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ABSTRACT: Herein we report Cp*Ir(III)-catalyzed C−H/O−H bond functionalization of 

salicylaldehydes with -diazocarbonyl compounds for the synthesis of chromones under redox-

neutral conditions. The reactions proceeds at room temperature and displays excellent functional 

group tolerance along with high yields of the corresponding products. The developed reaction 

protocol was successfully applied for the late stage functionalization of estrone derivative.  

INTRODUCTION

In recent years, the area of mild CH activation has gained significant importance; as it allows to 

carry out the reactions at or below room temperature and in the absence of any oxidant or reductant.1 

This results into the enhancement of the functional group tolerance of the reactions and ultimately it 

leads to the application in the late stage functionalization of complex biomolecules. Salicylaldehydes 

constitutes an important class of organic molecules wide range of applicability. They serve as an 

important precursor for the synthesis of salen ligands of Jacobsen’s catalyst.2 In recent years, 

aldehydic C(sp2)−H bond functionalization has gained considerable attention.3,4 The synthesis of 

various important organic scaffolds such as chromones, benzofurans, 3 ‑coumaranones, chroman-4-
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ones, homoisoflavonoids, and flavones have been reported starting from salicylaldehydes through 

hydroxy-directed aldehydic CH functionalization.5 Although, there are several reports on transition 

metal catalyzed CH functionalization/annulation reactions of salicylaldehydes, there is only one 

report in the literature by Miura et al. using iridium catalytic system wherein, they have reported 

iridium(III)/copper(III) catalyzed decarbonylative coupling of salicylaldehydes with alkynes for the 

synthesis of benzofurans (Scheme 1).5h The major limitations of this protocol are the requirements of 

co-catalytic amounts of copper salt, oxygen as a external oxidant and very high temperature (165 C) 

to perform the reaction. Therefore, we became interested to develop an Ir(III)-catalyzed CH 

functionalization/annulation of salicylaldehydes under mild conditions, which can suppress the 

decarbonylation and switch the product selectivity from benzofurans to chromones. Chromones are 

oxygen containing heterocycles often encounters in biologically important natural products such 

flavones and isoflavones.6 In order to achieve this goal, initially we envisioned that the coupling of 

salicylaldehydes with diazo compounds would be an ideal route.7 However, very recently Huang et al. 

reported Rh(III)-catalyzed coupling between salicylaldehydes with -diazomalonates for the synthesis 

of 4-hydroxycoumarins, wherein during optimization studies they have reported that, the Ir(III) 

catalytic system failed to produced the required product.8

Scheme 1. Ir(III)-Catalyzed CH Functionalization/Annulation of Salicylaldehydes 
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Therefore, the choice of the diazo compound would be crucial to in order to synthesize the chromones 

from salicylaldehydes under Ir(III) catalytic system. In continuation of our interest in the area of mild 
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CH bond functionalization,9 herein we report Cp*Ir(III)-catalyzed CH/OH functionalization of 

salicylaldehydes with -diazocarbonyl compounds for the synthesis of chromones at room 

temperature.10 

RESULTS AND DISCUSSION 

Recently, we have successfully developed an iridium-catalyzed synthesis of 1,2-benzothaizines via 

C−H/N−H bond functionalization of sulfoximines with -diazocarbonyl compounds,9b wherein during 

the optimization studies, ethyl diazoacetoacetate (2a) has been used as a coupling partner. Therefore, 

we have decided to use salicylaldehyde (1a) and ethyl diazoacetoacetate (2a) as a model substrates for 

optimization of the reaction parameters (Table 1). 

Table 1. Optimization Studya

OH Ag (I) salt
additive, solvent
3 h, room temp

[Cp*IrCl2]2 (2.5 mol %)
EtO

O

N2

Me

O

2a1a 3aa

H

O

O

O
CO2Et

Me O

CO2Et

Me

4aa

Entry
Ag(I) salt 
(10 mol 

%)

Additive 
(equiv.)

Solvent Yield (%)b

of 3aa 

1 AgSbF6 - MeOH n.d.c

2 AgSbF6 PivOH (1.0) MeOH n.d.d

3 - PivOH (1.0) MeOH 73
4 - PivOH (2.0) MeOH 97
5 - AcOH (2.0) MeOH 62
6 - AdCO2H (2.0) MeOH 77
7 - PhCO2H (2.0) MeOH 86
8 - NaOAc (2.0) MeOH 60
9 - KOAc (2.0) MeOH 62
10 - PivOH (2.0) 1,4-Dioxane 80
11 - PivOH (2.0) 1,2-DCE 62
12 - PivOH (2.0) THF 44
13 - PivOH (2.0) MeCN 71

14e - PivOH (2.0) MeOH 70

15f - PivOH (2.0) MeOH n.d.
16g - PivOH (2.0) MeOH 13
17h - PivOH (2.0) MeOH n.d.
18i - PivOH (2.0) MeOH n.d.

aReaction conditions: 1a (0.10 mmol), 2a (0.12 mmol), [Cp*IrCl2]2 (2.5 mol %), AgSbF6 (10 mol %) and 

additives in solvent (0.6 mL) at room temperature for 3 h. bYields are based on crude 1H NMR (internal 
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standard: 1,1,2,2 tetrachloroethane). cFormation of 4aa was observed in 22% yield. dFormation of 4aa was 

observed in 27% yield. e[Cp*IrCl2]2 (1.0 mol %).  fWithout [Cp*IrCl2]2. gUsing [Cp*RhCl2]2 (2.5 mol %). hUsing 

[Ru(p-Cymene)Cl2]2  (2.5 mol %). iUsing [Cp*Co(CO)I2] (5.0 mol %). n.d. = not detected. Room temperature 

refers to 25 C.

