
3‑Silaazetidine: An Unexplored yet Versatile Organosilane Species
for Ring Expansion toward Silaazacycles
Wanshu Wang, Song Zhou, Linjie Li, Yuanhang He, Xue Dong, Lu Gao, Qiantao Wang,
and Zhenlei Song*

Cite This: J. Am. Chem. Soc. 2021, 143, 11141−11151 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Small-ring silacycles are important organosilane
species in main-group chemistry and have found numerous
applications in organic synthesis. 3-Silaazetidine, a unique small
silacycle bearing silicon and nitrogen atoms, has not been
adequately explored due to the lack of a general synthetic scheme
and its sensitivity to air. Here, we describe that 3-silaazetidine can
be easily prepared in situ from diverse air-stable precursors
(RSO2NHCH2SiR

1
2CH2Cl). 3-Silaazetidine shows excellent func-

tional group tolerance in a palladium-catalyzed ring expansion
reaction with terminal alkynes, giving 3-silatetrahydropyridines and
diverse silaazacycle derivatives, which are promising ring frame-
works for the discovery of Si-containing functional molecules.

1. INTRODUCTION

Since Kipping’s pioneering synthesis of octaphenylcyclotetra-
silane,1 strained three- or four-membered silacycles2−5 have
remained some of the most active research areas for chemists
over the past 100 years. These small-ring silacycles have been
extensively studied in main-group chemistry and have found
numerous applications in organic synthesis. However,
silaazetidines, including 2-silaazetidine6−17 and 3-silaazetidine,
bearing both Si and N atoms are some of the exceptions
(Scheme 1, left). The synthesis, particularly for 3-silaazetidine,
is extremely challenging and only a very few analogues18−21

have been prepared. The challenge is evident from the
important breakthrough in the formation of the first 3-

silaazetidine example, 1, achieved by Brook and co-workers.18

They used silene and isocyanide derivatives, which had to be
heavily substituted with bulky groups and were not readily
accessible, to generate air-sensitive 1 by insertion of isocyanide
into the Si−N bond of an initially formed silaaziridine. The
lack of general synthetic pathways and the sensitivity to air
mean that the reactivity and synthetic utility of 3-silaazetidine
have been poorly explored in organic chemistry. This
circumstance is in sharp contrast to its well-known carbon
counterpart, silacyclobutane (Scheme 1, right).4,22 Silacyclo-
butane can be readily prepared with wide structural diversity
and is stable in air when it bears a tetraorganosilane. This
species has been emerging as a valuable organosilane synthon
for the preparation of silacarbocycles via ring expansion with a
variety of reaction partners, which include alkynes,23−32

alkenes,26 allenes,24 small rings,33−38 CO bonds,39−45 C−
H bonds,46−49 and others.50−53 The endocyclic Si−C bond
activation54−70 catalyzed by Ni-, Pd-, Pt-, or Rh-centered
transition metals leads to the formation of a new Si−C bond,
providing ring-expanded silacarbocycles with five-, six-, seven-,
and eight-membered-ring structures.
Our group has focused on the synthesis of 3-silaazetidine

derivatives due to their potential in the synthesis of
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Scheme 1. Comparison of 3-Silaazetidine and Its Carbon
Analogue Silacyclobutane
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silaazacycles. Given that N-containing heterocycles are
essential core frameworks in numerous pharmaceuticals and
functional materials, silaazacycles are emerging as a particularly
promising bioisostere for the development of Si-containing
drugs71−77 and advanced materials78 (Scheme 2). In some

cases of medical applications, the unique characteristics of
silicon have caused the silicon-containing bioactive compounds
to have greater cell penetration,79 greater bioactivity,80 and
lower toxicity81 in comparison to the corresponding carbon
analogues. In this regard, the development of efficient
pathways for the construction of silaazacycles is of growing
interest. Traditional methods toward silaazacycles utilize either
C−X (X = halide) substitution with nitrogen to form a C−N
bond (Scheme 3a-I),74,82−86 or Si−X (X = halide) substitution

with organolithium to form a C−Si bond (Scheme 3a-II).87−93

Insertion of a nitrile into silacyclopropene also provided a
novel entry into silaazacyclopentadiene and silaazacyclohex-
adiene.94 In addition to the above methods, a great
breakthrough achieved recently in the field of C−H silylation
with hydrosilanes enabled the synthesis of silaazacycles under
much milder conditions with a wider scope of substrates
(Scheme 3a-III). The representative strategies include cross-
dehydrogenative heteroaromatic C(sp2)−H silylation catalyzed
by an earth-abundant alkali-metal species (t-BuOK)95 and
C(sp3)−H silylation catalyzed by Ir96 or Ru catalysts97 or by a
transition-metal-free catalysis using B(C6F5)3.

