Da

/KAP1

Date: 02-07-12 10:59:00

FULL PAPER

DOI: 10.1002/ejic.201200363

Stabilized Germylenes Based on Diethylenetriamines and Related Diamines: Synthesis, Structures, and Chemical Properties

Pages: 14

Mengmeng Huang,^[a,b] Marina M. Kireenko,^[a] Kirill V. Zaitsev,^{*[a]} Yuri F. Oprunenko,^[a] Andrei V. Churakov,^[c] Judith A. K. Howard,^[d] Elmira Kh. Lermontova,^[c,e] Denis Sorokin,^[e] Thomas Linder,^[e] Jörg Sundermeyer,^{*[e]} Sergey S. Karlov,^{*[a]} and Galina S. Zaitseva^[a]

Keywords: Germanium / N-ligands / X-ray diffraction / Amines / Lithium

A series of novel, low-valent germanium compounds 2a-2j based on four diethylenetriamines 1a-1d, (methyl)bis(pyrrol-2-ylmethyl)amine (1e), N,N'-(sulfanediyldibenzene-2,1-diyl)bis(pentafluoroaniline) (1f), N,N'-(oxydibenzene-2,1-diyl)bis-(pentafluoroaniline) (1g), and (pentafluorophenyl)amines 1i and 1j have been obtained either by the reaction of Ge[N-(SiMe₃)₂]₂ with various diamines (1a-1e) or by the metathesis reaction of [GeCl₂-dioxane] with lithium amides. The oxidat-

ive insertion (with halogenation reagents, MeI, disulfides), [1+4] cycloaddition, and oxidation reactions of the synthesized germylenes were investigated. The compositions and structures of the novel compounds were established by elemental analysis, ¹H and ¹³C NMR spectroscopy, and X-ray diffraction analysis (germylenes **2b**, **2i**, **2j**, Ge⁴⁺ compounds **5b**, **7a**, **7b**, **8**, **10**, **11**). All the synthesized germylenes are monomeric.

Introduction

Compounds containing low-valent group 14 elements have attracted interest as models for highly important derivatives of electron-deficient carbon analogues of carbenes. In addition, the study of silylenes, germylenes, and stannylenes is also important because of their use as catalysts in organic processes such as ring-opening polymerization (ROP)^[1] and as precursors for the synthesis of superconducting materials by metal-organic chemical vapor deposition (MOCVD) processes.^[2] In general, these compounds are very reactive, thus additional stabilization is required. Usually, the stabilization of an electron-deficient center is realized by ligand design, balancing the inverse relationship between stability and reactivity. Two different approaches may be marked out: thermodynamic and/or kinetic stabilization of the reactive vacant p-orbital of the low-valent group 14 element. Bulky substituents in the ligand lead to kinetic stabilization, whereas thermodynamic stabilization arises from the structure of the ligand, with some groups possessing the ability

 [a] Chemistry Department, Moscow State University, B-234 Leninskie Gory, 119991 Moscow, Russian Federation Fax: +7-495-932-8846 E-mail: sergej@org.chem.msu.ru zaitsev@org.chem.msu.ru

- [b] Department of Chemistry, Zhengzhou University, University Road 7, Zhengzhou 450052, P. R. China
- [c] Institute of General and Inorganic Chemistry, Russian Academy of Sciences,
- Leninskii pr. 31, 119991 Moscow, Russia
- [d] Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, United Kingdom
- [e] Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg/Lahn, Germany

to donate additional lone-pair electrons, such as a Cp ligand and neutral N and O atoms (π -donating –OR and –NR₂ groups). The electron stabilization may be a result of an additional transannular interaction of the metal centre with a donor group. Note that diamidogermylenes and dialkoxy(aryloxy)germylenes are sufficiently stable to be studied as "usual" molecular substances by appropriate techniques.

At the same time, germylenes of the formulae $Ge(OR)_2$ and $M(NR_2)_2$ are able to exist in the dimeric state with the metal atoms of one monomeric unit forming an additional bond with an O or N atom of the other unit. Typically, these dimers are less reactive than monomeric "heavier" carbenes.

Among the diamidogermanium(II) derivatives, two-coordinate Arduengo-type N-heterocyclic germylene (NHGe) compounds are widely known.^[3] The reactivities of these compounds have been studied to a much greater extent than those of other diamidogermylenes. In addition, the stabilities and reactivities of NHGes are very different to those of other divalent amino-substituted derivatives of group 14 elements.

In our opinion, the dianions of diethylenetriamines, RN(CH₂CH₂N⁻R')₂, are very promising ligands for the stabilization of monomeric structures of germylenes for the following reasons: (1) the possible additional transannular interaction with the nitrogen atom of the ligand and (2) the possibility of easily designing the structures of such ligands, for example replacing the H atoms of NH groups with different substituents. The latter allows the electron properties of the central atom to be changed by varying the electron

Pages: 14

FULL PAPER

properties of these substituents. We also suppose that the stabilization of the low-valent centre bound to these ligands should be achieved not only by electronic effects but also by kinetic factors, namely due to bulky substituents at nitrogen atoms covalently bound to the atom of the group 14 elements. To date, only two divalent derivatives of group 14 elements containing diethylenetriamine as a ligand have been described. These are MeN(CH₂CH₂NSiMe₃)₂Sn and MeN(CH₂CH₂N*i*Pr)₂Sn.^[4] No germanium analogues have yet been prepared. There is only one example of a germylene derivative stabilized by N₂N coordination, [MeSi(µ-N*t*Bu)₂SiMe(*t*BuN)₂]Ge.^[5]

In this paper we describe the synthesis and chemical properties of the new germylenes 2a-e with N₂N coordination based on diethylenetriamine ligands 1a-e, the structural determination of the compounds obtained and their structure-property correlations. Germylenes 2f-j based on a set of novel chelating bis(diarylamido) ligands were prepared for comparison. This work forms a part of our studies on the synthesis and investigation of "heavy carbene" analogues stabilized by polydentate ligands.^[6]

Results and Discussion

Germylene Synthesis

There are two general approaches to the preparation of the target diamidogermylenes. The first is based on the transamination of diethylenetriamine ligands with aminogermylenes such as Lappert's germylene, $Ge[N(SiMe_3)_2]_2$.^[7] The second approach consists of using complexes of dihalo-

Scheme 1. Synthesis of germylenes 2a-e by the transamination reaction.

germylenes such as [GeCl₂·1,4-dioxane] and the dilithium salts^[8] of the corresponding triamines.

Germylenes **2a**–e were synthesized under mild conditions by the first method (Scheme 1). The yields of the target products were 40–60% and depended on the nature of the ligand. In addition, **2a** was obtained in 24% yield by reaction of the dilithium salt of amine **1a** and [GeCl₂·dioxane]. This shorter synthetic protocol does not require the isolation of intermediates, but it gives a lower yield of **2a** (Scheme 2).

Scheme 2. Synthesis of germylenes **2a** and **2f** by using dilithium salts of the corresponding amines.

In contrast to the complexes based on the ligands 1a-c and 1e, the complex derived from *N*-silylated amine 1d is very unstable. The generation of complex 2d during the reaction was determined only by NMR spectroscopy (Scheme 1).

We also tested the lithium salt metathesis route for the preparation of closely related germylenes based on aromatic diamines **1f** and **1g**, which are easily prepared by the nucleo-

Scheme 3. Synthesis of germylenes 2i and 2j by using the lithium salts of the corresponding amines.

philic aromatic amidation of C_6F_6 . Interestingly, although germylene **2f** with an additional sulfur donor group could be prepared, the corresponding germylene **2g** with an oxygen donor could not be prepared neither by the reaction of the dilithium salt of **1g** with [GeCl₂·dioxane] nor by transamination between Ge[N(SiMe₃)₂]₂ and **1g** (Scheme 2).

Furthermore, diamidogermylenes **2i** and **2j** with two-coordinate germanium atoms were synthesized by lithium salt metathesis with lithium (pentafluorophenyl)amides **1i** and **1j**, respectively (Scheme 3). The complexes **2i** and **2j** contain no additional intra- or intermolecular bonding interactions and they are sufficiently stable to study their molecular structures by XRD analysis.

Germylene Molecular Structures

The subvalent Ge^{II} centers in the two diamagnetic compounds **2i** and **2j** are stabilized by the weak π -interactions between the electron pairs of the anionic nitrogen donor atoms and the vacant orbital at the central atom. In addition, the empty orbital at Ge in **2i** should be stabilized by the electron density of the nonfluorinated aromatic system, as discussed in similar systems by Arduengo et al.^[9] On the other hand, the lone pair on Ge^{II} seems to be particularly well stabilized by the highly fluorinated amide ligands with relatively high electronegativity.

To gain more insight into the bonding, the X-ray crystal structures of **2b**, **2i**, and **2j** were determined. Their molecular structures are shown in Figures 1, 2 and 3. They are all monomeric in the solid state. Compounds **2i** and **2j** each possess a two-coordinate germanium atom, as in the previously studied Ge[N(SiMe₂R)₂]₂ (R = Me,^[10] *i*Pr^[11]) and

Figure 1. Molecular structure of **2b**. ORTEP diagram with elipsoids drawn at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: N(1)–Ge 1.943(2), N(2)–Ge(1) 2.112(2), N(3)–Ge(1) 1.984(2); N(1)–Ge(1)–N(3) 102.48(10), N(1)–Ge(1)–N(2) 83.11(10), N(3)–Ge(1)–N(2) 82.36(10).

Ge(NR¹R²)₂ (NR¹R² = 2,2,5,5-tetramethylpiperidyl, TMP).^[12] The Ge–N bond lengths in **2i** and **2j** are within the range found for other Ge²⁺ amides (1.87–1.91 Å).^[10–12] The N–Ge–N angle in **2j** [97.88(9)°] is larger than that in **2i** [83.45(14)°]. This can be attributed to greater steric interligand repulsion in **2j**. However, both of these angles are smaller than those [105.26(8)–111.4(5)°] observed in other Ge²⁺ amides^[10–12] due to sterically less hindered ligands.

Figure 2. Molecular structure of **2i**. ORTEP diagram with elipsoids drawn at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: N(1)–Ge 1.887(2), N(1A)–Ge(1) 1.887(2); N(1)–Ge(1)–N(1A) 83.45(14); N(1A)–Ge(1)–N(1)–C(1) –0.3(2), N(1A)–Ge(1)–N(1)–C(5) –174.94(18).

Figure 3. Molecular structure of **2j**. ORTEP diagram with elipsoids drawn at the 50% probability level. Selected interatomic distances [Å] and angles [°]: N(1)–Ge 1.871(2), N(2)–Ge(1) 1.877(2); N(1)–Ge(1)–N(2) 97.88(9).

For germylene 2b, the primary coordination environment of the Ge atom is formed by two covalently bonded nitrogen atoms and one dative-bonded nitrogen atom and may be treated as a trigonal pyramid with a lone pair in one vertex. To the best of our knowledge, this is the first example of an X-ray-studied monomeric germylene with an N₂N coordination environment. One can compare the N-Ge bond in 2b with that in a monomeric compound with a tricoordinate germanium atom having an O₂N coordination Py(CH₂CPh₂O)(CH₂CMe₂O)Ge.^[13] environment, The N \rightarrow Ge bond length [2.112(2) Å] in **2b** is similar to that in Py(CH₂CPh₂O)(CH₂CMe₂O)Ge [2.110(1) Å].^[13] The covalent bonds Ge(1)-N(1) [1.943(2) Å] and Ge(1)-N(3)[1.984(2) Å] are longer than those in diamides with twocoordinate germanium atoms Ge[N(SiMe₃)₂]₂ [Ge–N

FULL PAPER

1.876(5) Å avg.],^[10] Ge[TMP]₂ [Ge–N 1.89(1) Å avg.],^[12] **2i**, and **2j** (see above). The elongation is caused by an additional intramolecular interaction in **2b**. The Ge(1)–N(2) bond is nearly perpendicular to the N(1)–Ge(1)–N(3) plane, which allows the ideal interaction of the nitrogen lone-pair electron with the vacant Ge orbital. The five-membered cycles -Ge(1)-N(1)-C(7)-C(8)-N(2)- and -Ge(1)-N(3)-C(17)-C(16)-N(2)- adopt "envelope" conformations, whereas the eight-membered ring -Ge(1)-N(1)-C(7)-C(8)-N(2)-C(16)-C(17)-N(3) has a "boat-chair" conformation.

Germylene Reactivity

As systematic reactivity studies of germylenes are still a focus of interest, we investigated the classic reactions of germylene chemistry, such as insertion, oxidative addition, and cycloaddition reactions, for the compounds obtained in this work.

One of the best known reactions of such compounds is the oxidative halogen addition, which results in Ge^{IV} derivatives.^[13,14] In this work the reactions of monomeric germylenes **2a** and **2f** with bromine were investigated (Scheme 4). Compounds **2a** and **2f** reacted with bromine at room temperature by the insertion of the germylenes into the Br–Br bond to give the expected dibromides in high yields.

Scheme 4. Halogenation of germylenes 2a and 2f with bromine.

