8 (C-4¢), 29.8 (C-3¢), 76.9 (C-2¢), 114.2 (C-
4¢a), 120.4, 121.1, 121.4, 121.7, 124.2 (C-10¢), 126.4, 126.5, 
126.6, 126.7, 127.6, 127.7 (Cm,p-Ph), 128.6, 128.7 (Cm,p-
Ph, C-7¢), 129.9 (C-6¢a), 130.6 (C-8¢), 131.8, 132.27, 132.30, 
132.33, 132.4, 132.43 (C-b), 132.6 (C-3, C-10¢a), 133.4, 
133.5, 134.36, 134.4, 134.42; 134.5 (C-o), 134.75 (C-9¢), 
142.3, 142.5, 142.7, 143.2 (C-1), 145.5, 147.7, 150.21, 
150.4, 150.57, 150.6, 150.7, 150.8, 163.6 (C-10b¢), 178.7 
(C-5¢), 179.7 (C-6¢); UV/vis (CHCl3): lmax (log e): 424 
(4.85), 552 (4.52), 596 (3.96) nm. HRMS (ESI+): m/z [M + 
H]+ calcd for C57H37N4O3Zn: 889.2152; found: 889.2122.

(13) Data for {2-(5-Oxo-2,3,4,5-tetrahydro-2H-pyrano[3,2-
c]chromen-2-yl)-5,10,15,20-
tetraphenylporphyrinato}zinc(II) (10a)
1H NMR (500 MHz, CDCl3): d = 2.25–2.29 (m, 2 H, H-3¢ 
and H-4¢), 2.61–2.67 (m, 2 H, H-3¢ and H-4¢), 5.04 (d, J = 8.5 
Hz, 1 H, H-2¢), 7.19 (ddd, J = 8.1, 7.2, 1.0 Hz, 1 H, H-9¢), 
7.34 (dd, J = 8.5, 1.0 Hz, 1 H, H-7¢), 7.40–7.45 (m, 1 H, Hp-
Ph), 7.49 (ddd, J = 8.5, 7.2, 1.4 Hz, 1 H, H-8¢), 7.71–7.81 (m, 
12 H, Hm,p-Ph, H-10¢), 8.16–8.23 (m, 8 H, Ho-Ph), 8.75 (d, 
J = 4.6 Hz, 1 H, H-b), 8.90 (d, J = 4.6 Hz, 1 H, H-b), 8.94 (s, 
2 H, H-12 and H-13), 8.95 (d, J = 4.6 Hz, 1 H, H-b), 8.97 (d, 
J = 4.6 Hz, 1 H, H-b), 9.15 (d, J = 0.5 Hz, 1 H, H-3). 13C 
NMR (125 MHz, CDCl3): d = 20.9 (C-3¢), 30.0 (C-4¢), 75.9 
(C-2¢), 101.2 (C-4¢a), 115.9 (C-10¢a), 116.5 (C-7¢), 120.5, 
121.1, 121.3, 121.6, 122.5 (C-10¢), 123.7 (C-9¢), 126.4, 
126.5, 126.6, 126.7, 127.6, 127.7, 128.5 (Cm,p-Ph), 131.2 
(C-8¢), 131.7, 132.3, 132.35, 132.6 (C-b), 133.4, 133.5, 
134.37, 134.4, 134.42, 134.47, 134.5 (Co-Ph), 142.3, 142.4, 
142.5, 142.7, 143.5 (C-1), 145.6, 147.8, 150.2, 150.4, 150.5, 
150.6, 150.9, 152.4 (C-6¢a), 160.7 (C-10¢b), 163.4 (C-5¢). 
UV/vis (CHCl3): lmax (log e): 425 (4.94), 555 (4.54), 596 

(4.00) nm. HRMS (ESI+): m/z [M + H]+ calcd for 
C56H37N4O3Zn: 877.2152; found: 877.2116.

(14) Van de Waters, R. W.; Pettus, T. R. R. Tetrahedron 2002, 
58, 5367; and references cited therein.

(15) General Procedure for Preparing 11a–c
A mixture of porphyrin 4 (10 mg, 14.2 mmol) and 
appropriate benzyl alcohol (3a, 1.7 mg; 3b, 2.2 mg; 14.2 
mmol) was refluxed in o-dichlorobenzene (3 mL) in a sealed 
tube until consumption of starting porphyrin 4 (monitored by 
TLC) with addition of quinone methide precursors at regular 
intervals. After completion of reaction (6–26 h) the mixture 
was loaded on a silica column or preparative TLC plate and 
eluted with PE. Further elution with CHCl3 gave the 
corresponding adducts.