98,99 Despite this
elegant progress, synthesis efforts have been limited primarily
to the cyclization of chainlike precursors, indicating the need
for new strategies for the construction of diverse silaazacycles
from readily accessible precursors.
In the present study, we envisioned that 3-silaazetidine could

serve as a general substrate for the synthesis of silaazacycles via
a distinct ring expansion pathway (Scheme 3b). As a starting
point, we prepared the structurally diverse 3-silaazetidine
precursors 2 (RSO2NHCH2SiR

1
2CH2Cl). The representative

analogue 2a was a stable white solid that was readily prepared
in two steps on a 5 g scale using commercially available
reagents. Upon reaction with DBU, precursors 2 gave 3-
silaazetidine derivatives 3 via an intramolecular N-substitution.
Although the derivatives 3 could not be isolated, they were
stable in situ, effectively addressing the poor accessibility of 3-
silaazetidine. A palladium-catalyzed ring-expansion reaction of
3 via endocyclic Si−C bond activation was then performed
with terminal alkynes to facilitate the formation of new Si−C
and C−C bonds. The reaction gives rise to 3-silatetrahy-
dropyridines 4, which were finally used to prepare diverse
silaazacycles. Herein we report the details of this study.

2. RESULTS AND DISCUSSION
2.1. Synthesis of 3-Silaazetidine Precursor 2a. The 3-

silaazetidine precursor 2a was synthesized from commercially
available Me2Si(CH2Cl)2 and TsBocNH by the two-step
procedure shown in Scheme 4. K2CO3-promoted mono-N-

substitution of Me2Si(CH2Cl)2 with TsBocNH in DMF at 60
°C for 1.5 h gave rise to 2a′ in 58% yield. The potentially
competitive bi-N-substitution was not observed due to the
increased “neopentyl effect”100 in 2a′ sterically prohibiting the
second N-substitution. The subsequent Boc deprotection of
2a′ under acidic conditions afforded 3-silaazetidine precursor
2a as an air-stable white solid in 70% yield on a 5 g scale.

2.2. Screening of Reaction Conditions. The reaction of
2a and 1-phenylethyne using Pd(PPh3)4 as a catalyst, DBU as a
base, and 4 Å molecular sieves as an additive in DMF at 80 °C
afforded 3-silatetrahydropyridine 4a and disiloxane 5a,
suggesting the formation of 3-silaazetidine 3a. However, the
ring-expanded product 4a was obtained in only 11% yield
(Table 1, entry 1), implying that most of the 3a did not react
with 1-phenylethyne. Instead, the ring opened hydrolytically
during workup, giving the corresponding silanol, which in turn

Scheme 2. Selected Examples of Bioactive Molecules
Containing Silaazacycles

Scheme 3. Traditional Strategy to Form Silaazacycles by
Cyclization (a) and Ring Expansion of 3-Silaazetidine to
Form Silaazacycles (b; This Work)

Scheme 4. Synthesis of 3-Silaazetidine precursor 2a
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dimerized to disiloxane 5a in 56% yield. In contrast, the
formation of 4a (44%) was significantly favored in nonpolar
toluene, while the generation of the undesired byproduct 5a
was significantly inhibited (12%; entry 2). Among the tested
bases, DBU was the most effective, as the less basic DABCO
was ineffective for N−H deprotonation (entry 3), while the
stronger base TMG promoted the decomposition of 3a (entry
4). Screening of Pt-, Ni-, or Rh-centered catalysts as well as
other Pd catalysts revealed that Pd(PPh3)2Cl2 was as effective
as Pd(PPh3)4 (entry 5). However, the overall formation
efficiency of 3-silaazetidine 3a was higher with Pd(PPh3)2Cl2
than with Pd(PPh3)4 (67% vs 56%), identifying Pd(PPh3)2Cl2
as the optimal reaction catalyst.
Furthermore, with an increase in the temperature from 80 to