At first, when salicylaldehyde 1a was reacted with ethyl diazoacetoacetate (2a) in presence of 

[Cp*IrCl2]2/AgSbF6 in MeOH at room temperature, it resulted in the formation of benzofuran 4aa in 

lower yield (entry 1). The addition of PivOH (1.0 equiv.) also did not change the outcome of the 

reaction (entry 2). To our surprise, when the reaction was performed using 1.0 equiv of PivOH in the 

absence of AgSbF6, it resulted in the complete switch in the product selectivity from benzofuran (4aa) 

to chromone (3aa), wherein 3aa was formed exclusively in 73% yield (entry 3). After screening the 

effect of different additives (entries 4-9), it was observed that the 2.0 equiv. of pivalic acid furnished 

the superior results giving quantitative yield of the product (entry 4). The use of other solvents such as 

1,2-DCE, CH3CN, 1,4-dioxane, and THF was not beneficial to further improve the yield of the 

reaction (entries 10-13). The yield of the product was dropped to 70% when catalyst loading was 

reduced to 1 mol% (entry 14). It is worth to mention that, although Lin and Yao et al. reported a 

similar reaction using [Cp*RhCl2]2 catalyst,5d when we used Rh(III) catalytic system under the present 

condition at room temperature, it resulted in the sluggish reaction with the lower yield (13% yield) of 

required chromone 3aa (entry 16). The use of other catalysts such as [(p-cymene)RuCl2]2 and 

[Cp*Co(CO)I2] did not furnish the required product (entries 17-18). 

After optimizing the reaction parameters, next we investigated the scope and generality of the 

developed protocol using different salicylaldehydes with ethyl diazoacetoacetate (2a) as a 

representative coupling partner (Scheme 2). To our delight, salicylaldehydes having electron-donating 

substituents such as Me, tBu, and OMe at C5 position and C4 position gave the corresponding 

products in high yields (3ba−3fa).The substrate with C5 phenyl group also furnish the chromone 3ha 

in 70% yield. The substrate bearing electron-withdrawing fluoro substituent (1g) at C4 position 

furnished the corresponding product (3ga) in quantitative yield. The salicylaldehyde bearing free 

hydroxy group also well tolerated furnishing the chromone 3ia in 71% yield. Ethyl 6-methyl-8-oxo-
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8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ja) was obtained starting from 6-

hydroxybenzo[d][1,3]dioxole-5-carbaldehyde (1j) in 90% yield. The substrates having halogen 

functionality such as Cl, Br and I gave the corresponding products in high yield (3ka−3ma). 

Scheme 2. Scope of Salicylaldehydesa
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O
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R = Me, 91% (3ea)
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aReaction conditions: 1 (0.40 mmol), 2a (1.5 equiv.), [Cp*IrCl2]2 (2.5 mol %) and PivOH (2.0 equiv.) in MeOH (2.5 

mL) at room temperature for 3 h. bt-AmOH was used as a solvent. cReaction carried out on 0.3 mmol scale. Isolated 

yields are given. 

The salicylaldehyde containing electron-withdrawing NO2 group at C5 position also participated in 

the reaction to furnish 3na in 73% yield. The reaction was further employed to the substrate having 

ortho-methyl group which resulted in the 89% yield of 3oa.Furthermore, when the reaction was 

performed on 1-hydroxy-2-naphthaldehyde (1p), it resulted in formation of required product (3pa) in 

good yield. The functional group tolerance of the current protocol was further demonstrated by using 

salicylaldehydes possessing keto and aldehyde functionalities which furnished the required 

chromones in excellent yields (3qa−3ra). It is quite interesting to note that, in case of 5-formyl 

salicylaldehyde (1r) the reaction selectively occurs at aldehydic CH bond next to the hydroxy group, 
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and thus keep other formyl group intact and provides an opportunity for further manipulation of C5 

formyl group. 

Next, the scope and reactivity pattern of -diazocarbonyl compounds was investigated using 

salicylaldehyde 1a as a representative coupling partner (Scheme 3). The reaction worked well with 

diazo compounds having ethyl ester (2a), methyl ester (2b), and tert-butyl ester (2c) to give the 

chromones in excellent yields (3aa−3ac). The reaction worked well with -diazocarbonyls having 

various substituents such as ethyl (2d), propyl (2e), isopropyl (2f), cyclopropyl (2g), and chloromethyl 

(2h), to furnish corresponding chromones in excellent yields (3ad−3ah). Diazo precursor obtained 

from pentane-2,4-dione also underwent coupling with salicylaldehyde to furnish the required product 

in moderate yield (3ai). The practicality of the current protocol was demonstrated by gram scale 

synthesis of the chromone 3aa; wherein when 1.0 gm of 1a was reacted under standard conditions, it 

furnished 3aa in 83% yield (1.58 gm).