The halogenation of "heavy carbenes" may be performed not only with halogens but also with other halogen-containing derivatives. Several examples of such reactions have been described.^[4,14,15] MeN(CH₂CH₂NSiMe₃)₂Sn reacts with BiCl₃, the tin atom abstracting two chlorine atoms from the trichloride to form MeN(CH₂CH₂NSiMe₃)₂-SnCl₂.^[4] If PCl₃ was used for halogenation, the ionic complex [MeN(CH₂CH₂NSiMe₃)₂P⁺SnCl₃⁻] was formed.^[4] In contrast, Veith's germylene Me₂Si(N*t*Bu)₂Ge reacts with PCl₃ by a three-fold insertion into the P–Cl bonds to form [Me₂Si(N*t*Bu)₂Ge(Cl)]₃P.^[14]

We studied for the first time the reaction of germylenes with GeCl_4 as halogenating reagent. The pentacoordinated germanium derivative **4** with an oxidation number 4+ was obtained (Scheme 5). The main driving force for the reaction is the formation of the insoluble polymeric [GeCl₂]_n with the product **4** bearing a transannular interaction.

Scheme 5. Halogenation of germylene 2a by reaction with GeCl₄.

Germylenes can also undergo another type of reaction by insertion into C–Hal bonds. In particular, for the characterization of "heavy carbenes" the reaction with methyl iodide is often used.^[15a,16] However, in addition, a number of papers have been published concerned with a three-component reaction between germylenes, organic substrate, and RX (R = Ph, *t*Bu, Me; X = I, Br, Cl) as a novel method of C–H activation in quite inert organic substrates such as alkanes, alkenes, and alkynes and even a regioselective reaction in ethers and nitriles.^[17]

The iodogermanes **5a** and **5b** were easily obtained by the oxidative addition of MeI (Scheme 6) and fully characterized by spectroscopic methods. The product **5b** was also characterized by X-ray diffraction analysis (Figure 4). Only one example of a reaction of methyl iodide and a germylene, in which the germanium atom is bonded to two nitrogen atoms, has been described,^[16b] but the molecular structure of the resulting iodogermane, [HC(CMeNAr)₂]Ge-Me₂(I) (Ar = 2,6-*i*Pr₂C₆H₃), was not studied by X-ray analysis.

Scheme 6. Oxidative addition of MeI to germylenes 2a,b.

The germanium atom in **5b** is present in a distorted bipyramidal environment. The I(1)–Ge(1)–X(eq) [X = equatorial substituent N(11), N(21), C(1)] bond angles are in the range 92.99(10)–94.48(9)° and approach the idealized bipyramidal value of angles between axial and equatorial substituents (90°). The Ge–N bond lengths in germylene **2b** have an average value of 1.964(2) Å and the shorter Ge–N bond length [1.856(3) Å] in **5b** is a result of the higher oxidation state of germanium in this complex. The Ge–C bond length in **5b** is 1.940(3) Å and is typical of a Ge–C single bond, and the Ge–I bond length of 2.7599(5) Å is similar to the Ge–I bond length in (acac)GeI [acac = acetylacetonato; 2.7360(3) Å].^[18] However, the Ge–I bond in **5b** is longer than the usual Ge–I bond length.^[17b] This fact can be explained by the formation of a transannular interaction.

It is known that $[GeBr_2 C_4H_8O_2]$ reacts with allyl bromide by insertion of Ge into the C–Br bond.^[19] Unfortunately, our efforts to carry out the reaction between **2a** and allyl bromide failed due to unselective side-reactions.

We investigated the reactions of our germylenes with both diphenyl and diethyl disulfide (Scheme 7).^[15a] It was found that the structure of the disulfide determines the behavior of the germylenes in question. Germylene **2b** reacted easily at -40 °C with diphenyl disulfide to form the correDate: 02-07-12 10:59:01

Pages: 14

Germylenes Based on Diethylenetriamines and Related Diamines

Figure 4. Molecular structure of 5b. ORTEP diagram with elipsoids drawn at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: N(1)-Ge(1) 2.166(3), N(11)-Ge(1) 1.858(3), N(21)-Ge(1) 1.854(3), C(1)-Ge(1) 1.940(3), I(1)-Ge(1) 2.7599(5); N(21)-Ge(1)-N(11) N(21)–Ge(1)–C(1) 116.52(15), 121.13(14), N(11)-Ge(1)-C(1)121.03(15), N(21)-Ge(1)-N(1) 81.52(11), N(21)-Ge(1)-N(11) 121.13(14), N(11)-Ge(1)-N(1)81.55(11), C(1)-Ge(1)-N(1)95.80(12), N(21)-Ge(1)-I(1) 93.97(9), N(11)-Ge(1)-I(1) 94.48(9), C(1)-Ge(1)-I(1) 92.99(10), N(1)-Ge(1)-I(1) 171.18(7).

sponding disulfide adduct **6**. But this was not the case with diethyl disulfide even under irradiation with ultraviolet light. This can be attributed to the greater strength of the S–S bond in diethyl disulfide compared than in diphenyl disulfide. The relative reactivities of the germylenes based on diethylenetriamines with disulfides are similar to those found earlier for germanium(II) dialkanolamine derivatives.^[6]

Scheme 7. Insertion of germylene 2b into Ph_2S_2 .

Germylenes are affected by oxidants such as dioxygen and sulfur. When $(ArO)_2Ge$ reacts with sulfur, germanethione compounds with a highly dipolar "Ge=S" bond are formed, as indicated by cryoscopy.^[20] The reaction of monomeric [(Me₃Si)₂N]₂Ge with molecular oxygen gives rise to crystalline 1,3-digermadioxetane, [([Me₃Si]₂N)₂Ge(μ -O)]₂, characterized by NMR and X-ray analysis.^[21] It is supposed that the 1,3-digermadioxetane results from the germanone originally obtained. Note that in the course of the purification of **2a** from starting Ge[N(SiMe₃)₂]₂ we obtained a trace amount of mixed 1,3-digermadioxetane **7a** (Scheme 8), which is formed by the oxidation of a mixture of the two germylenes 2a and Ge[N(SiMe₃)₂]₂ with molecular oxygen. The structure of 7a was studied by X-ray analysis (Figure 5). The result also confirms that 1,3-digermadioxetane is formed via germanone. Instead of oxygen, trimethylamine *N*-oxide has recently been widely used.^[22]

Scheme 8. Formation of complex 7a.

Figure 5. Molecular structure of 7a. ORTEP diagram with elipsoids drawn at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: Ge(1)-N(2) 1.8555(16), Ge(1)-N(1) 1.8485(15), Ge(1)-N(3) 2.1542(15), Ge(1)-O(1) 1.8463(12), Ge(1)-O(2) 1.8128(13), Ge(1)-Ge(2) 2.6370(3), Ge(2)-N(5) 1.8366(15), Ge(2)-N(4) 1.8411(15), Ge(2)-O(1) 1.7856(12), Ge(1)-O(2) 1.7968(12); O(2)-Ge(1)-O(1) 85.37(5), O(2)-Ge(1)-N(1) 118.71(7), O(1)-Ge(1)-N(1) 99.62(6), O(2)-Ge(1)-N(2) 119.70(7), O(1)-Ge(1)-N(2) 101.99(6), N(1)-Ge(1)-N(2) 118.66(7), O(2)-Ge(1)-N(3) 88.02(6), O(1)-Ge(1)-N(3) 173.27(6), N(1)-Ge(1)-N(3) 82.47(6), N(2)-Ge(1)-N(3) 82.40(6), N(1)-Ge(1)-Ge(2) 116.51(5), N(2)-Ge(1)-Ge(2) 118.12(5), N(3)-Ge(1)-Ge(2) 130.84(4), O(1)-Ge(2)-O(2) 87.66(6), O(1)-Ge(2)-N(5) 118.98(6), O(2)-Ge(2)-N(5) 113.65(6), O(1)-Ge(2)-N(4) 113.85(6), O(2)-Ge(2)-N(4) 108.58(6), N(5)-Ge(2)-N(4) 111.59(7), N(5)-Ge(2)-Ge(1) 128.27(5), N(4)-Ge(2)-Ge(1) 119.60(5), Ge(2)-O(1)-Ge(1) 93.10(6), Ge(2)-O(2)-Ge(1) 93.86(6).

To investigate the stabilizing effect of diethylenetriamines on the few germanium derivatives with a zwitterionic "Ge=O" bond, we carried out the reaction between germyl-

Pages: 14

FULL PAPER

ene **2b** and Me₃N \rightarrow O (Scheme 9). As expected, the oxidation product was obtained in 42% yield, and its structure was confirmed by X-ray diffraction analysis (Figure 6).

Scheme 9. Oxidation of germylene 2b by trimethylamine N-oxide.

Figure 6. Molecular structure of **7b**. ORTEP diagram with elipsoids drawn at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: Ge(1)–O(1) 1.7844(13), Ge(1)–O(1A) 1.8313(13), Ge(1)–N(2) 1.8519(16), Ge(1)–N(1) 1.8574(16), Ge(1)–N(3) 2.1478(17), Ge(1)–Ge(1A) 2.6524(4), O(1)–Ge(1A) 1.8313(13); O(1)–Ge(1)–O(1A) 85.64(6), O(1)–Ge(1)–N(2) 17.60(7), O(1A)–Ge(1)–N(2) 99.61(7), O(1)–Ge(1)–N(1) 122.81(7), O(1A)–Ge(1)–N(1) 100.02(7), N(2)–Ge(1)–N(1) 117.30(8), O(1)–Ge(1)–N(3) 89.54(6), O(1A)–Ge(1)–N(3) 82.48(7), N(1)–Ge(1)–N(3) 82.74(7), N(2)–Ge(1)–Ge(1A) 115.27(6), N(1)–Ge(1)–Ge(1A) 118.99(6), N(3)–Ge(1)–Ge(1A) 133.05(5), Ge(1)–O(1)–Ge(1A) 94.36(6).

The reaction of **2a** with sulfur also gave the expected product (Scheme 10), the cyclodimer **8**, which was characterized by X-ray diffraction analysis (Figure 7).

Scheme 10. Reaction of germylene 2a with sulfur.

Figure 7. Molecular structure of **8**. ORTEP diagram with elipsoids drawn at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: Ge(1)–S(1) 2.2062(17), Ge(1)–S(1A) 2.2875(18), Ge(1)–N(2) 1.856(5), Ge(1)–N(1) 1.869(5), Ge(1)–N(3) 2.323(5), Ge(1)–Ge(1A) 3.124; N(2)–Ge(1)–N(1) 112.7(2), N(2)–Ge(1)–S(1) 123.50(17), N(1)–Ge(1)–S(1) 101.32(17), S(1)–Ge(1)–S(1) 100.27(16), N(1)–Ge(1)–S(1) 101.32(17), S(1)–Ge(1)–S(1) 91.93(6), N(2)–Ge(1)–N(3) 78.97(19), N(1)–Ge(1)–N(3) 78.9(2), S(1)–Ge(1)–N(3) 88.63(13), S(1)–Ge(1)–N(3) 179.23(13), Ge(1)–S(1)–Ge(1) 88.07(6).

The germanium atoms in **7b** and **8** and Ge(1) in **7a** have distorted trigonal-bipyramidal geometries with N(3) and O(1) in **7a**, and N(3) and O(1a) in **7b** occupying the axial positions. N(1), N(2), and O(2) in **7a**, and N(1), N(2), and O(1) in **7b** form the equatorial plane. The coordination polyhedron of Ge(2) in **7a** is a distorted tetrahedron.

The Ge-O bond lengths are similar to those of the corresponding bonds in { $[MeSi(\mu-NtBu)_2SiMe(tBuN)_2]Ge(\mu-$ O) $_{2}$ [1.809(4) and 1.825(4) Å]^[5] and in {[P(μ -NtBu)₂P- $(tBuN)_2$ [Ge(µ-O)]₂ [1.78(1) and 1.84(1) Å].^[23] The Ge-X(ax) bond is, as expected, longer than the Ge-X(eq) [X = O (7a,b), X = S(8) bond in the same molecule for the Ge atom in the trigonal-bipyramidal environment. This is in accordance with the hypervalent bond theory.^[24] The intratransannular interaction molecular $N(3) \rightarrow Ge$ [2.1542(15) Å] in **7a** and [2.1478(17) Å] in **7b** are similar, but in 8, N(3) \rightarrow Ge [2.323(5)Å] is longer because of the lower electronegativity of S as compared with O. The transannular GemGe separations in 7a [2.6370(3) Å] and 7b [2.6524(4) Å] are similar, but slightly longer than in $\{Ge[N(SiMe_3)_2]_2(\mu-O)\}_2$ [2.608(1) Å] and much shorter than twice the van der Waals radius of Ge⁴⁺ (4.30 Å). The increase in the transannular Ge---Ge separations in 8 [3.124(5) Å] can be explained by the increasing size of the bridged atoms in this case.

The reaction of germylene **2b** with water gave free ligand **1b** and germanium(II) hydroxide. Evidently, the driving force for the reaction is the formation of the precipitate of

germanium(II) hydroxide. The interaction of germylenes with water does not result in the four-membered cycle -M-O-M-O-.

The reactions of germylenes with azides has been the subject of several investigations.^[20] By studying the reactions of germylenes without the additional transannular interaction, it was determined that different derivatives of M^{4+} (azides, germoles, imines) might be obtained depending on the reaction conditions and the structures of the "heavy carbene" and azides. According to Barrau et al.,^[20] the reaction of $(ArO)_2Ge$ [Ar = 2,4,6-(Me_2-NCH_2)_3C_6H_2] with trimethylsilyl azide, Me_3SiN_3, yields germanimines. The reactions of germylenes with diphenyl-phosphoryl azide is practically unexplored.^[25] We carried out this reaction with germylene **2b** and obtained the expected product **9** (Scheme 11).