120 °C, the concentration of 2a to 0.4 M, and the loading of
DBU to 2.0 equiv, while the solvent was also changed to
xylenes, favored the ring expansion of 3a, giving 4a in 60%
yield (Table 1, entry 6). The additive 4 Å MS, which was used
for absorption of water in the reaction at 80 °C (entries 1−5),
was no longer needed at 120 °C due to the much faster ring
expansion of 3a toward 4a. However, the new byproduct 6a
was also formed in 10% yield, resulting from the nucleophilic
substitution of the 1-phenylethyne anion with 2a. In order to
inhibit this side reaction, various Lewis acids were tested to
reduce the nucleophilicity of 1-phenylethyne. ZnI2 proved to
be the most effective,101 affording 4a in 72% yield and
completely eliminating the formation of 5a and 6a (entry 7).
Under these optimized conditions, 4a could also be prepared
on a 3 g scale with a comparably high yield of 68% (entry 7). A
series of N-substituents were also tested to examine their effect
on the formation efficiency of 4. Similar to the case for 2a,
sulfonamide precursors 2b,c gave compounds 4b,c, respec-
tively, in 44% yield (entries 8 and 9). In contrast, 2d bearing
the less electron-withdrawing p-CF3-C6H4CO group could not
be deprotonated, affording only 6d in 23% yield (entry 10).
2.3. Scope of Alkynes. The scope of alkynes was

examined using the 3-silaazetidine precursor 2a (Table 2).
Aryl alkynes bearing a phenyl ring substituted with various
electron-donating or electron-withdrawing groups gave 3-
silatetrahydropyridines 4e−x in generally good yields. The

higher yield of the 4-Me-C6H4-substituted analogue 4g (75%)
in comparison to that of 2-Me-C6H4-substituted 4e (59%)
suggested that the ortho substitution sterically hindered the
alkyne insertion. A primary amine and a secondary amide were
also tolerated, yielding 4n,o in respective yields of 38% and
57%. However, aryl bromide, a typical moiety used in Pd-
catalyzed cross-coupling reactions, interfered with our process,
giving 4t in only 12% yield. The formation of 4aa indicated the
potential utility of the approach in developing ferrocene-type
ligands. Alkynes substituted with heterocycles bearing one or
more N, O, or S heteroatoms served as good substrates for
4ab−am. The basic N-heterocycle moiety in the substrates did
not interfere with the basic function of DBU.
Functionalized alkyl alkynes, including those derived from

propargyl alcohol or thiol (4an−aw), were also well tolerated,
except for 4aq containing a free hydroxyl group. The yield
differences among 4an−ap indicated a certain steric bias
against alkynes. Extensive examination of a wide range of
propargyl amines and amides indicated that free secondary or
tertiary amines (4ax−az and 4ba−bf), either in chainlike
substrates or in ring structures with three or five to seven
members, can function well in this approach without affecting
the chirality of the functional groups (4ay). Good applicability
was also observed for secondary and tertiary propargyl amides
and lactams (4bg−bp), while rings with three to eight
members or spirocyclic rings were well tolerated. Analogues
4bq−bu bearing a diene moiety from the corresponding
enynes were also successfully synthesized in good yields.
However, the reaction failed to give 4bv from the
corresponding diyne, in which both terminal and internal
alkynes were inactive under these conditions. An inefficiency
was also observed for ring expansion with 1-phenyl-1-propyne,
indicating that the reaction was unsuitable for more sterically
demanding internal alkynes. Although methyl propiolate
proved to be a more challenging substrate in comparison to
inactivated alkynes, because the aza-Michael addition signifi-
cantly interfered with the ring expansion, the analogue 4bw
was successfully prepared in 32% yield using 5 mol % of
PdCp(η3-C3H5) as the catalyst and 10 mol % of PPh3 as the
ligand by forming the intermediate 3a prior to the alkyne

Table 1. Screening of Reaction Conditionsa

entry 2 cat. (5 mol %) basec (equiv) solvent (M) T (°C) t (min) additive 4 (%) 5 (%) 6 (%)