Scheme 3. Scope of -diazocarbonyl compoundsa

94% (3ab)

3

92% (3ac)

21a

PivOH (2.0 equiv.)
MeOH, 3 h
room temp

[Cp*IrCl2]2 (2.5 mol %)
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O
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Me O

O
CO2Me

Me O

O
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O

O

O
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O

O
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O
CO2Et

O

O
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O

O
CO2Me

O

O
CO2Et

O

O

90% (3ad) 93% (3ae) 90% (3af)

44% (3ag) 92% (3ah) 64% (3ai)

94% (3aa)

N2

O

R3R4

Cl

O

Gram scale reaction
83% (1.58 gm)

aReaction conditions: 1a (0.40 mmol), 2 (1.5 equiv.), [Cp*IrCl2]2 (2.5 mol %) and PivOH (2.0 equiv.) in MeOH (2.5 

mL) at room temperature for 3 h. Isolated yields are given.

Late stage functionalization has gain considerable attention in recent years, as it utilizes CH bond 

of drug-like molecules for further diversification in order to generate new functionalized analogues.11 

Hence, we were interested check the applicability of the current protocol for the late stage 
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functionalization (Scheme 4). To our delight, estrone derivative 5 underwent CH/OH 

functionalization to furnish the required chromones in good yields (6a, 6f and 6c).

Scheme 4. Late Stage Functionalization of Estrone Derivativea
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91% (6a) 93% (6f) 87% (6c)

2

5 6

aReaction conditions: 5 (0.20 mmol), 2 (1.5 equiv.), [Cp*IrCl2]2 (2.5 mol %) and PivOH (2.0 equiv.) in MeOH (1.2 

mL) at room temperature for 3 h. Isolated yields are given.

In order to elucidate the reaction mechanism, some preliminary experiments were conducted 

(Scheme 5).12 At first, H/D exchange experiments of salicylaldehyde 1a was carried out to check the 

reversibility of the C−H activation step. When 1a was treated with 2.5 mol% of [Cp*IrCl2]2 along 

with CD3COOD (2.0 equiv.) in the absence of ethyl diazoacetoacetate (2a) in CD3OD, it did not show 

any D incorporation at the aldehydic CH bond (Scheme 5a), which indicates the irreversible nature 

of the C−H activation step. 

Scheme 5. Mechanistic Findings 
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(a) H/D Exchange Study

(c) Kinetic Isotope Effect
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The intermolecular competition experiment between salicylaldehydes having OMe and F substituents 

at C4 position revealed that substrate having F functionality reacts preferentially (Scheme 5b). In 

order to determine the kinetic isotope effect (KIE), the intermolecular competition experiment was 

carried out between equimolar quantities of 1a and 1a-D. The 1H NMR analysis of the mixture of 

unreacted 1a and 1a-D gave kH/kD = 1.34 (Scheme 5c). Furthermore, parallel experiments were 

conducted using 1a and 1a-D which resulted in KIE of value kH/kD = 1.5 (see supporting information 

for details). These moderate values of KIE indicates that the C−H bond cleavage may be the turnover-

determining step. 

Based on our preliminary mechanistic studies and precedent literature,10 the plausible mechanistic 

cycle is proposed in Scheme 6. At first [Cp*IrCl2]2 reacts with PivOH to form catalytically active 

Ir(III) species A, which undergoes irreversible cyclometallation with 1 through hydroxy-directed 

aldehydic CH bond activation to generate five-membered iridacycle B. Later on, diazo precursor 2 

coordinates with B in order to generate diazonium species C,7c which undergoes loss of nitrogen to 

generates Ir(III)-carbene species D. Migratory insertion of the Ir-carbene D into the iridium−carbon 

bond provides the six membered iridacyclic intermediate E which on protonolysis with pivalic acid 

leads to the formation F and regenerates Ir(III) species A. Finally, the alkylated product F undergoes 

acid promoted cyclization followed by dehydration to generate required chromone 3.

Scheme 6. Plausible Mechanism
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CONCLUSION

In conclusion, we have developed Ir(III)-catalyzed CH/OH  functionalization of salicylaldehyde 

with -diazocarbonyl compounds for the synthesis of chromones. The salient features of the present 

protocol includes mild reaction conditions (room temperature), high yields of the products with 

excellent functional group tolerance. The reaction works under air atmosphere and doesn't require any 

special precaution to maintain the inert atmosphere, thus makes it very operationally simple and 

practical method. The mechanistic studies revealed that C−H activation step is irreversible and may be 

the rate-determining step. The synthetic utility of this protocol was demonstrated via late stage 

functionalization. 