Scheme 11. Reaction of germylene 2b with $(PhO)_2P(O)N_3$.

The similarity between the results obtained in the reactions with $(PhO)_2P(O)N_3$ and $Me_3N\rightarrow O$ can be explained by the analogy of the mechanisms supposed. In the case of diphenylphosphoryl azide, the intermediate might be an unstable germanimine, $(PhO)_2P(O)-N=MR_2$, that dimerizes immediately.

Addition to unsaturated systems is a classic reaction for "heavy carbenes", different organic substrates with conjugate double bonds having being studied. We investigated a number of similar reactions to determine the influence of organic substrate structure on the reaction.

The reactions of different M^{2+} derivatives with benzil have been studied in detail^[26] and it was established that [1+4] cycloaddition products form independently of the structure of the "heavy carbene". The use of germylene **2b** in such a reaction led to the expected product **10** in moderate yield (Scheme 12).

Scheme 12. [1+4] Cycloaddition reaction of germylene 2b with benzil.

Germylenes 2a and 2b reacted with chalcone and its ferrocenyl analogues to give [1+4]-cycloaddition products 11 and 12 (Scheme 13).

Scheme 13. [1+4] Cycloaddition reactions of germylene 2a and 2b with substituted chalcones.

The structures of 10 and 11 were confirmed by X-ray analysis (Figures 8 and 9). The coordination environment of the germanium atom in both 10 and 11 is trigonal-bipyramidal with O(1) and N(3) in 10, and O(1) and N(3) in 11 in axial positions and O(2), N(1), and N(2) in 10, and N(1), N(2), and C(2) in 11 in the equatorial plane. Note that in both cycloaddition products the intramolecular transannular interactions $N(3) \rightarrow Ge [2.089(4) Å]$ in 10 and [2.2566(17) Å] in **11** differ from that of the initial germylene 2b. Moreover, this interaction is stronger, the more electronegative substituents are located at the germanium atom. This may be explained by the presence of two electronegative substituents at the germanium atom in the adduct 10 and one in the product 11. The same trend was observed for compounds MeN(CH₂CH₂O)₂Ge(-OCH₂CH₂O-),^[27] $HOCH_2CH_2N(CH_2CH_2O)_2Ge[-OC(O)CH_2CH_2-]$,^[28] and $MeN(CH_2CH_2O)_2Ge[-OC(O)CPh_2O-],^{[29]}$ in which N \rightarrow Ge is 2.159(7), 2.149(6), and 2.080(3) Å respectively.

Figure 8. Molecular structure of 10. ORTEP diagram with elipsoids drawn at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: Ge(1)–O(2) 1.796(3), Ge(1)–N(1) 1.836(4), Ge(1)–O(1) 1.838(3), Ge(1) - N(2)1.839(4), Ge(1)-N(3) 2.089(4); O(2)-Ge(1)-N(1)124.40(16), O(2)-Ge(1)-O(1)89.26(14), N(1)-Ge(1)-O(1)96.00(15), O(2)-Ge(1)-N(2)114.40(16), N(1)-Ge(1)-N(2)O(1)-Ge(1)-N(2) 119.51(18), 97.79(15), O(2)-Ge(1)-N(3)90.54(14), N(1)-Ge(1)-N(3)83.40(16), O(1)-Ge(1)-N(3)179.11(14), N(2)–Ge(1)–N(3) 83.09(15).

FULL PAPER

Figure 9. Molecular structure of **11**. ORTEP diagram with elipsoids drawn at the 50% probability level; hydrogen atoms have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: Ge(1)–N(2) 1.8596(18), Ge(1)–N(1) 1.8642(17), Ge(1)–O(1), 1.8651(14), Ge(1)–C(2) 1.996(2), Ge(1)–N(3) 2.2566(17); N(2)–Ge(1)–N(1) 117.05(8), N(2)–Ge(1)–O(1) 95.96(7), N(1)–Ge(1)–O(1) 93.04(7), N(2)–Ge(1)–C(2) 119.68(8), N(1)–Ge(1)–C(2) 122.50(8), O(1)–Ge(1)–C(2) 89.85(7), N(2)–Ge(1)–N(3) 80.90(7), N(1)–Ge(1)–N(3) 80.16(7), O(1)–Ge(1)–N(3) 170.05(6), C(2)–Ge(1)–N(3) 99.92(8).

We found that there was no reaction between monomeric germylene 2b and 2,3-dimethylbutadiene neither at ambient temperature nor after prolonged heating. In similar reactions germanium(4+) compounds would be expected to form in which the transannular bond is weak or does not exist, because the germanium atom bonds to two donor carbon atoms.

The digermene $R_2Ge=GeR_2$ [R = tetrakis(2-*tert*-butyl-4,5,6-trimethylphenyl)], which dissociates into the germylene molecules R_2Ge : in solution, reacts with 1,4-diisopropyl-1,4-diazabuta-1,3-diene to furnish the product formed by the [4+1] cycloaddition of germylene to the nitrogen atoms.^[30] Similar reactions could be expected for our germylenes, but no reaction was observed between our donor-stabilized, three-coordinate germylene **2b** and 1,4-di*tert*-butyl-1,4-diazabuta-1,3-diene.

Conclusions

A new class of two-coordinate and donor-stabilized three-coordinate germylenes based on (pentafluorophenyl)amides and diethylenetriamines have been synthesized by transamination reactions of a range of substituted amines and Ge[N(TMS)₂]₂ or by metathesis of lithiated ligand synthons with [GeCl₂·dioxane]. According to XRD studies, monomeric germylenes were obtained in all cases. Threecoordinate germylenes stabilized by an additional transannular interaction showed a reactivity similar to that of their classic two-coordinate counterparts in oxidative addition reactions with halogenation agents (bromine and GeCl₄), methyl iodide, diphenyl disulfide, dioxygen, sulfur, and diphenylphosphoryl azide. Although α , β -unsaturated ketones (benzil, chalcone, and its ferrocenyl analogues) led to the expected [1+4]-cycloaddition products, base-stabilized germylenes based on the diethylenetriamine backbone were found to be unreactive towards 2,3-dimethyl-1,3-butadiene and 1,4-di-*tert*-butyl-1,4-diazabuta-1,3-diene.

Experimental Section

General: All manipulations were performed under dry, oxygen-free argon by using standard Schlenk techniques. Solvents were dried by standard methods and distilled prior to use. The starting materials were synthesized according to literature procedures: Ge[N(TMS)₂]₂,^[31] [GeCl₂·C₄H₈O₂],^[32] LiN(TMS)₂·Et₂O,^[33] MeN-(CH₂CH₂NHC₆F₅)₂,^[34] BnN(CH₂CH₂NHC₆F₅)₂,^[24b] BnN(CH₂-CH₂NHTMS)₂,^[24b] H₂(dpma),^[35] TMSN(CH₂CH₂NHTMS)₂,^[36] FcC(O)CH=CHPh,^[37] HN(C₆F₅)₂,^[38] LiN(C₆F₅)₂,^[38] and N,N'-bis-(pentafluorophenyl)benzene-1,2-diamine (1i).^[39] MeI (Aldrich), GeCl₄ (Aldrich), Et₂S₂ (Aldrich), and 2,3-dimethylbuta-1,3-diene (Aldrich) were distilled prior to use. Ph₂S₂ (Aldrich), S₈ (Merck), N₃P(O)(OPh)₂ (Merck), PhC(O)C(O)Ph (Aldrich), PhC(O)-CH=CHPh (Aldrich), and tBuN=CHCH=NtBu (Aldrich) were used as supplied. Me₃N \rightarrow O·2H₂O (Fluka) was sublimated for use. C_6D_6 was obtained from Deutero GmbH and dried with sodium. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded with a Bruker Avance 400 or ARX 200 spectrometer at room temperature. ¹H and ¹³C chemical shifts are reported in ppm relative to Me₄Si as external standard. In ¹⁹F NMR experiments, CFCl₃ was used as the external standard. Elemental analyses were carried out by the Microanalytical Laboratory of the Chemistry Department of the Moscow State University. Mass spectra (EI-MS, 70 eV) were recorded with a Varian CH-7a device (Philipps University Marburg, Germany). All assignments were made by reference to the most abundant isotopes. Infrared spectra were recorded with a Bruker IFS 88 FT instrument, and samples were Nujol mulls between KBr plates.

Bis{2-[(pentafluorophenyl)amino]phenyl} Thioether $[S(oC_6H_4NH-$ C₆F₅)₂ (1f)]: *n*BuLi (1.6 M, 83.6 mL, 0.13 mol) in hexane was added to a solution of HN(SiMe₃)₂ (21.6 g, 0.13 mol) in thf (70 mL) at 25 °C. After 20 min at 25 °C, a solution of bis(2-aminophenyl) thioether (6.43 g, 30.0 mmol) in thf (60 mL) was added. The mixture was cooled to -78 °C, and C₆F₆ (13.81 g, 74.0 mmol) was added within 2 min. The brownish reaction mixture was slowly warmed to 25 °C and stirred at room temp. until all the starting material had been consumed (monitored by TLC, ca. 4 h). After the addition of water (200 mL) and diethyl ether (150 mL), the raw product was extracted with diethyl ether ($3 \times 100 \text{ mL}$). The combined diethyl ether phases were dried with Na₂SO₄, and the diethyl ether was removed to give a brown oily solid, which was dissolved in CH₂Cl₂/n-hexane (2:1) and passed through a bed of Merck silica 60 (ca. 60 g). After further extraction with this solvent mixture, all volatiles were removed, and the residue was crystallized from hot heptane/benzene (3:1) to yield colorless crystalline needles of 1f Date: 02-07-12 10:59:01

Pages: 14

(12.80 g, 78%). M.p. 178.4 °C. ¹H NMR (400 MHz, C_6D_6): $\delta =$ 5.74 (s, 2 H, NH), 6.37 (dd, J = 8.0 and 1.2 Hz, 2 H, C₆H₄), 6.65 $(dt, J = 7.6 and 1.3 Hz, 2 H, C_6H_4), 6.91 (dt, J = 8.0 and 1.5 Hz,$ 2 H, C₆H₄), 7.22 (dd, J = 7.8 and 1.5 Hz, 2 H, C₆H₄) ppm. ¹³C NMR (100.6 MHz, C₆D₆): δ = 115.3 (s, C₆H₄), 116.9 (t, J = 13.4 Hz, C₆F₅), 120.6 (s, C₆H₄), 122.6 (s, C₆H₄), 129.7 (s, C₆H₄), 133.2 (s, C₆H₄), 138.3 (dm, J = 245.1 Hz, C₆F₅), 138.4 (dm, J =246.0 Hz, C₆F₅), 142.4 (dm, J = 247.9 Hz, C₆F₅), 142.9 (s, C₆H₄) ppm. ¹⁹F NMR (188.2 MHz, C₆D₆): $\delta = -163.4$ (t, J = 20 Hz, 2 F, *meta*), -162.2 (t, J = 21 Hz, 1 F, *para*), -149.4 (d, J = 20 Hz, 2 F, ortho) ppm. MS (EI): m/z (%) = 548 (23) [M]⁺, 365 (3) [M – NHC₆F₅]⁺, 259 (100) [C₆H₅NHC₆F₅]⁺. IR (Nujol): $\tilde{v} = 3385$ (m, NH), 1655 (w), 1638 (w), 1524 (s), 1464 (vs), 1425 (s), 1377 (s), 1296 (s), 1232 (m), 1155 (m), 1055 (m), 981 (s), 945 (s), 866 (w), 748 (s), 735 (m), 723 (m), 671 (m), 544 (w), 434 (w) cm⁻¹. $C_{24}H_{10}F_{10}N_2S$ (548.40): calcd. C 52.56, H 1.84, N 5.11; found C 52.59, H 2.12, N 5.09.

MeN(CH₂CH₂NC₆F₅)₂Ge (2a)

Method A: A solution of MeN(CH₂CH₂NHC₆F₅)₂ (1a; 0.46 g, 1.02 mmol) in toluene (5 mL) was added to a stirred solution of Ge[N(TMS)₂]₂ (0.40 g, 1.02 mmol) in toluene (10 mL). The mixture was stirred at room temperature for 4 d. After removal of the volatiles under vacuum, diethyl ether (10 mL) was added to the residue. The precipitate was filtered off to give 2a (0.27 g, 51%) as a white solid. ¹H NMR (400 MHz, C_6D_6 , 25 °C): $\delta = 1.70$ (s, 3 H, CH₃N), 1.77-1.90 (m, 4 H, 2 NCH₂), 2.94-3.05, 3.35-3.49 (2 m, 4 H, 2 NCH₂C₆F₅) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 46.23 (CH₃N), 50.96 (NCH₂), 60.11 (NCH₂C₆F₅) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C-F coupling. ¹⁹F NMR (376.4 MHz, C₆D₆, 25 °C): δ = -172.94 to -172.78 (m, 1 F), -165.41 to -165.26 (m, 2 F), -154.34 to -154.25 (m, 2 F) ppm. C₁₇H₁₁F₁₀GeN₃ (519.8835): calcd. C 39.27, H 2.13, N 8.08; found C 39.30, H 2.45, N 7.82. Prolonged standing of the mother liquor for a month led to colorless crystals of the compound MeN(CH₂CH₂NC₆F₅)₂Ge(μ -O)₂Ge[N(TMS)₂]₂ (7a). The structure of 7a was established by X-ray analysis.