1 2a (R = SO2Tol) Pd(PPh3)4 DBU (1.2) DMF (0.1) 80 180 4 Å MS 11 56 -
2 2a (R = SO2Tol) Pd(PPh3)4 DBU (1.2) toluene (0.1) 80 180 4 Å MS 44 12 -
3 2a (R = SO2Tol) Pd(PPh3)4 DABCO (1.2) toluene (0.1) 80 180 4 Å MS - - -
4 2a (R = SO2Tol) Pd(PPh3)4 TMG (1.2) toluene (0.1) 80 180 4 Å MS - - -
5 2a (R = SO2Tol) Pd(PPh3)2Cl2 DBU (1.2) toluene (0.1) 80 180 4 Å MS 43 23 -
6 2a (R = SO2Tol) Pd(PPh3)2Cl2 DBU (2.0) xylenes (0.4) 120 10 - 60 9 10
7 2a (R = SO2Tol) Pd(PPh3)2Cl2 DBU (2.0) xylenes (0.4) 120 10 ZnI2 72 (68b) - -
8 2b (R = SO2t-Bu) Pd(PPh3)2Cl2 DBU (2.0) xylenes (0.4) 120 10 ZnI2 44 - -
9 2c (R = SO2Me) Pd(PPh3)2Cl2 DBU (2.0) xylenes (0.4) 120 10 ZnI2 44 - -
10 2d (R = COC6H4-p-CF3) Pd(PPh3)2Cl2 DBU (2.0) xylenes (0.4) 120 10 ZnI2 - - 23

aConditions for entries 1−5: 2 (0.1 mmol), 1-phenylethyne (0.12 mmol), cat. (5 mol %), 4 Å MS (40 mg), solvent (1.0 mL). Conditions for
entries 6−10: 2 (0.2 mmol), 1-phenylethyne (0.24 mmol), cat. (0.05 mol %), ZnI2 (0.04 mmol) except for entry 6, solvent (0.5 mL). See Tables S-
1−S-3 in the Supporting Information for details. b3 g scale after recrystallization. cAbbreviations: DABCO, 1,4-diazabicyclo[2.2.2]octane; DBU,
1,8-diazabicyclo[5.4.0]undec-7-ene; TMG, 1,1,3,3-tetramethylguanidine.
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Table 2. Scope of Alkynesa
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addition. Of note, 4bw is a silicon analogue of the natural

alkaloids arecoline (GABA transporter inhibitor) and guvacine

hydrochloride (agonist at both muscarinic and nicotinic

acetylcholine receptors), indicating its potential in the

development of silicon-containing molecules possessing
bioactivity relevant to central nervous system targets.
The applicability of our approach was further demonstrated

by the late-stage functionalization (LSF)102 of drug molecules
bearing a terminal alkyne (pargyline, propyzamide, erlotinib)

Table 2. continued

aGeneral optimized reaction conditions: 2a (0.2 mmol), alkynes (0.24 mmol), Pd(PPh3)2Cl2 (5 mol %), DBU (0.4 mmol), ZnI2 (0.04 mmol),
xylenes (0.5 mL), 120 °C, 10 min. Abbreviations: DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene. bAlkyne (5.0 equiv). c2a (2.0 equiv). dAlkyne (2.0
equiv). e5 mol % of PdCp(η3-C3H5) and 10 mol % of PPh3; 3a was formed prior to the alkyne addition. fDisiloxane 5a was observed as the
predominant product.

Table 3. Scope of 3-Silaazetidine Precursors 2a

aGeneral optimized reaction conditions: 2 (0.2 mmol), 1-phenylethyne (0.24 mmol), Pd(PPh3)2Cl2 (5 mol %), DBU (0.4 mmol), ZnI2 (0.04
mmol), xylenes (0.5 mL), 120 °C, 10 min.
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or of drug derivatives readily obtained via condensation with
propargyl amine (febuxostat, enrofloxacin) by N- or O-
propargylation (pioglitazone, cholesterol) and by cross-
coupling with alkyne (estrone) (Table 2). The 3-silatetrahy-
dropyridine moiety was efficiently installed (4bx−bz and 4ca−
ce), while various functionalities were well tolerated, such as
heterocycles (4bz,ca,cb,ce), a ketone (4ce), a nitrile (4ca), or
a potentially sensitive α,β-unsaturated keto amide (4cb). This
indicates the potential of the approach in drug discovery and
other applications.
2.4. Scope of 3-Silaazetidine Precursor 2. The scope of