EXPERIMENTAL SECTION

General Remarks 

Unless otherwise stated, all commercial reagents and solvents were used without additional 

purification. Analytical thin layer chromatography (TLC) was performed on pre-coated silica gel 60 

F254 plates. Visualization on TLC was achieved by the use of UV light (254 nm). Column 

chromatography was undertaken on silica gel (100‒200 mesh) using a proper eluent system. NMR 

spectra were recorded in chloroform-d at 300 or 400 MHz for 1H NMR spectra and 75 MHz or 100 

MHz for 13C NMR spectra. Chemical shifts were quoted in parts per million (ppm) referenced to the 

appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to 

describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = 

quartet, dd = doublet of doublet, td = triplet of doublet, m = multiplet. Coupling constants, J, were 

reported in hertz unit (Hz). For 13C NMR chemical shifts were reported in ppm referenced to the 

center of a triplet at 77.0 ppm of chloroform-d. HRMS were recorded using ESI-TOF techniques. The 

substituted salicylaldehyde derivatives were prepared according to literature procedure.13 The -

diazocarbonyl compounds were prepared according to the procedure described in the literature.14
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General Procedure for Ir-Catalyzed CH/OH Functionalization of Salicylaldehydes for the 

Synthesis of Chromones. 

To a screw capped seal tube vial with a Teflon stirbar were added salicylaldehyde 1 (0.40 mmol), 

diazo compound 2 (0.60 mmol, 1.2 equiv), [Cp*IrCl2]2 (8.0 mg, 2.5 mol %), PivOH (81.6 mg, 2.0 

equiv.), and MeOH (2.5 mL) under air atmosphere. The reaction mixture was stirred at room 

temperature for 3 h. Then the reaction mixture was diluted with CH2Cl2 (10 mL). The solvents were 

removed under reduced pressure and the residue was purified by column chromatography on silica gel 

(n-hexane/EtOAc) to give the desired chromone derivatives.

Ethyl 2-methyl-4-oxo-4H-chromene-3-carboxylate (3aa).10 White solid (87.0 mg, 94%); 1H NMR 

(500 MHz, CDCl3) δ 8.20 (dd, J = 7.9, 1.0 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.45 – 7.36 (m, 2H), 4.42 

(q, J = 7.1 Hz, 2H), 2.52 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 174.3, 

166.6, 165.1, 155.5, 133.9, 126.1, 125.5, 123.3, 118.1, 117.7, 61.7, 19.5, 14.2. 

Gram Scale Synthesis of 3aa: To a screw capped seal tube vial with a Teflon stirbar were added 

salicylaldehyde 1a (1.0 gm, 8.20 mmol), ethyl diazoacetoacetate 2a (1.92 gm, 12.3 mmol, 1.5 equiv), 

[Cp*IrCl2]2 (163 mg, 2.5 mol %), PivOH (1.67 gm, 2.0 equiv.), and MeOH (50 mL) under air 

atmosphere. The reaction mixture was stirred at room temperature for 3 h. Then solvent was removed 

under reduced pressure and the residue was purified by column chromatography on silica gel (n-

hexane/EtOAc) to give the desired chromone 3aa (1.58 gm, 83%). 

Ethyl 2,6-dimethyl-4-oxo-4H-chromene-3-carboxylate (3ba).5d White solid (90.0 mg, 91%); 1H 

NMR (400 MHz, CDCl3) δ 7.97 (d, J = 0.9 Hz, 1H), 7.46 (dd, J = 8.5, 2.1 Hz, 1H), 7.31 (d, J = 8.5 

Hz, 1H), 4.46 – 4.37 (m, 2H), 2.50 (s, 3H), 2.44 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 13C{1H}  NMR (100 

MHz, CDCl3) δ 174.4, 166.4, 165.2, 153.8, 135.5, 135.1, 125.4, 123.0, 118.0, 117.4, 61.7, 20.9, 19.5, 

14.2.  
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Ethyl 6-(tert-butyl)-2-methyl-4-oxo-4H-chromene-3-carboxylate (3ca).10 Pale yellow solid (97.0 

mg, 84%); 1H NMR (500 MHz, CDCl3) δ 8.19 (d, J = 2.4 Hz, 1H), 7.71 (dd, J = 8.8, 2.5 Hz, 1H), 

7.35 (d, J = 8.8 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 2.50 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H), 1.36 (s, 9H); 

13C{1H}  NMR (100 MHz, CDCl3) δ 174.6, 166.4, 165.3, 153.7, 148.8, 131.7, 122.6, 121.8, 117.9, 

117.2, 61.6, 34.8, 31.2, 19.4, 14.2. 

Ethyl 6-methoxy-2-methyl-4-oxo-4H-chromene-3-carboxylate (3da).10 White solid (94.0 mg, 

90%); 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 3.1 Hz, 1H), 7.35 (d, J = 9.1 Hz, 1H), 7.24 (dd, J = 

9.1, 3.1 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 3.88 (s, 3H), 2.51 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 13C{1H}  

NMR (100 MHz, CDCl3) δ 174.2, 166.3, 165.3, 157.1, 150.3, 123.9, 123.8, 119.1, 105.2, 61.6, 55.9, 

19.4, 14.2. 

Ethyl 2,7-dimethyl-4-oxo-4H-chromene-3-carboxylate (3ea).5d White solid (90.0 mg, 91%); 1H 

NMR (500 MHz, CDCl3) δ 8.07 (d, J = 8.4 Hz, 1H), 7.24 – 7.12 (m, 2H), 4.41 (q, J = 7.1 Hz, 2H), 

2.49 (s, 3H), 2.47 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 13C{1H}  NMR (100 MHz, CDCl3) δ 174.3, 166.3, 

165.23, 155.7, 145.3, 126.9, 125.8, 121.1, 118.0, 117.4, 61.7, 21.8, 19.4, 14.2.  