Method B: A solution LiN(TMS)₂·Et₂O (0.88 g, 3.66 mmol) in thf (10 mL) was added dropwise at -78 °C to a stirred solution of MeN(CH₂CH₂NHC₆F₅)₂ (**1a**; 0.82 g, 1.83 mmol) in thf (15 mL). The reaction mixture was stirred for 1 h and then warmed to room temperature. The reaction mixture was again cooled to -78 °C, and [GeCl₂·C₄H₈O₂] (0.42 g, 1.83 mmol) in thf (15 mL) was added with stirring. After stirring at room temperature for 24 h, the volatiles were removed under vacuum. Recrystallization from toluene solution gave **2a** (0.22 g, 24%) as a white solid.

BnN(CH₂CH₂NC₆F₅)₂Ge (2b): The procedure was analogous to that used for 2a (Method A) by employing BnN(CH₂CH₂-NHC₆F₅)₂ (1b; 0.81 g, 1.55 mmol) and Ge[N(TMS)₂]₂ (0.61 g, 1.55 mmol). Colorless crystals of 2b (0.42 g, 46%) were obtained from a toluene solution (6 mL) at -20 °C. ¹H NMR (400 MHz, C₆D₆, 25 °C): $\delta = 1.79-1.85$, 2.31–2.40 (2 m, 4 H, 2 NCH₂), 3.08– 3.14 (m, 2 H, NCH₂C₆F₅), 3.38 (s, 2 H, NCH₂Ph), 3.41–3.50 (m, 2 H, NCH₂C₆F₅), 6.73–6.76, 7.00–7.07 (2 m, 5 H, Ph) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): $\delta = 51.44$ (NCH₂), 56.94 (NCH₂C₆F₅), 62.62 (PhCH₂), 128.77, 129.35, 131.45, 131.51 (Ph) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C–F coupling. ¹⁹F NMR (376.4 MHz, C₆D₆, 25 °C): $\delta = -172.86$ to -172.65 (m, 1 F), -165.30 to -165.14 (m, 2 F), _____ Eurjic

-154.21 to -154.11 (m, 2 F) ppm. MS (EI): m/z (%) = 599 (12) [M]⁺, 390 (28) [M - CH₂CH₂NC₆F₅]⁺, 330 (7) [M - CH₂NC₆-F₅Ge]⁺, 312 (13) [M - CH₂Ph CH₂NC₆F₅]⁺.

BnN(CH₂CH₂NSiMe₃)₂Ge (2c): The procedure was analogous to that used for **2a** (Method A); reaction of BnN(CH₂CH₂NHTMS)₂ (**1c**; 0.58 g, 1.73 mmol) with Ge[N(TMS)₂]₂ (0.68 g, 1.73 mmol) in toluene (15 mL) gave **2c** (0.13 g, 18%) as a yellow solid. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 0.34 (s, 3 H, SiMe₃), 1.97–2.02, 2.73–2.78 (2 m, 4 H, NCH₂), 3.12–3.17, 3.22–3.29 (2 m, 4 H, NCH₂), 3.69 (s, 2 H, PhCH₂), 6.93–6.94, 7.04–7.06, 7.30–7.32 (3 m, 5 H, Ph) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 1.43 (SiMe₃), 40.01, 49.85, 58.46, 61.01 (NCH₂), 64.50 (CH₂Ph), 127.15, 128.47, 129.19, 131.28 (Ph) ppm. C₁₇H₃₃GeN₃Si₂ (408.2451): calcd. C 50.01, H 8.15, N 10.29; found C 49.89, H 8.03, N 10.35.

Me₃SiN(CH₂CH₂NSiMe₃)₂Ge (2d): The procedure was analogous to that used for **2a** (Method A); Me₃SiN(CH₂CH₂NHSiMe₃)₂ (**1d**; 0.34 g, 1.07 mmol) was treated with Ge[N(TMS)₂]₂ (0.42 g, 1.07 mmol) in toluene (15 mL). The reaction mixture was stirred at room temperature. After 4 d, the volatiles were removed under vacuum to give an orange oil. On the basis of the NMR spectroscopic data, the orange oil was considered to be germylene **2d**, but in view of its extreme hygroscopicity and sensitivity to oxygen our attempts to isolate **2d** in pure form failed. ¹H NMR (400 MHz, C₆D₆, 25 °C): $\delta = 0.04$, 0.33 (2 s, 27 H, SiMe₃), 1.98–2.02, 2.30–2.37, 3.17–3.21, 3.27–3.33 (4 m, 8 H, NCH₂) ppm.

Ge(dpma) (2e): The procedure was analogous to that used for **2a** (Method A); H₂(dpma) (**1e**; 0.18 g, 0.97 mmol) was treated with Ge[N(TMS)₂]₂ (0.38 g, 0.97 mmol) in toluene (15 mL) to give **2e** (0.09 g, 36%) as a brown solid. ¹H NMR (400 MHz, C₆D₆, 25 °C): $\delta = 1.69$ (s, 3 H, CH₃N), 2.97 and 3.48 (2 d, J = 13.6 Hz, 4 H, NCH₂), 5.96–6.13, 6.49–6.54, 6.88–6.93 (3 m, 6 H, pyrrole ring protons) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): $\delta = 43.15$ (CH₃N), 58.52 (NCH₂), 104.75, 111.98, 121.73, 133.54 (pyrrole ring) ppm. C₁₁H₁₃GeN₃ (259.8511): calcd. C 50.84, H 5.04, N 16.17; found C 50.98, H 5.13, N 16.06.

S(oC₆H₄NC₆F₅)₂Ge (2f)

Method A: A solution of LiN(SiMe₃)₂·Et₂O (0.62 g, 2.60 mmol) in thf (10 mL) was added to a stirred solution of S(o-C₆H₄NH-C₆F₅)₂ (1f; 0.70 g,1.30 mmol) in thf (15 mL) at -78 °C. After warming to room temperature and stirring for 1 h, the reaction mixture was again cooled to -78 °C, added to a suspension of [GeCl₂· $C_4H_8O_2$ (0.30 g, 1.30 mmol) in thf (15 mL), and cooled to -78 °C. The reaction mixture was stirred at room temperature overnight, and the volatiles were removed under vacuum. Recrystallization from toluene gave 2f (0.50 g, 63%) as a white solid. ¹H NMR (400 MHz, C_6D_6 , 25 °C): δ = 6.07–6.10, 6.38–6.43, 6.76–6.82, 7.12– 7.13 (4 m, 8 H, aromatic protons) ppm. ¹³C NMR (100 MHz, C_6D_6 , 25 °C): δ = 115.55, 119.50, 119.76, 132.14, 132.70, 153.26 (aromatic carbon atoms) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C-F coupling. ¹⁹F NMR $(376.4 \text{ MHz}, C_6D_6, 20 \text{ °C}): \delta = -162.45 \text{ to } -162.07 \text{ (m, } 2 \text{ F)},$ -159.86 (t, 1 F), -149.00 to -148.86 (m, 1 F), -144.43 (d, 1 F) ppm. C₂₄H₈F₁₀GeN₂S (618.9938): calcd. C 46.57, H 1.30, N 4.53; found C 46.36, H 1.66, N 4.43.

Method B: A solution of Ge[N(SiMe₃)₂]₂ (0.26 g, 0.66 mmol) in toluene (10 mL) was added to a stirred solution of **1f** (0.36 g, 0.66 mmol) in toluene (10 mL). The progress of the reaction was monitored by ¹⁹F NMR spectroscopy. Even after boiling the mixture for 24 h, only signals from the starting materials were detected in the spectrum.

Date: 02-07-12 10:59:01

Pages: 14

FULL PAPER

$[oC_6H_4(NC_6F_5)_2]_2Ge$ (2i)

Method A: The procedure was analogous to that used for **2a** (Method B); treatment of *N*,*N'*-bis(pentafluorophenyl)benzene-1,2diamine (**1i**; 0.57 g, 1.30 mmol) in thf (10 mL) with a solution of LiN(SiMe₃)₂·Et₂O (0.62 g, 2.60 mmol) in thf (10 mL) and then [GeCl₂·C₄H₈O₂] (0.30 g, 1.30 mmol) gave compound **2i** (0.44 g, 67%) from thf (5 mL) at -20 °C. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 6.51–6.58, 6.92–6.98 (2 m, 4 H, C₆H₄) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 111.60, 121.21, 139.53 (C₆H₄), 136.58, 139.93, 141.85, 145.24 (NC₆F₅) ppm. ¹⁹F NMR (376.4 MHz, C₆D₆, 25 °C): δ = -164.19 (br. t, 2 F), -159.65 (br. t, 1 F), -149.03 (d, 2 F) ppm. MS (EI): *m/z* (%) = 512 (100) [M]⁺.

Method B: The procedure was analogous to that used for **2a** (Method A); 1,3-bis(pentafluorophenyl)benzene-1,2-diamine (**1g**; 0.48 g, 1.10 mmol) was treated with $Ge[N(TMS)_2]_2$ (0.42 g, 1.10 mmol) in toluene (15 mL). The progress of the reaction was monitored by ¹⁹F NMR spectroscopy. Even after boiling the mixture for 24 h, only signals from the starting materials were detected in the spectrum.

Ge[N(C₆F₅)₂]₂ (2j)

Method A: The procedure was analogous to that used for 2a (Method B); treatment of bis(pentafluorophenyl)amine (1j; 0.96 g, 2.75 mmol) in thf (10 mL) with a solution of LiN(SiMe₃)₂·Et₂O (0.66 g, 2.75 mmol) in thf (10 mL) and then GeCl₂·C₄H₈O₂ (0.32 g, 1.35 mmol) led to compound 2j (0.25 g, 24%), which was crystallized from thf (6 mL) at -20 °C. ¹⁹F NMR (376.4 MHz, C₆D₆, 25 °C): δ = -164.19 (br. t, 2 F), -159.65 (br. t, 1 F), -149.03 (d, 2 F) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C–F coupling.

Method B: The procedure was analogous to that used for **2a** (Method A): bis(pentafluorophenyl)amine (**1j**; 0.77 g, 2.20 mmol) was treated with Ge[N(TMS)₂]₂ (0.42 g, 1.10 mmol) in toluene (15 mL). The progress of the reaction was monitored by ¹⁹F NMR spectroscopy. Even after boiling the mixture for 24 h, only signals from the starting materials were detected in the spectrum.

MeN(CH₂CH₂NC₆F₅)₂GeBr₂ (3a): A solution of bromine (0.14 g, 0.87 mmol) in toluene (5 mL) was added to a stirred solution of **2a** (0.45 g, 0.87 mmol) in toluene (10 mL). The reaction mixture was stirred at room temperature for 1 d, and the volatiles were then removed under vacuum. Then diethyl ether (10 mL) was added to the residue, and the precipitate was filtered off to give **3a** (0.45 g, 76%) as a white solid. The ¹H and ¹³C NMR spectra are in accord with literature data.^[24b] ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 1.85 (s, 3 H, NCH₃), 1.92–1.98, 2.14–2.20 (2 m, 4 H, 2 NCH₂), 2.78–2.70 (m, 4 H, 2 NCH₂C₆F₅) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 43.64 (CH₃N), 45.27 (NCH₂), 50.48 (NCH₂C₆F₅) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C–F coupling.

S(*o*C₆H₄NC₆F₅)₂GeBr₂ (3f): By applying the same experimental procedure as described above with 2f (0.26 g, 0.42 mmol) and bromine (0.067 g, 0.42 mmol), compound 3f (0.28 g, 87%) was obtained as a white solid. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 5.45 (s), 5.97–6.03 (m), 7.00–7.06 (dd), 7.35 (d, 8 H, aromatic protons) ppm. ¹⁹F NMR (376.4 MHz, C₆D₆, 25 °C): δ = –163.00 to –162.79 (m, 2 F), –161.17 (t, 1 F), –149.45 (d, 2 F) ppm. C₂₄H₈Br₂F₁₀GeN₂S (778.802): calcd. C 37.01, H 1.04, N 3.60; found C 36.86, H 1.24, N 3.48.

MeN(CH₂CH₂NC₆F₅)₂GeCl₂ (4): A solution of GeCl₄ (0.21 g, 0.96 mmol) in toluene (5 mL) was added dropwise to a stirred solution of **2a** (0.50 g, 0.96 mmol) in toluene (10 mL) at 0 °C. After stirring at room temperature for 24 h, a white precipitate of [GeCl₂]_n was separated by filtration. The precipitate was extracted with toluene (10 mL), and the organic solutions were combined. The volatiles were removed under vacuum, and diethyl ether (10 mL) was added. A white solid was separated by filtration, washed with diethyl ether (2 × 2 mL), and dried under vacuum to give **4** (0.30 g, 54%) as a white solid. The ¹H and ¹³C NMR spectra are in accord with literature data.^[24b] ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 1.93 (s, 3 H, NCH₃), 1.93–1.98, 2.20–2.25 (2 m, 4 H, 2 NCH₂), 2.83–2.69 (m, 4 H, 2 NCH₂C₆F₅) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 43.37 (CH₃), 45.04 (NCH₂), 50.99 (NCH₂C₆F₅) ppm.