the 3-silaazetidine precursors 2 was examined using 1-
phenylethyne as the model alkyne (Table 3). Disubstitution
of the Si atom with Et or n-Bu or the bulkier i-Pr or
cyclopentyl groups (2e−h) did not affect the reaction
efficiency and afforded 4cf−ci in 50−61% yield (entries 1−
4), which were slightly lower than that of 4a. However, the
divinyl-substituted analogue 2i decomposed quickly and 4cj
was not isolated (entry 5). In contrast, mono- or disubstitution
of the Si atom with an aryl moiety (2j−m) led to the formation
of the corresponding 3-silatetrahydropyridines 4ck−cn in good
yields (entries 6−9). Furthermore, 3-silaazetidine precursors
2n−p bearing a silacycle enabled the synthesis of the respective
analogs 4co−cq, where Si served as the ring junction (entries
10−12).
2.5. Mechanism. In situ 1H and 29Si NMR spectroscopic

studies of 3a were performed by mixing 2a and 1.0 equiv of
DBU in toluene-d8 at 120 °C for 10 min. A peak at 3.04 ppm
corresponding to the symmetrical CH2 in 3a was observed in
the 1H NMR spectrum (Figure 1a), while the 29Si chemical
shift of the Si atom in 3a was detected at 3.99 ppm (Figure 1a).
Although the spectroscopic data confirmed the formation of

3a,103 this intermediate could not be isolated by chromatog-
raphy or crystallization due to its high sensitivity to moisture,
which led to rapid hydrolytic ring opening, giving disiloxane
5a. In order to identify the origin of this instability, particularly
given the higher moisture stability of silacyclobutane, we
calculated the ring strain104−107 and dipole moment of 3-
silaazetidine 3c and silacyclobutane 7.108 Interestingly, 3c had
a lower ring strain energy than 7 (3.56 vs 6.94 kcal/mol), while
its dipole moment (6.43 D) was 10 times that of 7 (0.59 D)
(Figure 1b). These results suggest that the high moisture
sensitivity of 3 is probably due not to ring strain but to the
strong dipole moment, which increases the electrophilicity of
the Si atom, facilitating its attack by H2O. This idea was
supported by 29Si NMR data, where the peak of 3a (3.99 ppm)
was more upfield than that of 7 (18.4 ppm) (Figure 1b),
consistent with Krapivin’s observation that peaks move more
upfield as the positive charge on the Si atom increases.109

To determine the first reaction step, we carried out a series
of control NMR experiments (Figure 1c and Figures S1−S5 in
the Supporting Information). The addition of CF3-p-C6H4C
CH to Pd(PPh3)4

110 (Figure 1c-I) in a 24:1 molar ratio
resulted in a distinct 31P NMR spectrum (Figure 1c-II), in
which a new peak at 25.0 ppm appeared, along with two broad
peaks ranging from −8 to 35 ppm probably due to the rapid
ligand exchange. These results imply that coordination of the
palladium catalyst with the alkyne occurs, despite the fact that
it is weaker than that with electron-deficient alkynes such as
MeO2CCCCO2Me,29,111 which is more effective for
encouraging back-bonding from palladium. However, no new
peak or notable change was observed in the 31P NMR
spectrum when 3a was mixed with Pd(PPh3)4 in a 20:1 molar
ratio (Figure 1c-III). The 1H NMR spectrum of a mixture of

Figure 1. Elucidation of the ring expansion mechanism. (a) 1H and 29Si NMR spectra of 3a. (b) Ring strain, dipole moment, and 29Si NMR
chemical shifts of silacyclobutane 7 and 3-silaazetidines 3c and 3a. (c) 31P NMR spectra of Pd(PPh3)4 (I), CF3-p-C6H4CCH/Pd(PPh3)4 (24:1)
(II), 3a/Pd(PPh3)4 (20:1) (III) and the 1H NMR spectrum of 3a/Pd(PPh3)4 (1:1) (IV) monitored at 90 °C. All experiments were carried out in
toluene-d8. (d) Proposed catalytic mechanism for the ring expansion of 3a toward 3-silatetrahydropyridines 4.
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3a and Pd(PPh3)4 in a 1:1 molar ratio also remained
unchanged even at 90 °C, in contrast to that of 3a (Figure
1c-IV). These results suggest that Pd(PPh3)4 on its own does
not interact with 3a.
On the basis of the above observations, the reaction pathway

