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Zeolite H-beta facilitated the reaction of a-chloro acetyl chloride with 1,2-bis-trimethyl silyl acetylene to
give 1-chloro-4-(trimethylsilyl)but-3-yn-2-one which on treatment with thioacetamide afforded
2-methyl-4-[(trimethylsilyl)ethynyl]thiazole. L-Proline on the other hand facilitated the coupling reac-
tion of 2-methyl-4-[(trimethylsilyl)ethynyl]thiazole with (hetero)aryl halides (modified Sonogashira
reaction) under Pd-Cu catalysis in the presence of aqueous K2CO3 affording an improved method for
the synthesis of corresponding 4-alkynyl substituted thiazole derivatives.

� 2012 Elsevier Ltd. All rights reserved.
S

N

S

N18F

CN

S

N

The thiazole framework has been found to be an integral part of
many natural products as well as various pharmacologically active
substances.1 For example, thiazole derivatives have been used for
the treatment of various CNS related sufferings2–12 such as pain,2

depression,3–10 anxiety,12 etc. Several 4-alkynyl substituted thia-
zole derivatives such as 2-methyl-4-(pyridin-3-ylethynyl)thiazole
(A) and 2-methyl-4-(phenylethynyl)thiazole (B) (Fig. 1) have been
reported as potent and selective metabotropic glutamate subtype 5
receptor antagonists with anxiolytic activity12 whereas compound
C (or [18F]SP203, Fig. 1) was found to be effective as a positron
emission tomography (PET) radio ligand in rhesus monkeys.13

The strategy used for the synthesis of 4-alkynyl substituted thi-
azole derivatives generally involved a Sonogashira-type coupling
of appropriate aryl or heteroaryl halides with 4-(trimethylsilyle-
thynyl)-substituted-1,3-thiazole (Scheme 1)12,14 which in turn
had been prepared via the reaction of a-chloro acetyl chloride with
bis-trimethyl silyl acetylene in the presence of AlCl3 followed by
treating the resulting ynone with thioacetamide. While this strat-
egy has been used successfully for the preparation of a number
of compounds earlier, the requirement of a stoichiometric quantity
of environmentally harmful and non-recyclable AlCl3 during the
generation of the 1,3-thiazole ring precursor was one of the major
drawbacks of this procedure. Additionally, the yields of coupled
ll rights reserved.
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alkynes obtained via the Sonogashira type coupling at 70–80 �C
were not particularly high in all cases. This prompted us to develop
an improved method for the synthesis of 4-alkynyl substituted thi-
azole derivatives in good yields. Herein we report the first use of
zeolite H-beta followed by thioacetamide for the construction of
1,3-thiazole ring and subsequent Sonogashira type coupling in
the presence of L-proline under mild conditions (Scheme 1).

The use of solid supports such as zeolites15 has been explored in
various organic reactions because of several advantages such as
their acidic properties, shape-selectivities, environmental friendly
nature along with easy work-up, the high purity of products, and
recycling of the catalysts. Thus, zeolite H-beta has been reported
to be an efficient catalyst in a number of chemical transformations
including alkylation16 and acylation.17 Its activity owes to its large
pore size, high Si/Al ratio, high acid strength, and thermal stability.
In view of its role similar to AlCl3 in a Friedel–Crafts acylation of
anisole using acetyl chloride18 we anticipated that like AlCl3 the
zeolite H-beta might facilitate the reaction of a-chloro acetyl
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Figure 1. Pharmacologically active 4-alkynyl substituted thiazole derivatives.
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Scheme 1. Zeolite H-beta mediated construction of 1,3-thiazole ring and subsequent Sonogashira-type alkynylation in the presence of L-proline.
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chloride (1) with 1,2-bis-trimethyl silyl acetylene (2). Initially, we
examined the zeolite H-beta mediated reaction of 1 with 2 in
dichloromethane (DCM) at room temperature when the formation
of desired product that is 1-chloro-4-(trimethylsilyl)but-3-yn-2-
one (3, Scheme 1) was not observed after 48 h. The increase of
reaction temperature to 40–45 �C however afforded the expected
product 3 (�70% yield) and the reaction was completed within
24 h. To test the recyclability of the catalyst the zeolite H-beta
was separated from the reaction mixture by filtration, washed with
DCM, dried, and reused. This process was repeated twice when the
product 3 was isolated in 65% and 60% yields. While a marginal
Table 1
Effect of ligands on modified Sonogashira coupling of 5 with 6aa

S

N
Si I+

S

N

7a5 6a

O O

40-50 °C

Ligand
PdCl2(PPh3)2

CuI, Et3N
TBAF, DMF

Entry Ligand Time (h) Yieldb (%)