MeN(CH₂CH₂NC₆F₅)₂Ge(Me)I (5a): A solution of MeI (0.27 g, 1.92 mmol) in toluene (5 mL) was added to a stirred solution of **2a** (0.50 g, 0.96 mmol) in toluene (10 mL). The reaction mixture was stirred at room temperature for 4 d, and the precipitate was filtered off to give **5a** (0.58 g, 91%) as a white solid. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 1.04 (s, 3 H, CH₃Ge), 1.47 (s, 3 H, NCH₃), 1.61–1.71, 2.16–2.23, 2.60–2.71, 2.91–3.02 (4 m, 8 H, 2 NCH₂ and 2 NCH₂C₆F₅) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 22.21 (GeCH₃), 43.05 (NCH₃), 48.23 (NCH₂), 56.26 (NCH₂C₆F₅) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C–F coupling. C₁₈H₁₄F₁₀GeIN₃ (611.8225): calcd. C 32.67, H 2.13, N 6.35; found C 32.43, H 2.09, N 6.44. Crystals suitable for single-crystal X-ray diffraction were grown from a concentrated toluene solution.

BnN(CH₂CH₂NC₆F₅)₂Ge(Me)I (5b): The procedure was analogous to that used for **5a**; reaction of **2b** (0.70 g, 1.17 mmol) with MeI (0.33 g, 2.34 mmol) in toluene (15 mL) gave **5b** (0.51 g, 59%) as a white solid. ¹H NMR (400 MHz, C₆D₆, 50 °C): δ = 1.60 (s, 3 H, CH₃Ge), 2.19–2.36 (m, 4 H, 2 NCH₂), 2.90–2.98, 3.03–3.11 (2 m, 4 H, 2 NCH₂C₆F₅), 3.33 (s, 2 H, PhCH₂), 6.70–6.74, 6.98–7.05 (2 m, 5 H, Ph) ppm. ¹³C NMR (100 MHz, C₆D₆, 50 °C): δ = 23.06 (GeCH₃), 46.42 (NCH₂), 48.06 (NCH₂C₆F₅), 56.78 (PhCH₂), 127.89, 128.82, 129.13, 131.25 (Ph) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C–F coupling. C₂₄H₁₈F₁₀GeIN₃ (737.9184): calcd. C 39.06, H 2.46, N 5.69; found C 39.23, H 2.40, N 5.50. Crystals suitable for single-crystal X-ray diffraction were grown from a concentrated toluene solution.

BnN(CH₂CH₂NC₆F₅)₂Ge(SPh)₂ (6): A solution of Ph₂S₂ (0.21 g, 0.96 mmol) in toluene (5 mL) was added dropwise at -40 °C to a stirred solution of 2b (0.57 g, 0.96 mmol) in toluene (10 mL). The reaction mixture was stirred for 30 min and then warmed to room temperature. After stirring for 4 d, the volatiles were removed under vacuum and pentane (10 mL) was added. The precipitate was separated by filtration, washed with pentane $(2 \times 2 \text{ mL})$, and dried in vacuo to give 6 (0.60 g, 77%) as a white solid. ¹H NMR (400 MHz, C_6D_6 , 25 °C): δ = 2.41 (t, J = 5.6 Hz, 4 H, NCH₂), 3.07 (t, J = 5.6 Hz, 4 H, NCH₂C₆F₅), 4.09 (s, 3 H, PhCH₂), 6.79-6.96, 6.98-7.06, 7.34–7.42 (3 m, 15 H, 3Ph) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 48.53, 48.95, 57.60 (NCH₂, PhCH₂, NCH₂C₆F₅), 125.61, 127.28, 128.51, 128.69, 129.28, 131.14, 133.62, 136.11 (Ph) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C-F coupling. C₃₅H₂₅F₁₀GeN₃S₂ (841.3193): calcd. C 51.62, H 3.09, N 5.16; found C 51.68, H 3.17, N 5.20.

Reaction of 2a with Et₂S₂: The procedure was analogous to that used for **6**; compound **2a** (0.27 g, 0.52 mmol) was treated with Et_2S_2 (0.06 g, 0.52 mmol) in toluene (15 mL). After stirring for 4 d, the volatiles were removed under vacuum to give a yellow solid (0.31 g). On the basis of the NMR spectroscopic data, only starting materials were found in the reaction mixture.

 $[BnN(CH_2CH_2NC_6F_5)_2Ge]_2(\mu-O)_2$ (7): A solution of Me₃N \rightarrow O (0.04 g, 0.54 mmol) in toluene (5 mL) was added to a stirred solution of 2b (0.32 g, 0.54 mmol) in toluene (10 mL). The reaction mixture was stirred at room temperature for 4 d. The volatiles were removed under vacuum, and diethyl ether (10 mL) was added. The precipitate was filtered off to give 7 (0.14 g, 42%) as a white solid. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 2.16–2.32, 2.41–2.54 (2 m, 4 H, 2 NCH₂), 2.73–2.85, 3.15–3.28 (2 m, 4 H, 2 NCH₂C₆F₅), 3.72 (s, 2 H, PhCH₂), 6.79–6.90, 6.96–7.12 (5 H, Ph) ppm. ¹³C NMR (100 MHz, C_6D_6 , 25 °C): δ = 43.52, 47.21 (NCH₂), 53.27 (CH₂Ph), 128.86, 128.94, 131.31, 138.65 (Ph) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C-F coupling. C₄₆H₃₀F₂₀Ge₂N₆O₂ (1223.9577): calcd. C 45.14, H 2.47, N 6.87; found C 45.30, H 2.55, N 6.90. Crystals suitable for single-crystal X-ray diffraction were grown from a concentrated toluene solution of **7**.

[MeN(CH₂CH₂NC₆F₅)₂Ge]₂(\mu-S)₂ (8): A solution of S₈ (0.03 g, 0.10 mmol) in thf (10 mL) was added to a stirred solution of 2a (0.40 g, 0.77 mmol) in thf (10 mL). The reaction mixture was stirred at room temperature for 5 d and the volatiles were removed under vacuum. After recrystallization from a concentrated solution of toluene, white crystals of 8 (0.19 g, 45%) were obtained. ¹H NMR (400 MHz, C₆D₆, 25 °C): \delta = 1.67 (s, 3 H, NCH₃), 2.02–2.10, 2.34–2.43 (2 m, 4 H, 2 NCH₂), 2.73–2.83, 3.03–3.12 (2 m, 4 H, 2 NCH₂C₆F₅) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): \delta = 42.69 (NCH₃), 45.73, 50.98 (4 NCH₂) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C–F coupling. C₃₄H₂₂F₂₀Ge₂N₆S₂ (1103.899): calcd. C 36.99, H 2.01, N 7.61, S 5.81; found C 36.82, H 1.95, N 7.55, S 5.97.

[BnN(CH₂CH₂NC₆F₅)₂GeN=P(OPh)₂O]₂ (9): A solution of N₃P(O)(OPh)₂ (0.16 g, 0.59 mmol) in toluene (10 mL) was added to a stirred solution of **2b** (0.35 g, 0.59 mmol) in toluene (10 mL). The reaction mixture was stirred at room temperature for 4 d. The precipitate was filtered off to give **9** (0.27 g, 54%) as a white solid. ¹H NMR (400 MHz, C₆D₆, 25 °C): $\delta = 2.29-2.44$ (m, 4 H, 2 NCH₂), 2.89–2.97, 3.10–3.19 (2 m, 4 H, 2 NCH₂C₆F₅), 3.46 (s, 2 H, PhCH₂), 6.72–6.83, 6.96–7.01, 7.03–7.12 (3 m, 15 H, 3Ph) ppm. The ¹³C NMR spectrum was not recorded because of the low solubility of **9**. ³¹P NMR (161.98 MHz, C₆D₆, 25 °C): $\delta = -34.19$ (s) ppm. C₇₀H₅₀F₂₀Ge₂N₈O₆P₂ (1686.3319): calcd. C 49.86, H 2.99, N 6.64; found C 49.95, H 2.91, N 6.51.

Reaction of BnN(CH₂CH₂NC₆F₅)₂Ge with H₂O: H₂O (0.01 g, 0.55 mmol) was added to a stirred solution of **2b** (0.15 g, 0.25 mmol) in thf (5 mL) at room temperature. After stirring for 5 d, the volatiles were removed under vacuum. Toluene (5 mL) was added to the residue, and the precipitate was filtered. After removing all the volatiles in vacuo, a yellow oil was obtained, which corresponds to the starting amine **1b** according to the NMR spectroscopic data.^[24b] ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 2.10 (t, *J* = 5.8 Hz, 4 H, NCH₂), 2.85–2.92 (q, 4 H, 2 NCH₂C₆F₅), 3.06 (s, 2 H, PhCH₂), 3.78 (br. s, 2 H, NHC₆F₅), 7.01–7.11 (m, 5 H, Ph) ppm.

 $BnN(CH_2CH_2NC_6F_{5})_2Ge-cyclo-[OC(Ph)C(Ph)O]$ (10): Solid PhC(O)C(O)Ph (0.26 g, 1.24 mmol) was added to a stirred solution

of 2b (0.74 g, 1.24 mmol) in toluene (10 mL). The reaction mixture was stirred at room temperature for 4 d, and the volatiles were removed under vacuum. Then diethyl ether (10 mL) was added to the residue, and the precipitate was filtered off to give 10 (0.43 g, 43%) as a white solid. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 2.18– 2.23, 2.38-2.44 (2 m, 4 H, 2 NCH₂), 2.91-2.99 (m, 4 H, 2 NCH₂C₆F₅), 4.18 (s, 2 H,CH₂Ph), 6.70–6.72, 6.82–6.86, 6.92–6.99, 7.03-7.13, 7.25-7.27, 7.65-7.68 (6 m, 15 H, 3Ph) ppm. ¹³C NMR (100 MHz, C_6D_6 , 25 °C): δ = 43.51 (NCH₂), 47.79 (NCH₂ C_6F_5), 57.07 (PhCH₂), 126.55, 127.06, 127.64, 128.80, 129.20, 130.87, 131.80, 135.39, 136.02, 136.55, 138.26, 139.22, 145.25, 147.72 (2 C and 3 Ph) ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C-F coupling. ¹⁹F NMR (376.4 MHz, C₆D₆, 25 °C): $\delta = -148.33$ to -148.17 (m, 1 F), -161.28 to -161.12 (m, 3 F), -164.98 to -164.86 (m, 1 F) ppm. $C_{37}H_{25}F_{10}GeN_3O_2$ (806.2075): calcd. C 55.12, H 3.13, N 5.21; found C 55.48, H 3.28, N 5.24.

MeN(CH₂CH₂NC₆F₅)₂Ge-cyclo-[OC(Ph)CHCHPh] (11): Solid (E)-PhC(O)CH=CHPh (0.09 g, 0.42 mmol) was added to a stirred solution of 2a (0.22 g, 0.42 mmol) in toluene (10 mL). The reaction mixture was stirred at room temperature for 7 d. The precipitate was filtered off to give 11 (0.23 g, 74%) as a white solid. ¹H NMR (400 MHz, C_6D_6 , 25 °C): $\delta = 1.45-1.52$, 1.61–1.71 (2 m, 4 H, 2 NCH₂), 1.79 (s, 3 H, CH₃N), 2.61–2.89 (m, 4 H, 2 NCH₂C₆F₅), 3.56 (d, J = 3.3 Hz, 1 H, CHPh), 5.40 [d, J = 3.3 Hz, 1 H, CH=C(O)Ph], 6.87-6.99, 7.04-7.09, 7.20-7.30, 7.35-7.39 (4 m, 10 H, 2Ph) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 40.03 (CHPh), 41.69 (CH₃N), 44.28, 44.71, 52.9, 53.14 (4 NCH₂), 99.35 [CH=C(O)Ph], 124.47, 126.01, 128.61, 128.74, 129.98, 135.48, 143.38 (2 Ph), 145.38 [PhC(O)=CH] ppm. The signal of one carbon atom was not observed; the signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C–F coupling. $C_{32}H_{23}F_{10}GeN_3O$ (728.1387): calcd. C 52.78, H 3.18, N 5.77; found C 52.58, H 3.28, N 5.58. Crystals suitable for single-crystal X-ray diffraction were grown from a concentrated toluene solution of 11.