Ethyl 7-methoxy-2-methyl-4-oxo-4H-chromene-3-carboxylate (3fa).10 White solid (86.0 mg, 82%); 

1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 8.9 Hz, 1H), 6.96 (dd, J = 8.9, 2.4 Hz, 1H), 6.81 (d, J = 

2.4 Hz, 1H), 4.41 (d, J = 7.1 Hz, 2H), 3.90 (s, 3H), 2.48 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); 13C{1H}  

NMR (100 MHz, CDCl3) δ 173.7, 166.0, 165.2, 164.2, 157.3, 127.5, 118.0, 117.1, 114.5, 100.1, 61.7, 

55.8, 19.3, 14.2.  

Ethyl 7-fluoro-2-methyl-4-oxo-4H-chromene-3-carboxylate (3ga). White solid (64.0 mg, 85%); 

m.p. 89– 91 °C; 1H NMR (400 MHz, CDCl3) δ 8.21 (dd, J = 8.7, 6.3 Hz, 1H), 7.19 – 7.06 (m, 2H), 

4.42 (q, J = 7.1 Hz, 2H), 2.51 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 13C{1H}  NMR (100 MHz, CDCl3) δ 

173.3, 166.8, 165.62 (d, J = 255.7 Hz), 164.7, 156.38 (d, J = 13.3 Hz), 128.55 (d, J = 10.7 Hz), 120.1, 

118.2, 114.19 (d, J = 22.7 Hz), 104.44 (d, J = 25.5 Hz), 61.8, 19.3, 14.1; HRMS (ESI) m/z calcd. for 

C13H11FO4Na [M+H]+: 273.0539, found: 273.0542. 
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Ethyl 2-methyl-4-oxo-6-phenyl-4H-chromene-3-carboxylate (3ha).5d White solid (86.0 mg, 70%); 

1H NMR (400 MHz, CDCl3) δ 8.40 (d, J = 2.2 Hz, 1H), 7.89 (dd, J = 8.7, 2.3 Hz, 1H), 7.63 (d, J = 

7.2 Hz, 2H), 7.54 – 7.42 (m, 3H), 7.41 – 7.31 (m, 1H), 4.43 (q, J = 7.1 Hz, 2H), 2.52 (s, 3H), 1.41 (t, J 

= 7.1 Hz, 3H); 13C{1H}  NMR (100 MHz, CDCl3) δ 174.3, 166.6, 165.0, 154.9, 139.0, 138.6, 132.7, 

128.9, 127.9, 127.1, 123.8, 123.4, 118.2, 118.1, 61.7, 19.5, 14.2. 

Ethyl 7-hydroxy-2-methyl-4-oxo-4H-chromene-3-carboxylate (3ia). Light brown solid (70.0 mg, 

71%); m.p. 184– 186 °C; 1H NMR (500 MHz, CDCl3) δ 8.47 (brs, 1H), 8.04 (d, J = 8.8 Hz, 1H), 

7.01 (dd, J = 8.8, 2.2 Hz, 1H), 6.89 (d, J = 2.2 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.50 (s, 3H), 1.37 (t, 

J = 7.1 Hz, 3H); 13C{1H}  NMR (125 MHz, CDCl3) δ 174.7, 167.1, 165.3, 162.6, 157.5, 127.7, 117.5, 

116.3, 115.8, 102.9, 61.9, 19.5, 14.1; HRMS (ESI) m/z calcd. for C13H13O5 [M+H]+: 249.0763, 

found: 249.0759.

 Ethyl 6-methyl-8-oxo-8H-[1,3]dioxolo[4,5-g]chromene-7-carboxylate (3ja).5d White solid (99.0 

mg, 90%); 1H NMR (400 MHz, CDCl3) δ 7.49 (s, 1H), 6.81 (s, 1H), 6.10 (s, 2H), 4.41 (q, J = 7.1 Hz, 

2H), 2.47 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); 13C{1H}  NMR (100 MHz, CDCl3) δ 173.3, 165.6, 165.2, 

152.9, 152.8, 146.3, 118.3, 117.5, 102.6, 102.5, 97.7, 61.7, 19.2, 14.2. 

Ethyl 6-chloro-2-methyl-4-oxo-4H-chromene-3-carboxylate (3ka).10 Light yellow solid (77.0 mg, 

75%); 1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 2.6 Hz, 1H), 7.61 (dd, J = 8.9, 2.6 Hz, 1H), 7.39 (d, 

J = 8.9 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 2.52 (s, 3H), 1.39 (d, J = 7.1 Hz, 3H); 13C{1H}  NMR (100 

MHz, CDCl3) δ 173.1, 166.9, 164.7, 153.8, 134.2, 131.5, 125.5, 124.3, 119.5, 118.1, 61.9, 19.5, 14.2. 