1
N

H2N

L1

12 30

2
N

O

OH

L2 
24 10

3

H
N

O

OH

L3 

6 85

4
N

OH

L4 

24 10

5 NO

HO

L5 

24 15

6 N

L6 
24 10

a All the reactions were carried out by using 5 (5.11 mmol, 1.0 equiv), 6a
(5.63 mmol, 1.1 equiv), PdCl2(PPh3)2 (0.042 mmol), ligand (0.51 mmol), CuI
(0.25 mmol), triethylamine (6.39 mmol, 1.25 equiv), and TBAF (5.63 mmol,
1.1 equiv) in DMF (2.5 mL).

b Isolated yields.
drop in product yield was observed in these cases the catalyst
however can potentially be recycled. Nevertheless, we were de-
lighted to develop an alternative but an environmentally safer
method for the synthesis of compound 3 which was then used
for the construction of the thiazole ring. The reaction of compound
3 with thioacetamide (4) in DMF provided the desired 2-methyl-4-
[(trimethylsilyl)ethynyl]thiazole 5 in good yield (60% yield)
(Scheme 1).

Having the key compound 5 in hand we then examined the one-
pot modified Sonogashira coupling of 5 which involved an in situ
desilylation in the presence of tetrabutylammonium fluoride
(TBAF) followed by Pd-Cu mediated cross-coupling of the resulting
terminal alkyne generated with an appropriate aryl halide. Accord-
ingly, the reaction of 5 with 1-(4-iodophenyl)ethanone (6a) was
carried out under the conditions (e.g., Pd(PPh3)4, CuI, NEt3, TBAF
in DMF at 80 �C or PdCl2(PPh3)2, PPh3, CuI, NEt3, TBAF, Bu4NI in
DMF at 80 �C) reported earlier.12,14b While the reaction proceeded
in these cases the desired product that is 1-{4-[(2-methylthiazol-4-
yl)ethynyl]phenyl}ethanone (7a) however was isolated only in
30–40% yield due to the formation of side product caused by the
oxidative homocoupling19 (Glaser coupling) of the terminal alkyne
generated in situ. The yield of 7a could not be improved in spite of
our several attempts. Since CuI in the presence of amine base plays
a significant role in such homocoupling reaction, in order to in-
crease the product yield we decided to examine the effect of a
range of ligands (L1–L6) on the present coupling reaction. The li-
gands were chosen based on their potential ability to chelate a cop-
per salt thereby modulating its reactivity. The results of this study
Table 2
Effect of Cu salts, solvents, and bases for Sonogashira coupling reaction

+5 6a 7a

45-50 °C, 6 h

L-Proline
PdCl2(PPh3)2

Cu-salt
Base, solvent

Entry Cu-salt Base Solvent Yieldb (%)

1 CuI K2CO3 DMF 80
2 CuI Cs2CO3 DMF 55
3 CuI DIPA DMF 47
4 CuI Et3N DMF 65
5 CuI K2CO3 Toluene 30
6 CuI K2CO3 i-PrOH 60
7 CuBr K2CO3 DMF 35
8 Cu2O K2CO3 DMF 0
9 Cu(OAc)2 K2CO3 DMF 15

10 CuI K2CO3 DMF–H2O 85

a All the reactions were carried out by using 5 (5.11 mmol, 1.0 equiv), 6a
(5.63 mmol, 1.1 equiv), PdCl2(PPh3)2 (0.042 mmol), L-proline (0.51 mmol), Cu-salt
(0.25 mmol), and a base (6.24 mmol, 1.25 equiv) in a solvent (2.5 mL) at 45–50 �C.

b Isolated yields.



Table 3
Pd-Cu mediated coupling reaction of 2-methyl-4-(trimethylsilylethynyl)-thiazole (5) with aryl and heteroaryl halides (6) in the presence of L-prolinea
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a All the reactions were carried out by using 5 (5.11 mmol, 1.0 equiv), 6 (5.63 mmol, 1.1 equiv), PdCl2(PPh3)2 (0.042 mmol), L-proline (0.51 mmol), CuI (0.25 mmol), K2CO3

(6.24 mmol, 1.25 equiv) in DMF (2.5 mL), and water (0.15 mL) at 45–50 �C.
b Identified by 1H NMR, IR, and MS.
c Isolated yields.