BnN(CH₂CH₂NC₆F₅)₂Ge-cyclo-[OC(Fc)CHCHPh] (12): Solid of (E)-FcC(O)CH=CHPh (0.08 g, 0.25 mmol) was added to a stirred solution of 2b (0.15 g, 0.25 mmol) in toluene (15 mL). The reaction mixture was stirred at room temperature. After stirring for 7 d, the volatiles were removed under vacuum, and diethyl ether (10 mL) was added. The precipitate was separated by filtration, washed with diethyl ether $(2 \times 2 \text{ mL})$, and dried in vacuo to give 12 (0.10 g, 44%) as an orange solid. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 1.87-3.06 (m, 8 H, NCH₂), 3.64 (d, J = 2.9 Hz, 1 H, PhCH), 3.83(s, 5 H, C₅H₅), 3.86 (s, 2 H, CH₂Ph), 3.69–3.79, 3.90–3.96, 4.01– 4.05, 4.09–4.14 (4 m, 4 H, C_5H_4), 5.12 [d, J = 2.9 Hz, 1 H, CH=C(O)Fc], 6.65-6.70, 7.03-7.11, 7.20-7.27, 7.40-7.45 (4 m, 10 H, 2 Ph) ppm. ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 43.28 (CHPh), 53.21, 63.54 (NCH₂), 64.33, 67.11, 67.50 (C₅H₄), 67.90 (C₅H₅), 68.69 (CH₂Ph), 96.49 [CH=C(O)Fc], 125.48, 127.47, 127.86, 128.66 (Ph), 130.24 [CH=C(O)Fc] ppm. The ¹³C NMR signals of the pentafluorophenyl rings were not observed under these conditions due to poor solubility and higher-order C-F coupling. C₄₂H₃₁F₁₀FeGeN₃O (912.1542): calcd. C 55.30, H 3.43, N 4.61; found C 55.16, H 3.52, N 4.80.

Reaction of 2b with 2,3-Dimethylbuta-1,3-diene

Method A: A solution of 2,3-dimethylbuta-1,3-diene (0.37 g, 4.50 mmol) in toluene (5 mL) was added to a stirred solution of **2b** (0.27 g, 0.45 mmol) in toluene (10 mL). The mixture was stirred at

FULL PAPER

room temperature for 4 d or heated at reflux, and the volatiles were removed under vacuum. On the basis of the NMR spectroscopic data, a mixture of unidentified compounds was obtained.

Method B: A solution 2,3-dimethylbuta-1,3-diene (0.37 g, 4.50 mmol) in toluene (5 mL) was added dropwise to a stirred solution of **2b** (0.27 g, 0.45 mmol) in toluene (10 mL) at -78 °C. The reaction mixture was stirred for 1 h and warmed to room temperature. After stirring for 4 d, the volatiles were removed under vacuum. After recrystallization from toluene, **2b** was obtained as a white solid.

Reaction of 2b with tBuN=C-C=N-tBu: A solution of **2b** (0.31 g, 0.52 mmol) was added to a stirred solution of tBuN=C-C=NtBu (0.09 g, 0.52 mmol) in toluene (15 mL). The reaction mixture was stirred at reflux for 12 h, and the volatiles were removed under

vacuum to yield 0.39 g of a brown solid. On the basis of the NMR spectroscopic data, this was a mixture of the starting materials.

X-ray Crystallography: Crystal data and details of the X-ray analyses are given in Table 1. Experimental data sets were collected with Stoe IPDS-1 (for **2b**, **2i**, and **2j**) and Bruker SMART APEX II (for **5b**, **7a**, **7b**, **8**, **10**, and **11**) diffractometers by using graphite-monochromatized Mo- K_a radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods (Sir97 for **2b**, **2i**, and **2j**,^[40] SHELXS^[41] for **5b**, **7a**, **7b**, **8**, **10**, and **11**) and refined by full-matrix least-squares methods on F^2 with anisotropic thermal parameters for all non-hydrogen atoms (except solvent toluene molecules in **5b** and **10**). All hydrogen atoms were placed in calculated positions and refined by using a riding model. CCDC-854658 (for **2b**), -854669 (for **2i**), -854660 (for **2j**), -854661 (for **5b**), -854662 (for **7a**), -854663 (for **7b**), -854664 (for **8**), -854665 (for **10**), and -854666

Table 1. Crystallographic data collection parameters for 2b, 2i, 2j, 5b, 7a, 7b, 8, 10, and 11.