(16) Data for [2-(Chroman-2-yl)-5,10,15,20-
tetraphenylporphyrinato]zinc(II) (11a)
1H NMR (300 MHz, CDCl3): d = 2.14–2.26 (m, 1 H, H-3¢), 
2.43–2.55 (m, 1 H, H-3¢), 2.56–2.74 (m, 2 H, H-4¢), 4.95 (d, 
J = 9.6 Hz, 1 H, H-2¢), 6.85–6.94 (m,2 H, H-6¢ and H-8¢), 
7.07–7.21 (m, 2 H, H-5¢ and H-7¢), 7.53–7.59 (m, 1 H, Hp-
Ph), 7.68–7.80 (m, 11 H, Hm,p-Ph), 8.15–8.23 (m, 8 H, Ho-
Ph), 8.73 (d, J = 4.7 Hz, 1 H, H-b), 8.89 (d, J = 4.7 Hz, 1 H, 
H-b), 8.91 (d, J = 4.7 Hz, 1 H, H-b), 8.92 (s, 2 H, H-12 and 
H-13), 8.95 (d, J = 4.7 Hz, 1 H, H-b), 9.16 (s, 1 H, H-3). 13C 
NMR (75 MHz, CDCl3): d = 26.2 (C-4¢), 31.7 (C-3¢), 74.2 
(C-2¢), 117.1 (C-8¢), 120.0 (C-6¢), 120.6, 120.9, 121.1, 121.5, 
122.1 (C-4¢a), 126.1, 126.5, 126.55, 127.0, 127.5, 128.1 (C-
7¢, Cm,p-Ph), 129.5 (C-5¢), 131.5, 131.9, 132.0, 132.1, 
132.4, 132.5 (C-b), 133.3, 133.7, 134.3, 134.4, 134.42, 134.6 
(Co-Ph), 142.6, 142.7, 142.8, 145.9, 146.5 (C-1), 148.4, 
150.0, 150.2, 150.3, 150.5, 150.9, 155.6 (C-8¢a). UV/vis 
(CHCl3): lmax (log e): 420 (4.98), 548 (4.59) nm. HRMS 
(ESI+): m/z [M + H]+ calcd for C53H37N4Ozn: 809.2253; 
found: 809.2273.

(17) Data for {2-[8-(2-Hydroxybenzyl)chroman-2-yl)]-
5,10,15,20-tetraphenylporphyrinato}zinc(II) (11c)
1H NMR (300 MHz, CDCl3): d = 2.17–2.75 (m, 4 H, H-
3¢and H-4¢), 3.79 (d, J = 14.4 Hz, 1 H, CH2), 3.92 (d, 
J = 14.4 Hz, 1 H, CH2), 4.97 (dd, J = 10.4, 1.1 Hz, 1 H, H-
2¢), 6.47 (dd, J = 8.0, 1.1 Hz, 1 H, H-3¢¢), 6.75 (dt, J = 7.5, 
1.1 Hz, 1 H, H-5¢¢), 6.84 (t, J = 7.4 Hz, 1 H, H-6¢), 6.87 (s, 1 
H, OH), 6.93–6.97 (m, 2 H, H-5¢ and H-4¢¢), 7.12 (dd, 
J = 7.4, 1.4 Hz, 1 H, H-7¢), 7.20 (dd, J = 7.5, 1.6 Hz, 1 H, H-
6¢¢), 7.52–7.55 (m, 1 H, Hp-Ph), 7.66–7.76 (m, 11 H, Hm,p-
Ph), 8.17–8.33 (m, 8 H, Ho-Ph), 8.77 (d, J = 4.7 Hz, 1 H, H-
b), 8.89 (d, J = 4.7 Hz, 1 H, H-b), 8.93 (s, 2 H, H-b), 8.95 (s, 
2 H, H-b), 9.26 (s, 1 H, H-3). 13C NMR (75 MHz, CDCl3): 
d = 26.3 (C-4¢), 30.5 (CH2), 31.2 (C-3¢), 75.3 (C-2¢), 116.4 
(C-3¢¢), 120.3 (C-5¢¢), 120.6, 120.8 (C-6¢), 121.07, 121.13, 
121.4, 122.2 (C-4¢a), 126.2, 126.4, 126.5 (Cm,p-Ph), 127.0 
(Cm,p-Ph, C-1¢¢), 127.5, 127.6, 127.8 (C-8¢), 128.1 (C-4¢¢, 
C-7¢, C-5¢, Cm,p-Ph), 128.2, 130.4 (C-6¢¢), 130.5; 131.5, 
132.06, 132.1, 132.2, 132.4 (C-b), 132.8 (C-3), 133.4, 133.6, 
134.4, 134.5, 134.9 (Co-Ph), 142.8, 142.9, 144.9, 145.8, 
148.1, 150.2, 150.2, 150.4, 150.4, 150.5, 150.8, 151.6 (C-
8¢a), 154.0 (C-2¢¢). UV/vis (CHCl3): lmax (log e): 420 (5.72), 
547 (4.59) nm. HRMS (ESI+): m/z [M]+ calcd for 
C60H42N4O2Zn: 914.2594; found: 914.2583.

(18) Dorrestijn, E.; Kranenburg, M.; Ciriano, M. V.; Mulder, P. 
J. Org. Chem. 1999, 64, 3012.
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