Ethyl 6-bromo-2-methyl-4-oxo-4H-chromene-3-carboxylate (3la).5d White solid (88.0 mg, 71%); 

1H NMR (400 MHz, CDCl3) δ 8.31 (d, J = 2.4 Hz, 1H), 7.75 (dd, J = 8.9, 2.4 Hz, 1H), 7.32 (d, J = 

8.9 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 2.51 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 

13C{1H}  NMR (100 MHz, CDCl3) δ 173.0, 166.9, 164.7, 154.3, 136.9, 128.7, 124.7, 119.7, 119.0, 

118.2, 61.9, 19.5, 14.2.
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Ethyl 6-iodo-2-methyl-4-oxo-4H-chromene-3-carboxylate (3ma).10 White solid (92.0 mg, 64%); 

1H NMR (500 MHz, CDCl3) δ 8.50 (d, J = 2.1 Hz, 1H), 7.92 (dd, J = 8.8, 2.2 Hz, 1H), 7.19 (d, J = 

8.8 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 2.51 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); 13C{1H}  NMR (125 

MHz, CDCl3) δ 172.8, 166.9, 164.6, 155.0, 142.5, 134.9, 124.9, 119.8, 118.3, 89.4, 61.9, 19.5, 14.2. 

Ethyl 2-methyl-6-nitro-4-oxo-4H-chromene-3-carboxylate (3na).5d White solid (81.0 mg, 73%); 

1H NMR (400 MHz, CDCl3) δ 9.04 (d, J = 2.8 Hz, 1H), 8.51 (dd, J = 9.2, 2.8 Hz, 1H), 7.61 (d, J = 

9.2 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H); 13C{1H}  NMR (100 

MHz, CDCl3,) 172.7, 167.4, 164.0, 158.2, 144.9, 128.3, 123.5, 122.7, 119.6, 118.6, 62.1, 19.4, 14.1.  

Ethyl 2,8-dimethyl-4-oxo-4H-chromene-3-carboxylate (3oa).5d White solid (88.0 mg, 89%); 1H 

NMR (500 MHz, CDCl3) δ 8.03 (d, J = 7.9 Hz, 1H), 7.49 (d, J = 7.3 Hz, 1H), 7.28 (t, J = 7.6 Hz, 

1H), 4.42 (q, J = 7.1 Hz, 2H), 2.54 (s, 3H), 2.46 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 13C{1H}  NMR (125 

MHz, CDCl3) δ 174.6, 166.2, 165.2, 154.0, 134.8, 127.0, 124.9, 123.6, 123.2, 117.9, 61.6, 19.4, 15.4, 

14.2.

Ethyl 2-methyl-4-oxo-4H-benzo[h]chromene-3-carboxylate (3pa).10 White solid (97.0 mg, 86%); 

1H NMR (500 MHz, CDCl3) δ 8.38 (d, J = 8.1 Hz, 1H), 8.08 (d, J = 8.7 Hz, 1H), 7.88 (d, J = 8.1 Hz, 

1H), 7.73 – 7.60 (m, 3H), 4.45 (q, J = 7.1 Hz, 2H), 2.62 (s, 3H), 1.43 (t, J = 7.1 Hz, 3H); 13C{1H}  

NMR (100 MHz, CDCl3) δ 174.1, 165.5, 165.0, 152.8, 135.8, 129.3, 128.0, 127.1, 125.4, 123.3, 

121.9, 120.7, 119.6, 119.7, 61.71, 19.3, 14.2.  

Ethyl 6-acetyl-2-methyl-4-oxo-4H-chromene-3-carboxylate (3qa). White solid (68.0 mg, 82%); 

m.p. 134– 136 °C; 1H NMR (400 MHz, CDCl3) δ 8.73 (d, J = 2.2 Hz, 1H), 8.30 (dd, J = 8.8, 2.2 Hz, 

1H), 7.50 (d, J = 8.8 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 2.69 (s, 3H), 2.55 (s, 3H), 1.41 (t, J = 7.1 Hz, 

3H); 13C{1H}  NMR (100 MHz, CDCl3) δ 196.2, 173.8, 167.0, 164.5, 158.0, 134.2, 133.0, 127.4, 

122.8, 118.5, 61.9, 26.6, 19.4, 14.1 (one carbon is missing because of overlap); HRMS (ESI) m/z 

calcd. for C15H15O5 [M+H]+: 275.0919, found 275.0919.

Page 13 of 21

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Ethyl 6-formyl-2-methyl-4-oxo-4H-chromene-3-carboxylate (3ra). White solid (70.0 mg, 90%); 

m.p. 126– 128 °C; 1H NMR (400 MHz, CDCl3) δ 10.10 (s, 1H), 8.67 (d, J = 2.0 Hz, 1H), 8.22 (dd, J 

= 8.7, 2.1 Hz, 1H), 7.57 (d, J = 8.7 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 2.56 (s, 3H), 1.41 (t, J = 7.1 Hz, 

3H); 13C{1H}  NMR (100 MHz, CDCl3) δ 190.2, 173.4, 167.1, 164.3, 158.7, 133.5, 132.2, 130.7, 

123.5, 119.2, 118.7, 62.0, 19.4, 14.1; HRMS (ESI) m/z calcd. for C14H14O5 [M+H]+: 261.0763, 

found: 261.0765.