Complex	2b	2i	2j	5b	7a
Formula	C23H15F10GeN3	$C_{18}H_4F_{10}GeN_2$	$C_{24}F_{20}GeN_2$	C31H26F10GeIN3	C ₂₉ H ₄₇ F ₁₀ Ge ₂ N ₅ O ₂ Si
$M_{ m r}$	595.97	510.84	768.85	830.04	945.26
Crystal system	triclinic	orthorhombic	orthorhombic	orthorhombic	monoclinic
Space group	$P\overline{1}$	Pnma	Pbca	Pbca	$P2_1/n$
Ζ	2	4	8	8	4
T [K]	293(2)	293(2)	293(2)	180(2)	150(2)
a [Å]	7.693(5)	6.1666(12)	14.120(5)	12.8050(18)	11.0262(8)
b [Å]	8.601(5)	20.818(4)	14.123(5)	21.427(3)	34.270(2)
<i>c</i> [Å]	17.731(5)	15.324(3)	24.455(5)	22.556(3)	11.2722(8)
a [°]	84.663(5)	90	90	90	90
β [°]	80.985(5)	90	90	90	111.592(1)
γ [°]	75.536(5)	90	90	90	90
V [Å ³]	1120.2(10)	1967.2(7)	4877(3)	6188.8(15)	3960.5(5)
$\rho_{\text{calcd.}} [\text{g cm}^{-3}]$	1.767	1.725	2.094	1.782	1.585
$\mu \text{ [mm^{-1}]}$	1.469	1.656	1.431	2.076	1.721
Total reflections	9827	14500	32864	56717	40700
Unique reflections (R_{int})	4096 (0.0588)	1981 (0.0612)	4772 (0.0628)	6747 (0.0655)	9567 (0.0317)
No. of variables	334	143	424	382	482
Restraints	0	0	0	0	0
$R_1 \left[I > 2\sigma(I) \right]$	0.0342	0.0387	0.0313	0.0358	0.0282
wR_2 (all data)	0.0809	0.1319	0.0715	0.0907	0.0682
Largest diff. peak/hole [eÅ ⁻³]	0.615/-0.792	0.363/-1.175	0.364/-0.232	1.654/-0.782	0.490/-0.399
Complex	7b	8	10	11	
Complex Formula	7b C ₇₀ H ₅₄ F ₂₀ Ge ₂ N ₆ O ₂	8 C ₃₄ H ₂₂ F ₂₀ Ge ₂ N ₆ S ₂	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O	$\frac{11}{{}_{2}C_{35}H_{26}F_{10}GeN_{3}O}$	
Complex Formula M _r	$\frac{7b}{C_{70}H_{54}F_{20}Ge_2N_6O_2}\\ 1536.37$	8 C ₃₄ H ₂₂ F ₂₀ Ge ₂ N ₆ S ₂ 1103.88	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75	11 2 C ₃₅ H ₂₆ F ₁₀ GeN ₃ O 767.18	
Complex Formula $M_{\rm r}$ Crystal system	7b C ₇₀ H ₅₄ F ₂₀ Ge ₂ N ₆ O ₂ 1536.37 triclinic	8 C ₃₄ H ₂₂ F ₂₀ Ge ₂ N ₆ S ₂ 1103.88 triclinic	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal	11 2 C ₃₅ H ₂₆ F ₁₀ GeN ₃ O 767.18 triclinic	
$\begin{tabular}{c} \hline Complex \\ \hline Formula \\ M_r \\ Crystal system \\ Space group \\ \hline \end{tabular}$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_{2}N_{6}O_{2} \\ 1536.37 \\ triclinic \\ P\bar{1} \end{array}$	8 C ₃₄ H ₂₂ F ₂₀ Ge ₂ N ₆ S ₂ 1103.88 triclinic <i>P</i> 1	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3	11 2 C ₃₅ H ₂₆ F ₁₀ GeN ₃ O 767.18 triclinic <i>P</i> I	
$\begin{tabular}{c} \hline Complex \\ \hline Formula \\ M_r \\ Crystal system \\ Space group \\ Z \\ \end{tabular}$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \end{array}$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic $P\bar{1}$ 1	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18	11 2 C ₃₅ H ₂₆ F ₁₀ GeN ₃ O 767.18 triclinic <i>P</i> I 2	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \end{array}$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic $P\bar{1}$ 1 150(2)	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18 150(2)	11 2 C ₃₅ H ₂₆ F ₁₀ GeN ₃ O 767.18 triclinic <i>P</i> I 2 150(2)	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \end{array}$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic <i>P</i> 1 1 150(2) 9.330(3)	10 C48.67H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18 150(2) 44.999(3)	11 ² C ₃₅ H ₂₆ F ₁₀ GeN ₃ O 767.18 triclinic <i>P</i> Ī 2 150(2) 11.0951(6)	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{I} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \end{array}$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic $P\bar{1}$ 1 150(2) 9.330(3) 10.952(3)	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18 150(2) 44.999(3) 44.999(3)	11 ² C ₃₅ H ₂₆ F ₁₀ GeN ₃ O 767.18 triclinic <i>P</i> I 2 150(2) 11.0951(6) 11.7015(6)	
$\begin{tabular}{c} \hline Complex \\ \hline Formula \\ M_r \\ Crystal system \\ Space group \\ Z \\ T \ [K] \\ a \ [Å] \\ b \ [Å] \\ b \ [Å] \\ c \ [Å] \end{tabular}$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \end{array}$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic $P\bar{1}$ 1 150(2) 9.330(3) 10.952(3) 11.206(3)	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18 150(2) 44.999(3) 44.999(3) 11.6920(18)	$\begin{array}{c} 11 \\ {}_{2}C_{35}H_{26}F_{10}GeN_{3}O \\ 767.18 \\ triclinic \\ P\bar{1} \\ 2 \\ 150(2) \\ 11.0951(6) \\ 11.7015(6) \\ 12.7451(6) \end{array}$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \\ 68.806(2) \end{array}$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic $P\bar{1}$ 1 150(2) 9.330(3) 10.952(3) 11.206(3) 63.389(4)	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18 150(2) 44.999(3) 44.999(3) 11.6920(18) 90	$\begin{array}{c} 11 \\ \hline \\ {}_2 C_{35} H_{26} F_{10} GeN_3O \\ 767.18 \\ triclinic \\ P\bar{1} \\ 2 \\ 150(2) \\ 11.0951(6) \\ 11.7015(6) \\ 12.7451(6) \\ 93.032(1) \end{array}$	
$\frac{\text{Complex}}{\text{Formula}} \\ \hline M_r \\ \text{Crystal system} \\ \text{Space group} \\ Z \\ T [K] \\ a [Å] \\ b [Å] \\ c [Å] \\ a [°] \\ \beta [°] \\ \hline c [Å] \\ a [°] \\ \beta [] \\ \hline c [Å] \\ c [A] \\ $	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2\\ 1536.37\\ triclinic\\ P\bar{1}\\ 1\\ 150(2)\\ 11.8540(11)\\ 11.9205(12)\\ 13.3564(13)\\ 68.806(2)\\ 75.749(2)\\ \end{array}$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic P1 1 150(2) 9.330(3) 10.952(3) 11.206(3) 63.389(4) 71.037(4)	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18 150(2) 44.999(3) 44.999(3) 11.6920(18) 90 90	$\begin{array}{c} 11 \\ \hline \\ {}_2 C_{35} H_{26} F_{10} GeN_3O \\ 767.18 \\ triclinic \\ P\bar{1} \\ 2 \\ 150(2) \\ 11.0951(6) \\ 11.7015(6) \\ 12.7451(6) \\ 93.032(1) \\ 106.189(1) \\ \end{array}$	
Complex Formula M_r Crystal system Space group Z T [K] a [Å] b [Å] c [Å] a [°] β [°] γ [°] γ [°]	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \\ 68.806(2) \\ 75.749(2) \\ 64.895(1) \\ 10000000000000000000000000000000000$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic <i>P</i> 1 1 150(2) 9.330(3) 10.952(3) 11.206(3) 63.389(4) 71.037(4) 66.982(4)	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18 150(2) 44.999(3) 44.999(3) 11.6920(18) 90 90 120	$\begin{array}{c} 11 \\ \hline \\ {}_2C_{35}H_{26}F_{10}GeN_{3}O \\ 767.18 \\ triclinic \\ P\bar{I} \\ 2 \\ 150(2) \\ 11.0951(6) \\ 11.7015(6) \\ 12.7451(6) \\ 93.032(1) \\ 106.189(1) \\ 92.008(1) \\ \hline \end{array}$	
$\frac{\text{Complex}}{\text{Formula}} \\ \hline M_r \\ \text{Crystal system} \\ \text{Space group} \\ Z \\ T [K] \\ a [Å] \\ b [Å] \\ c [Å] \\ a [°] \\ \beta [°] \\ \gamma [°] \\ V [Å^3] \\ \hline \end{bmatrix}$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \\ 68.806(2) \\ 75.749(2) \\ 64.895(1) \\ 1583.8(3) \end{array}$	$\frac{8}{\begin{array}{c} F_{20}F_{20}Ge_2N_6S_2\\ 1103.88\\ triclinic\\ P\bar{1}\\ 1\\ 150(2)\\ 9.330(3)\\ 10.952(3)\\ 11.206(3)\\ 63.389(4)\\ 71.037(4)\\ 66.982(4)\\ 926.5(5)\\ \end{array}}$	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18 150(2) 44.999(3) 44.999(3) 11.6920(18) 90 90 120 20503(4)	$\begin{array}{c} 11 \\ \hline \\ {}_2C_{35}H_{26}F_{10}GeN_3O \\ 767.18 \\ triclinic \\ P\bar{1} \\ 2 \\ 150(2) \\ 11.0951(6) \\ 11.7015(6) \\ 12.7451(6) \\ 93.032(1) \\ 106.189(1) \\ 92.008(1) \\ 1584.71(14) \\ \end{array}$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \\ 68.806(2) \\ 75.749(2) \\ 64.895(1) \\ 1583.8(3) \\ 1.611 \\ 1.611 \\ \end{array}$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic P1 1 150(2) 9.330(3) 10.952(3) 11.206(3) 63.389(4) 71.037(4) 66.982(4) 926.5(5) 1.978	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18 150(2) 44.999(3) 44.999(3) 11.6920(18) 90 90 120 20503(4) 1.399 0	$\begin{array}{c} 11 \\ \hline \\ {}_{2}C_{35}H_{26}F_{10}GeN_{3}O \\ 767.18 \\ triclinic \\ P\bar{1} \\ 2 \\ 150(2) \\ 11.0951(6) \\ 11.7015(6) \\ 12.7451(6) \\ 93.032(1) \\ 106.189(1) \\ 92.008(1) \\ 1584.71(14) \\ 1.608 \\ 1.001 \\ \end{array}$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \\ 68.806(2) \\ 75.749(2) \\ 64.895(1) \\ 1583.8(3) \\ 1.611 \\ 1.061 \\ 10.01 \end{array}$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic P1 1 150(2) 9.330(3) 10.952(3) 11.206(3) 63.389(4) 71.037(4) 66.982(4) 926.5(5) 1.978 1.875 5072	10 C _{48.67} H _{38.33} F ₁₀ GeN ₃ O 959.75 trigonal <i>R</i> 3 18 150(2) 44.999(3) 44.999(3) 11.6920(18) 90 90 120 20503(4) 1.399 0.755	$\begin{array}{c} 11 \\ \hline \\ {}_2C_{35}H_{26}F_{10}GeN_{3}O \\ 767.18 \\ triclinic \\ P\bar{1} \\ 2 \\ 150(2) \\ 11.0951(6) \\ 11.7015(6) \\ 12.7451(6) \\ 93.032(1) \\ 106.189(1) \\ 92.008(1) \\ 1584.71(14) \\ 1.608 \\ 1.061 \\ 1595 \\ \end{array}$	
$\frac{\text{Complex}}{\text{Formula}}$ M_r $Crystal system$ Space group Z $T [K]$ $a [Å]$ $b [Å]$ $c [Å]$ $a [°]$ $\beta [°]$ $\gamma [°]$ $V [Å^3]$ $\rho_{\text{caled.}} [g \text{ cm}^{-3}]$ $\mu [\text{mm}^{-1}]$ Total reflections $(b = 0)$	$7b$ $C_{70}H_{54}F_{20}Ge_2N_6O_2$ 1536.37 triclinic $P\bar{1}$ 1 150(2) 11.8540(11) 11.9205(12) 13.3564(13) 68.806(2) 75.749(2) 64.895(1) 1583.8(3) 1.611 1.061 13431	$\frac{8}{\begin{array}{c} F_{23}F_{20}Ge_2N_6S_2\\ 1103.88\\ triclinic\\ P\overline{1}\\ 1\\ 150(2)\\ 9.330(3)\\ 10.952(3)\\ 11.206(3)\\ 63.389(4)\\ 71.037(4)\\ 66.982(4)\\ 926.5(5)\\ 1.978\\ 1.875\\ 5872\\ 60.0400\\ \end{array}}$	$\begin{array}{c} 10\\ \hline C_{48.67}H_{38.33}F_{10}GeN_{3}O_{5}\\ 959.75\\ trigonal\\ R3\\ 18\\ 150(2)\\ 44.999(3)\\ 44.999(3)\\ 44.999(3)\\ 11.6920(18)\\ 90\\ 90\\ 120\\ 20503(4)\\ 1.399\\ 0.755\\ 58502\\ 20402(120) 0 \\ 120(120) 0$	$\begin{array}{c} 11\\ \hline \\ {}_{2}C_{35}H_{26}F_{10}GeN_{3}O\\ 767.18\\ triclinic\\ P\bar{1}\\ 2\\ 150(2)\\ 11.0951(6)\\ 11.7015(6)\\ 12.7451(6)\\ 93.032(1)\\ 106.189(1)\\ 92.008(1)\\ 1584.71(14)\\ 1.608\\ 1.061\\ 15281\\ \end{array}$	
$\frac{\text{Complex}}{\text{Formula}} \\ \hline M_r \\ \text{Crystal system} \\ \text{Space group} \\ Z \\ T [K] \\ a [Å] \\ b [Å] \\ c [Å] \\ a [°] \\ \beta [°] \\ \gamma [°] \\ V [Å^3] \\ \rho_{\text{calcd.}} [g \text{cm}^{-3}] \\ \mu [\text{mm}^{-1}] \\ \text{Total reflections} (R_{\text{int}}) \\ \text{Unique reflections} (R_{\text{int}}) \\ \hline M_r \in \mathbb{C}$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \\ 68.806(2) \\ 75.749(2) \\ 64.895(1) \\ 1583.8(3) \\ 1.611 \\ 1.061 \\ 13431 \\ 6753 (0.0277) \\ 451 \end{array}$	$\frac{8}{C_{34}H_{22}F_{20}Ge_2N_6S_2}$ 1103.88 triclinic P1 1 150(2) 9.330(3) 10.952(3) 11.206(3) 63.389(4) 71.037(4) 66.982(4) 926.5(5) 1.978 1.875 5872 3472 (0.0438) 220	$\begin{array}{c} 10\\\hline C_{48.67}H_{38.33}F_{10}GeN_{3}O_{5}\\ 959.75\\ trigonal\\ R3\\ 18\\ 150(2)\\ 44.999(3)\\ 44.999(3)\\ 44.999(3)\\ 11.6920(18)\\ 90\\ 90\\ 120\\ 20503(4)\\ 1.399\\ 0.755\\ 58502\\ 8487\ (0.1260)\\ 515\end{array}$	$\begin{array}{c} 11\\ \hline \\ {}_2C_{35}H_{26}F_{10}GeN_{3}O\\ 767.18\\ triclinic\\ P\bar{1}\\ 2\\ 150(2)\\ 11.0951(6)\\ 11.7015(6)\\ 12.7451(6)\\ 93.032(1)\\ 106.189(1)\\ 92.008(1)\\ 1584.71(14)\\ 1.608\\ 1.061\\ 15281\\ 6909\ (0.0352)\\ 452\end{array}$	
$\label{eq:complex} \hline \hline Complex \\ \hline Formula \\ M_r \\ Crystal system \\ Space group \\ Z \\ T [K] \\ a [Å] \\ b [Å] \\ c [Å] \\ a [°] \\ \beta [°] \\ \gamma [°] \\ V [Å^3] \\ \rho_{calcd.} [g cm^{-3}] \\ \mu [mm^{-1}] \\ Total reflections \\ Unique reflections (R_{int}) \\ No. of variables \\ \hline \end{array}$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \\ 68.806(2) \\ 75.749(2) \\ 64.895(1) \\ 1583.8(3) \\ 1.611 \\ 1.061 \\ 13431 \\ 6753 (0.0277) \\ 451 \\ 0 \end{array}$	$\frac{8}{\begin{array}{c} F_{23}F_{20}Ge_2N_6S_2\\ 1103.88\\ triclinic\\ P\overline{1}\\ 1\\ 150(2)\\ 9.330(3)\\ 10.952(3)\\ 11.206(3)\\ 63.389(4)\\ 71.037(4)\\ 66.982(4)\\ 926.5(5)\\ 1.978\\ 1.875\\ 5872\\ 3472\\ (0.0438)\\ 290\\ 290\\ 920\\ 920\\ 920\\ 920\\ 920\\ 920$	$\begin{array}{c} 10\\\hline C_{48.67}H_{38.33}F_{10}GeN_{3}O_{5}\\ 959.75\\ trigonal\\ R3\\ 18\\ 150(2)\\ 44.999(3)\\ 44.999(3)\\ 44.999(3)\\ 11.6920(18)\\ 90\\ 90\\ 120\\ 20503(4)\\ 1.399\\ 0.755\\ 58502\\ 8487\ (0.1260)\\ 515\\ 10\\ \end{array}$	$\begin{array}{c} 11 \\ \hline \\ {}_2C_{35}H_{26}F_{10}GeN_{3}O \\ 767.18 \\ triclinic \\ P\bar{1} \\ 2 \\ 150(2) \\ 11.0951(6) \\ 11.7015(6) \\ 12.7451(6) \\ 93.032(1) \\ 106.189(1) \\ 92.008(1) \\ 1584.71(14) \\ 1.608 \\ 1.061 \\ 15281 \\ 6909 (0.0352) \\ 452 \\ \end{array}$	
Complex Formula M_r Crystal system Space group Z T [K] a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] $\rho_{calcd.}$ [g cm ⁻³] μ [mm ⁻¹] Total reflections Unique reflections (R_{int}) No. of variables Restraints P $L \geq 0$ (P)	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \\ 68.806(2) \\ 75.749(2) \\ 64.895(1) \\ 1583.8(3) \\ 1.611 \\ 1.061 \\ 13431 \\ 6753 (0.0277) \\ 451 \\ 0 \\ 0.0246 \end{array}$	$\frac{8}{\begin{array}{c} F_{23}F_{20}Ge_2N_6S_2\\ 1103.88\\ triclinic\\ P\overline{1}\\ 1\\ 150(2)\\ 9.330(3)\\ 10.952(3)\\ 11.206(3)\\ 63.389(4)\\ 71.037(4)\\ 66.982(4)\\ 926.5(5)\\ 1.978\\ 1.875\\ 5872\\ 3472\ (0.0438)\\ 290\\ 0\\ 0.0667\end{array}}$	$\begin{array}{c} 10\\\hline C_{48.67}H_{38.33}F_{10}GeN_{3}O_{5}\\ 959.75\\ trigonal\\ R3\\ 18\\ 150(2)\\ 44.999(3)\\ 44.999(3)\\ 44.999(3)\\ 11.6920(18)\\ 90\\ 90\\ 120\\ 20503(4)\\ 1.399\\ 0.755\\ 58502\\ 8487\ (0.1260)\\ 515\\ 10\\ 0.9620\\ \end{array}$	$\begin{array}{c} 11\\ \hline \\ {}_2C_{35}H_{26}F_{10}GeN_{3}O\\ 767.18\\ triclinic\\ P\bar{1}\\ 2\\ 150(2)\\ 11.0951(6)\\ 11.7015(6)\\ 12.7451(6)\\ 93.032(1)\\ 106.189(1)\\ 92.008(1)\\ 1584.71(14)\\ 1.608\\ 1.061\\ 15281\\ 6909\ (0.0352)\\ 452\\ 0\\ 0.0275 \end{array}$	
$\frac{\text{Complex}}{\text{Formula}} \\ \hline \\ M_r \\ \text{Crystal system} \\ \text{Space group} \\ Z \\ T [K] \\ a [Å] \\ b [Å] \\ c [Å] \\ a [°] \\ \beta [°] \\ \gamma [°] \\ V [Å^3] \\ \rho_{\text{calcd.}} [g \text{cm}^{-3}] \\ \mu [mm^{-1}] \\ \text{Total reflections} \\ \text{Unique reflections} (R_{\text{int}}) \\ \text{No. of variables} \\ \text{Restraints} \\ R_1 [I > 2\sigma(I)] \\ P [C I_1 \\ c] \\ \end{array}$	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \\ 68.806(2) \\ 75.749(2) \\ 64.895(1) \\ 1583.8(3) \\ 1.611 \\ 1.061 \\ 13431 \\ 6753 (0.0277) \\ 451 \\ 0 \\ 0.0346 \\ 0.0705 \end{array}$	$\frac{8}{\begin{array}{c} F_{23}F_{20}Ge_2N_6S_2\\ 1103.88\\ triclinic\\ P\overline{1}\\ 1\\ 150(2)\\ 9.330(3)\\ 10.952(3)\\ 11.206(3)\\ 63.389(4)\\ 71.037(4)\\ 66.982(4)\\ 926.5(5)\\ 1.978\\ 1.875\\ 5872\\ 3472\ (0.0438)\\ 290\\ 0\\ 0.0627\\ 0.1621\end{array}}$	$\begin{array}{c} 10\\\hline C_{48.67}H_{38.33}F_{10}GeN_{3}O_{5}\\ 959.75\\ trigonal\\ R3\\ 18\\ 150(2)\\ 44.999(3)\\ 44.999(3)\\ 44.999(3)\\ 11.6920(18)\\ 90\\ 90\\ 120\\ 20503(4)\\ 1.399\\ 0.755\\ 58502\\ 8487\ (0.1260)\\ 515\\ 10\\ 0.0630\\ 0.1976\end{array}$	$\begin{array}{c} 11\\ \hline \\ {}_2C_{35}H_{26}F_{10}GeN_{3}O\\ 767.18\\ triclinic\\ P\bar{1}\\ 2\\ 150(2)\\ 11.0951(6)\\ 11.7015(6)\\ 12.7451(6)\\ 93.032(1)\\ 106.189(1)\\ 92.008(1)\\ 1584.71(14)\\ 1.608\\ 1.061\\ 15281\\ 6909\ (0.0352)\\ 452\\ 0\\ 0.0375\\ 0.0975\\ 0.0075\\ 0.$	
$\label{eq:complex} \hline \hline Complex \\ \hline Formula \\ M_r \\ Crystal system \\ Space group \\ Z \\ T [K] \\ a [Å] \\ b [Å] \\ c [Å] \\ a [°] \\ \beta [°] \\ \gamma [°] \\ V [Å^3] \\ \rho_{calcd.} [g cm^{-3}] \\ \mu [mm^{-1}] \\ Total reflections \\ Unique reflections (R_{int}) \\ No. of variables \\ Restraints \\ R_1 [I > 2\sigma(I)] \\ w R_2 (all data) \\ W_{restraints} = 1.0 \\ \mu [m - 1, 1] \\ K_{restraints} = 1.0 \\ \mu [m - 1, 1] \\ K_{restraints} = 1.0 \\ \mu [m - 1, 1] \\ K_{restraints} = 1.0 \\ \mu [m - 1, 1] \\ K_{restraints} = 1.0 \\ \mu [m - 1, 1] \\ K_{restraints} = 1.0 \\ \mu [m - 1, 1] \\ \kappa [m $	$\begin{array}{c} \textbf{7b} \\ \hline C_{70}H_{54}F_{20}Ge_2N_6O_2 \\ 1536.37 \\ triclinic \\ P\bar{1} \\ 1 \\ 150(2) \\ 11.8540(11) \\ 11.9205(12) \\ 13.3564(13) \\ 68.806(2) \\ 75.749(2) \\ 64.895(1) \\ 1583.8(3) \\ 1.611 \\ 1.061 \\ 13431 \\ 6753 (0.0277) \\ 451 \\ 0 \\ 0.0346 \\ 0.0795 \\ 0.428(-0.217) \end{array}$	$\begin{array}{c} {\bf 8} \\ \hline C_{34}H_{22}F_{20}Ge_2N_6S_2 \\ {\rm triclinic} \\ P\bar{1} \\ 1 \\ 150(2) \\ 9.330(3) \\ 10.952(3) \\ 11.206(3) \\ 63.389(4) \\ 71.037(4) \\ 66.982(4) \\ 926.5(5) \\ 1.978 \\ 1.875 \\ 5872 \\ 3472 (0.0438) \\ 290 \\ 0 \\ 0.0627 \\ 0.1621 \\ 1.770(1.700) \end{array}$	$\begin{array}{c} 10 \\ \hline \\ C_{48,67}H_{38,33}F_{10}GeN_{3}O_{5}\\ 959,75\\ trigonal \\ R3\\ 18\\ 150(2)\\ 44.999(3)\\ 44.999(3)\\ 44.999(3)\\ 11.6920(18)\\ 90\\ 90\\ 120\\ 20503(4)\\ 1.399\\ 0.755\\ 58502\\ 8487\ (0.1260)\\ 515\\ 10\\ 0.0630\\ 0.1876\\ 0.692(0.526) \end{array}$	$\begin{array}{c} 11 \\ \hline \\ {}_2C_{35}H_{26}F_{10}GeN_{3}O \\ 767.18 \\ triclinic \\ P\bar{1} \\ 2 \\ 150(2) \\ 11.0951(6) \\ 11.7015(6) \\ 12.7451(6) \\ 93.032(1) \\ 106.189(1) \\ 92.008(1) \\ 1584.71(14) \\ 1.608 \\ 1.061 \\ 15281 \\ 6909 \ (0.0352) \\ 452 \\ 0 \\ 0.0375 \\ 0.0851 \\ 0.5081 \\ 0.50$	