triggered by the coordination of Pd(0) with alkyne111,112

seems more reasonable for our case and is consistent with
previous experimental29 and theoretical studies (Figure
1d).113,114 The resulting intermediate 8 might adopt an L-
shaped π complex according to the Dewar−Chatt model.
While we cannot completely rule out the possibility that 8
undergoes transmetalation via σ-bond metathesis with 3a to
give Pd-silacycloheptene 10, we more prefer the pathway in
which 8 adds oxidatively to the endocyclic Si−C bond of 3-
silaazetidine 3a, leading to the five-membered palladium cycle
9. A migratory insertion into the Pd−Si bond follows,115

affording Pd-silacycloheptene 10 with the large phenyl group
distal to the bulky silyl moiety. Reductive elimination of 10
ultimately generates 3-silatetrahydropyridine 4 and releases
Pd(0) into the next catalytic cycle.
2.6. Diverse Transformations. The endocyclic alkene,

silicon, and nitrogen moieties of selected 3-silatetrahydropyr-
idines 4 were further functionalized to examine the
applicability of the synthesized analogues to the preparation
of silaazacyclic compounds (Scheme 5). 4bq underwent an
endo-type Diels−Alder reaction to give the sila-bicyclic
analogue 7 in 82% yield in the presence of EtAlCl2 or the
sila-tricyclic analogue 8 in 90% yield upon heating. Epoxidation
of 4a with DMDO gave epoxysilane 9 in 81% yield, which
underwent a regioselective epoxide ring opening reaction with
NaN3, affording the sila-azido alcohol 10 in 77% yield. In
contrast, 4cn was hydrogenated to afford 3-silapiperidine 11 in
68% yield. Subsequent removal of the phenyl substituent on Si
using iodine monochloride, followed by reduction with LiAlH4,
furnished two isolable hydrosilane diastereomers 12 (cis:trans

= 1.2:1) in 69% yield. Hydrogenation of 4b and removal of the
t-BuSO2 group with 6 M aqueous HCl formed the salt 13.
Reductive amination of 13 with cinnamaldehyde afforded the
3-silapiperidine 14 bearing a tertiary amine in 47% yield. The
nitrogen moiety in 13 also reacted with salicylic acid, giving the
silaazacyclic analogue 15 in 51% yield.

3. CONCLUDING REMARKS

In summary, we have developed a range of air-stable 3-
silaazetidine precursors (RSO2NHCH2SiR

1
2CH2Cl). The

representative precursor 2a (R = Ts, R1 = Me) was practically
accessed in two steps on a 5 g scale using commercially
available reagents. DBU-promoted N-cyclization of precursors
enables the in situ synthesis of 3-silaazetidine analogues,
effectively addressing the longstanding poor accessibility of 3-
silaazetidine. A palladium-catalyzed ring expansion of 3-
silaazetidine via endocyclic Si−C bond activation was achieved
to give a wide range of 3-silatetrahydropyridines by forming
new Si−C and C−C bonds with terminal alkynes. The
resulting 3-silatetrahydropyridines could be further function-
alized at the endocyclic alkene, silicon, and nitrogen moieties,
confirming the applicability of the developed approach to the
synthesis of silaazacyclic compounds. DFT calculations of ring
strain and dipole moment for 3-silaazetidine and silacyclobu-
tane suggest that the moisture sensitivity of 3-silaazetidine is
due to its strong dipole moment. The mechanistic studies
revealed that the coordination of Pd(0) with alkyne initiated
the reaction and triggered the oxidative addition to the
endocyclic Si−C bond of 3-silaazetidine.
Our synthetic method toward 3-silaazetidine shows good

generality and clearly supports that this untapped small-ring
silacycle can be readily prepared. We expect that this method
would inspire more creative strategies that allow the synthesis
of more diverse 3-silaazetidines. Our ring expansion reaction

Scheme 5. Diverse Transformations of 3-Silatetrahydropyridines 4
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also showcased the first application of 3-silaazetidine in organic
synthesis, highlighting that it could be used as a robust and
versatile synthon and could find wide application in the
synthesis of silaazacycles and other silicon-containing func-
tional molecules. Further research will focus on the develop-
ment of more structurally diverse 3-silaazetidine precursors,
the application of 3-silaazetidine to other types of ring
expansion, and the enantioselective construction of chiral
silicon centers via asymmetric Si−C bond activation.
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