Methyl 2-methyl-4-oxo-4H-chromene-3-carboxylate (3ab).10 Yellow solid (82.0 mg, 94%); 1H 

NMR (500 MHz, CDCl3) δ 8.19 (d, J = 7.9 Hz, 1H), 7.67 (t, J = 7.8 Hz, 1H), 7.46 – 7.37 (m, 2H), 

3.94 (s, 3H), 2.52 (s, 3H); 13C{1H}  NMR (125 MHz, CDCl3) δ 174.2, 167.2, 165.5, 155.4, 133.9, 

126.0, 125.5, 123.2, 117.6, 52.6, 19.6.  

tert-Butyl 2-methyl-4-oxo-4H-chromene-3-carboxylate (3ac).5d White solid (96.0 mg, 92%); 1H 

NMR (500 MHz, CDCl3) δ 8.18 (dd, J = 7.9, 1.4 Hz, 1H), 7.68 – 7.60 (m, 1H), 7.43 – 7.33 (m, 2H), 

2.48 (s, 3H), 1.61 (s, 9H); 13C{1H}  NMR (125 MHz, CDCl3) δ 174.4, 165.1, 164.2, 155.6, 133.7, 

125.9, 125.2, 123.4, 119.6, 117.6, 82.7, 28.1, 19.1. 

Ethyl 2-ethyl-4-oxo-4H-chromene-3-carboxylate (3ad).5d Yellow gummy solid; (88.0 mg, 90%); 1H 

NMR (500 MHz, CDCl3) δ 8.20 (dd, J = 8.0, 1.5 Hz, 1H), 7.67 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.44 

(d, J = 8.4 Hz, 1H), 7.42 – 7.36 (m, 1H), 4.42 (q, J = 7.1 Hz, 2H), 2.78 (q, J = 7.6 Hz, 2H), 1.40 (t, J = 

7.1 Hz, 3H), 1.37 (t, J = 7.6 Hz, 3H); 13C{1H}  NMR (125 MHz, CDCl3) δ 174.6, 170.2, 165.0, 

155.6, 133.9, 126.0, 125.4, 123.3, 117.9, 117.5, 61.67, 26.63, 14.1, 11.6.  

Ethyl 4-oxo-2-propyl-4H-chromene-3-carboxylate (3ae).5d White solid (97.0 mg, 93%); 1H NMR 

(400 MHz, CDCl3) δ 8.20 (dd, J = 7.9, 1.5 Hz, 1H), 7.67 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.49 – 7.34 

(m, 2H), 4.42 (q, J = 7.1 Hz, 2H), 2.73 (t, J = 7.5 Hz, 2H), 1.96 – 1.72 (m, 2H), 1.40 (t, J = 7.1 Hz, 

3H), 1.04 (t, J = 7.4 Hz, 3H); 13C{1H}  NMR (100 MHz, CDCl3) δ 174.5, 169.1, 165.0, 155.6, 133.9, 

125.9, 125.3, 123.2, 118.2, 117.7, 61.6, 34.8, 20.8, 14.1, 13.6.  
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Ethyl 2-isopropyl-4-oxo-4H-chromene-3-carboxylate (3af). Pale yellow solid (94.0 mg, 90%); 

m.p.58– 60 °C; 1H NMR (400 MHz, CDCl3) δ 8.20 (dd, J = 7.9, 0.9 Hz, 1H), 7.71 – 7.63 (m, 1H), 

7.46 (d, J = 8.4 Hz, 1H), 7.43 – 7.36 (m, 1H), 4.41 (q, J = 7.1 Hz, 2H), 3.14 (hept, J = 6.8 Hz, 1H), 

1.42 – 1.35 (m, 9H); 13C{1H}  NMR (125 MHz, CDCl3) δ 174.8, 172.0, 165.0, 155.6, 133.8, 125.9, 

125.3, 123.3, 117.7, 116.9, 61.7, 32.2, 19.8, 14.1; HRMS (ESI) m/z calcd. for C15H17O4 [M+H]+: 

261.1127, found: 261.1124.

Methyl 2-cyclopropyl-4-oxo-4H-chromene-3-carboxylate (3ag). White solid (43.0 mg, 44%); m.p. 

151– 153 °C; 1H NMR (500 MHz, CDCl3) δ 8.19 (dd, J = 7.9, 1.6 Hz, 1H), 7.63 (ddd, J = 8.7, 7.2, 

1.7 Hz, 1H), 7.41 – 7.35 (m, 1H), 7.31 (d, J = 8.4 Hz, 1H), 3.97 (s, 3H), 2.35 – 2.26 (m, 1H), 1.39 – 

1.33 (m, 2H), 1.21 – 1.13 (m, 2H); 13C{1H}  NMR (100 MHz, CDCl3) δ 173.9, 170.0, 166.0, 154.9, 

133.8, 126.2, 125.4, 123.4, 117.3, 117.0, 52.7, 13.1, 9.7; HRMS (ESI) m/z calcd. for C14H13O4 

[M+H]+: 245.0814, found: 245.0813.