K. Arunkumar et al. / Tetrahedron Letters 53 (2012) 3885–3889 3887
are summarized in Table 1. The reaction was initially performed in
the presence of 10 mol % of N1,N1-dibenzyl-1,2-ethanediamine (L1)
in DMF for 12 h when no improvement of product yield was ob-
served (Table 1, entry 1). The use of 2-(dimethylamino)acetic acid
(L2) was also found to be ineffective (Table 1, entry 2). The yield of
7a however was improved significantly when L-proline (L3) was
used as a ligand and the reaction was completed within 6 h (Table
1, entry 3). The oxidative homocoupling of alkyne was suppressed
considerably though not completely in this case leading to the for-
mation of a purer product. To suppress the homocoupling of alkyne
completely, we tried a few other ligands for example L4–6 but our
effort was not successful (Table 1, entries 4–6). Having identified
L-proline as the best among the ligands tested, we then examined
the coupling reaction of 5 with 6a under various conditions for
example by changing several parameters such as solvent, copper
salt, and the desilylating agent (Table 2).
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5 with 6 in the presence of L-proline.
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The use of K2CO3 in place of Et3N and TBAF was found to be
effective as the desired product 7a was isolated in 80% yield (Table
2, entry 1). The use of other bases, such as Cs2CO3, diisopropyl
ethyl amine (DIPA), or Et3N decreased the product yield (Table 2,
entries 2–4). Changing the solvent from DMF to toluene (Table 2,
entry 5) or i-PrOH (Table 2, entry 6) or the copper catalyst from
CuI to CuBr (Table 2, entry 7) or Cu2O (Table 2, entry 8) or
Cu(OAc)2 (Table 2, entry 9) did not provide good yield of 7a. Inter-
estingly, the use of water as a co-solvent though did not improve
the product yield, afforded a much purer product (Table 2, entry
10) perhaps due to the enhanced solubility of K2CO3 in the aque-
ous reaction medium. Thus, the combination of L-proline,
(PPh3)2PdCl2, CuI, and K2CO3 in H2O–DMF was found to be the best
among all the conditions tested. A variety of aryl iodides (6) were
coupled with 5 under this condition to afford the corresponding 4-
alkynyl substituted thiazole derivatives (7) in good yields (Table
3).20 The presence of carbonyl, hydroxyalkyl, acyloxyalkyl, ester,
or ether substituents on the aromatic ring of 6 was well tolerated
and the reaction proceeded smoothly in all these cases. The reac-
tion also proceeded well when 2-bromothiophene derivatives
were employed.

The mechanism of the Pd-Cu mediated coupling of 5 with 6 can
be envisaged as shown in Scheme 2. The reaction seems to proceed
via desilylation21 of compound 5 in the presence of aqueous K2CO3

which subsequently forms the corresponding copper acetylide (E-
1) via reacting with L-proline chelated Cu(I) species.22 The interme-
diate E-1 then undergoes trans-metallation with the organo palla-
dium complex RPd(II)X generated from RX and the Pd(0) species
produced in situ to give intermediate E-2. It is evident from entry
3 (vs other entries) of Table 1 and entry 10 (vs other entries) of Ta-
ble 2 that L-proline in the presence of aqueous K2CO3 played a
favorable role in generating Pd(0) species in situ.23 The intermedi-
ate E-2 on reductive elimination of Pd(0) provided the expected
product 7 along with the Pd(0) species to complete the catalytic cy-
cle. The observed suppression of oxidative homocoupling reaction
could be explained by the chelating effect of L-proline which per-
haps prevented the copper acetylide to participate in the homo-
coupling reaction thereby diminishing the formation of undesired
side product.

In conclusion, zeolite H-beta facilitated the reaction of a-chloro
acetyl chloride with 1,2-bis-trimethyl silyl acetylene to give
1-chloro-4-(trimethylsilyl)but-3-yn-2-one which on treatment
with thioacetamide afforded 2-methyl-4-[(trimethylsilyl)ethy-
nyl]thiazole. In comparison to the previously reported AlCl3 medi-
ated method, the present process represents a useful but relatively
safer alternative where the zeolite H-beta used can potentially be
recycled. L-Proline on the other hand facilitated the coupling reac-
tion of 2-methyl-4-[(trimethylsilyl)ethynyl]thiazole with (het-
ero)aryl halides (modified Sonogashira reaction) under Pd-Cu
catalysis in the presence of aqueous K2CO3 affording an improved
method for the synthesis of corresponding 4-alkynyl substituted
thiazole derivatives. A variety of (hetero)aryl iodides and bromides
possessing carbonyl, hydroxyalkyl, acyloxyalkyl, ester, or ether
substituents were employed to give the coupled products in good
yields. The overall process may find uses in the generation of li-
braries of small molecules of potential pharmacological interest
based on 4-alkynyl substituted thiazole.
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