(for 11) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

Acknowledgments

E. K. L. gratefully acknowledges Deutscher Akademischer Austauschdienst (DAAD) for supporting a three-month stay at Philipps-Universität Marburg. We thank the Russian Foundation for Basic Research (Grant 09-03-00536-a).

- a) T. Szymańska-Buzar, Coord. Chem. Rev. 2005, 249, 2195– 2202; b) M. Górski, A. Kochel, T. Szymańska-Buzar, J. Organomet. Chem. 2006, 691, 3708–3714.
- [2] a) T. Chen, W. Hunks, P. S. Chen, G. T. Stauf, T. M. Cameron, C. Xu, A. G. DiPasquale, A. L. Rheingold, *Eur. J. Inorg. Chem.* 2009, 2047–2049; b) M. A. Malik, M. Afzaal, P. O'Brien, *Chem. Rev.* 2010, *110*, 4417–4446.
- [3] M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354–396.
- [4] J.-L. Fauré, H. Gornitzka, R. Réau, D. Stalke, G. Bertrand, *Eur. J. Inorg. Chem.* 1999, 2295–2299.
- [5] M. Veith, S. Becker, V. Huch, Angew. Chem. 1989, 101, 1287; Angew. Chem. Int. Ed. Engl. 1989, 28, 1237–1238.
- [6] M. Huang, M. M. Kireenko, K. V. Zaitsev, Y. F. Oprunenko, A. V. Churakov, J. A. K. Howard, M. V. Zabalov, E. Kh. Lermontova, J. Sundermeyer, T. Linder, S. S. Karlov, G. S. Zaitseva, J. Organomet. Chem. 2012, 706–707, 66–83.
- [7] a) F. E. Hahn, A. V. Zabula, T. Pape, A. Hepp, *Eur. J. Inorg. Chem.* 2007, 2405–2408; b) T. Gans-Eichler, D. Gudat, K. Nattinen, M. Nieger, *Chem. Eur. J.* 2006, *12*, 1162–1173.
- [8] a) D. Matioszek, N. Katir, N. Saffon, A. Castel, Organometallics 2010, 29, 3039–3046; b) A. McHeik, N. Katir, A. Castel, H. Gornitzka, S. Massou, P. Riviere, T. Hamieh, Eur. J. Inorg. Chem. 2008, 5397–5403.
- [9] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361–363.
- [10] R. W. Chorley, P. B. Hitchcock, M. F. Lappert, W. P. Leung, P. P. Power, M. M. Olmstead, *Inorg. Chim. Acta* **1992**, *198*, 203–209.
- [11] A. Schnepf, Z. Anorg. Allg. Chem. 2006, 632, 935-938.
- [12] M. Veith, A. Rammo, Z. Anorg. Allg. Chem. 2001, 627, 662–668.
- [13] M. Huang, E. Kh. Lermontova, K. V. Zaitsev, A. V. Churakov, Y. F. Oprunenko, J. A. K. Howard, S. S. Karlov, G. S. Zaitseva, J. Organomet. Chem. 2009, 694, 3828–3832.
- [14] M. Veith, M. Grosser, V. Huch, Z. Anorg. Allg. Chem. 1984, 513, 89–102.
- [15] a) E. Bonnefille, S. Mazires, N. El Hawi, H. Gornitzka, C. Couret, J. Organomet. Chem. 2006, 691, 5619–5625; b) A. Tzschach, M. Scheer, K. Jurkschat, Z. Anorg. Allg. Chem. 1984, 512, 177–180.
- [16] a) L. D. Silverman, M. Zeldin, *Inorg. Chem.* 1980, *19*, 270–272;
 b) Y. Ding, Q. Ma, H. W. Roesky, R. Herbst-Irmer, I. Usón, M. Noltemeyer, H.-G. Schmidt, *Organometallics* 2002, *21*, 5216–5220; c) C. S. Weinert, A. E. Fenwick, P. E. Fanwick, I. P. Rothwell, *Dalton Trans.* 2003, 532–539.
- [17] a) K. A. Miller, J. M. Bartolin, R. M. O'Neill, R. D. Sweeder, T. M. Owens, J. W. Kampf, M. M. B. Holl, N. J. Wells, *J. Am. Chem. Soc.* 2003, *125*, 8986–8987; b) A. E. Wetherby, C. R. Samanamu, A. C. Schrick, A. DiPasquale, J. A. Golen, A. L. Rheingold, C. S. Weinert, *Inorg. Chim. Acta* 2010, *364*, 89–95.

- [18] S. R. Stobart, M. R. Churchill, F. J. Hollander, W. J. Youngs, J. Chem. Soc., Chem. Commun. 1979, 911–912.
- [19] N. A. Victorov, T. K. Gar, I. S. Nikishina, V. M. Nosova, D. A. Ivaschenko, V. F. Mironov, *Russ. J. Gen. Chem.* **1986**, *56*, 1535– 1539.
- [20] J. Barrau, G. Rima, T. E. Amraoui, J. Organomet. Chem. 1998, 570, 163–174.
- [21] D. Ellis, P. B. Hitchcock, M. F. Lappert, J. Chem. Soc., Dalton Trans. 1992, 3397–3398.
- [22] P. Jutzi, H. Schmidt, B. Neumann, H. G. Stammler, Organometallics 1996, 15, 741–746.
- [23] I. Schranz, L. Grocholl, C. J. Carrow, L. Stahl, R. J. Staples, J. Organomet. Chem. 2008, 693, 1081–1095.
- [24] a) Y. I. Baukov, S. N. Tandura in *The chemistry of organic germanium, tin and lead compounds* (Ed.: Z. Rappoport), Wiley, Chichester, **2002**, vol. 2, pp. 1036–1072; b) E. Kh. Lermontova, M. Huan, A. V. Churakov, J. A. K. Howard, M. V. Zabalov, S. S. Karlov, G. S. Zaitseva, *Dalton Trans.* **2009**, 4695–4702.
- [25] A. Meller, G. Ossig, W. Maringgele, M. Noltemeyer, D. Stalke, R. Herbstirmer, S. Freitag, G. M. Sheldrick, Z. Naturforsch. B 1992, 47, 162–170.
- [26] a) N. Tokitoh, K. Manmaru, R. Okazaki, *Organometallics* 1994, 13, 167–171; b) G. Billeb, K. Bootz, W. P. Neumann, G. Steinhoff, J. Organomet. Chem. 1991, 406, 303–308.
- [27] S. N. Gurkova, A. I. Gusev, N. V. Alekseev, T. K. Gar, N. A. Viktorov, J. Struct. Chem. 1991, 31, 833–835.
- [28] a) N. V. Alekseev, S. N. Gurkova, A. I. Gusev, S. N. Tandura, T. K. Gar, N. Y. Khromova, N. A. Viktorov, V. F. Mironov, *Zh. Obshch. Khim.* **1982**, *52*, 2136–2137; b) S. N. Gurkova, A. I. Gusev, N. V. Alekseev, T. K. Gar, N. Y. Khromova, N. A. Viktorov, J. Struct. Chem. **1984**, *25*, 458–462.
- [29] D. H. Chen, H. C. Chiang, J. Chin. Chem. Soc. 1993, 40, 373-377.
- [30] A. Arndt, H. Schafer, W. Saak, M. Weidenbruch, Z. Anorg. Allg. Chem. 2005, 631, 1341–1342.
- [31] M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Riviere, M. Riviere-Baudet, J. Chem. Soc., Dalton Trans. 1977, 2004–2009.
- [32] S. P. Kolesnikov, I. S. Rogozhin, O. M. Nefedov, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1974, 23, 2297– 2298.
- [33] U. Wannagat, H. Niederprum, Chem. Ber. 1961, 94, 1540-1547.
- [34] R. R. Schrock, J. Lee, L.-C. Liang, W. M. Davis, *Inorg. Chim. Acta* 1998, 270, 353–362.
- [35] Y. Li, A. Turnas, J. T. Ciszewski, A. L. Odom, *Inorg. Chem.* 2002, 41, 6298–6306.
- [36] H. C. S. Clark, G. N. Cloke, P. B. Hitchcock, J. B. Love, A. P. Wainwright, J. Organomet. Chem. 1995, 501, 333–340.
- [37] C. R. Hauser, J. K. Lindsay, J. Org. Chem. 1957, 22, 482-485.
- [38] a) R. Koppang, Acta Chem. Scand. 1971, 25, 3067–3071; b) A. Khvorost, P. L. Shutov, K. Harms, J. Lorberth, J. Sundermeyer, S. S. Karlov, G. S. Zaitseva, Z. Anorg. Allg. Chem. 2004, 630, 885–889.
- [39] M. M. Khusniyarov, E. Bill, Th. Weyhermüller, E. Bothe, K. Harms, J. Sundermeyer, K. Wieghardt, *Chem. Eur. J.* **2008**, *14*, 7608–7622. This ligand was first obtained in 20% yield, see: A. Khvorost, Ph. D. Thesis, Philipps-Universität Marburg, **2003**. The refined synthetic procedure and other ligand syntheses by nucleophilic amidation of C_6F_6 were developed later, see: A. Sorokin, Ph. D. Thesis, Philipps-Universität Marburg, **2006**.
- [40] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115–119.
- [41] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, 1997. Received: April 12, 2012

Published Online:

Date:

Date: 02-07-12 10:59:01

FULL PAPER

A series of novel, low-valent germanium compounds have been obtained by the reaction of Ge[N(SiMe₃)₂]₂ with various diamines or by the metathesis reaction of [GeCl₂·dioxane] with lithium amides. The

oxidative insertion, [1+4] cycloaddition, and oxidation reactions of the synthesized germylenes were investigated. All the synthesized germylenes are monomeric.

Germylenes

Stabilized Germylenes Based on Diethylenetriamines and Related Diamines: Synthesis, Structures, and Chemical Properties

Keywords: Germanium / N-ligands / X-ray diffraction / Amines / Lithium