Ethyl 2-(chloromethyl)-4-oxo-4H-chromene-3-carboxylate (3ah).5d Yellow solid (98.0 mg, 92%); 

1H NMR (400 MHz, CDCl3) δ 8.20 (d, J = 8.0 Hz, 1H), 7.77 – 7.67 (m, 1H), 7.50 (d, J = 8.4 Hz, 

1H), 7.44 (t, J = 7.6 Hz, 1H), 4.63 (s, 2H), 4.45 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H); 13C{1H}  

NMR (100 MHz, CDCl3) δ 174.2, 163.8, 162.5, 155.4, 134.6, 126.1, 126.0, 123.4, 118.5, 118.0, 62.2, 

39.8, 14.1.   

3-Acetyl-2-methyl-4H-chromen-4-one (3ai).10 White solid (52.0 mg, 64%); 1H NMR (400 MHz, 

CDCl3) δ 8.21 (dd, J = 8.4, 1.6 Hz, 1H), 7.73 – 7.61 (m, 1H), 7.47 – 7.38 (m, 2H), 2.65 (s, 3H), 2.53 

(s, 3H); 13C{1H}  NMR (100 MHz, CDCl3) δ 200.5, 175.9, 168.7, 155.4, 134.1, 125.9, 125.6, 123.8, 

123.7, 117.7, 32.2, 19.9. 

Ethyl (3aS,3bR,11bS,13aS)-8,13a-dimethyl-1,10-dioxo-1,2,3,3a,3b,4,5,10,11b,12,13,13a-dodeca-

hydrocyclopenta[5,6]naphtho[1,2-g]chromene-9-carboxylate  (6a).5d White solid (74.0 mg, 91%); 

1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.14 (s, 1H), 4.41 (q, J = 7.1 Hz, 2H), 3.18 – 2.93 (m, 

2H), 2.60 – 2.49 (m, 2H), 2.48 (s, 3H), 2.39 – 2.26 (m, 1H), 2.23 – 1.95 (m, 4H), 1.71 – 1.45 (m, 6H), 
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1.40 (t, J = 7.1 Hz, 3H), 0.92 (s, 3H); 13C{1H}  NMR (100 MHz, CDCl3) δ 220.3, 174.3, 166.2, 

165.3, 153.7, 144.4, 138.2, 122.2, 120.9, 117.7, 116.8, 61.6, 50.4, 47.8, 43.9, 37.7, 35.7, 31.3, 29.6, 

25.9, 25.6, 21.5, 19.4, 14.1, 13.7.

Ethyl (3aS,3bR,11bS,13aS)-8-isopropyl-13a-methyl-1,10-dioxo-1,2,3,3a,3b,4,5,10,11b,12,13, 13a-

dodecahydrocyclopenta[5,6]naphtho[1,2-g]chromene-9-carboxylate (6f). White solid (81.0 mg, 

93%); m.p. 176– 178 °C; 1H NMR (400 MHz, CDCl3) δ 8.07 (s, 1H), 7.19 (s, 1H), 4.40 (q, J = 7.1 

Hz, 2H), 3.24 – 2.95 (m, 3H), 2.63 – 2.43 (m, 2H), 2.40 – 2.26 (m, 1H), 2.22 – 1.93 (m, 4H), 1.74 – 

1.43 (m, 6H), 1.39 (t, J = 7.1 Hz, 3H), 1.35 (d, J = 3.2 Hz, 3H), 1.33 (d, J = 3.2 Hz, 3H); 13C{1H}  

NMR (125 MHz, CDCl3) δ 220.3, 174.8, 171.6, 165.3, 153.9, 144.3, 138.1, 122.1, 121.0, 116.9, 

116.6, 61.6, 50.4, 47.8, 44.0, 37.8, 35.7, 32.1, 31.3, 29.6, 25.9, 25.6, 21.5, 19.8, 14.1, 13.7; HRMS 

(ESI) m/z calcd. for C27H33O5 [M+H]+: 437.2328, found: 437.2335.

tert-Butyl (3aS,3bR,11bS,13aS)-8,13a-dimethyl-1,10-dioxo-1,2,3,3a,3b,4,5,10,11b,12,13,13a-

dodecahydrocyclopenta[5,6]naphtho[1,2-g]chromene-9-carboxylate (6c). White solid (76.0 mg, 

87%); m.p. 163– 165 °C; 1H NMR (400 MHz, CDCl3) δ 8.05 (s, 1H), 7.12 (s, 1H), 3.11 – 2.91 (m, 

2H), 2.61 – 2.47 (m, 2H), 2.45 (s, 3H), 2.37 – 2.26 (m, 1H), 2.23 – 1.95 (m, 4H), 1.69 – 1.43 (m, 

6H),1.62 (s, 9H) 0.91 (s, 3H); 13C{1H}  NMR (100 MHz, CDCl3) δ 220.3, 174.4, 164.8, 164.5, 153.8, 

144.1, 138.0, 122.1, 121.1, 119.2, 116.8, 82.5, 50.4, 47.8, 43.9, 37.7, 35.7, 31.3, 29.6, 28.1, 26.0, 25.6, 

21.5, 19.1, 13.7; HRMS (ESI) m/z calcd. for C27H32O5Na [M+Na]+: 459.2147, found: 459.2158.
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