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ABSTRACT: A straightforward and selective reduction of nitroarenes with various alcohols was efficiently developed using an iron
catalyst via a hydrogen transfer methodology. This protocol led specifically to imines in 30−91% yields, with a good functional group
tolerance. Noticeably, starting from o-nitroaniline derivatives, in the presence of alcohols, benzimidazoles can be obtained in 64−
72% yields when the reaction was performed with an additional oxidant, DDQ, and quinoxalines were prepared from 1,2-diols in
28−96% yields. This methodology, unprecedented at iron for imines, also provides a sustainable alternative for the preparation of
quinoxalines and benzimidazoles.

■ INTRODUCTION

In the beginning of this millennium, with the global climate
change concerns associated to the depletion of fossil resources,
the utilization of eco-compatible methodologies and abundant
sustainable starting materials as the feedstocks for chemical
preparation is more than highly desirable. In reduction area,
comparing to the classical hydrogenations performed in
autoclaves under hydrogen pressure, a hydrogen borrowing
methodology is very attractive in terms of convenience and
chemoselectivity.1−3 Thus, alcohols are alternative interesting
reductants and coupling partners in acceptorless dehydrogen-
ative processes, such as the formation of CN bonds in
various derivatives such as imines or N-heterocycles. On the
other hand, quinoxalines4 and benzimidazoles5 are among the
most important nitrogen-containing heterocycles6 exploited by
the pharmaceutical industry as they exhibit a broad spectrum
of biological activities (Figure 1). Additionally, Schiff bases
bearing imine moiety also possess numerous potent biological
activities such as antibacterial and antimicrobial ones.7

In the area of hydrogen transfer reaction, cross-dehydrogen-
ative coupling promoted by first row transition metal-based
catalysts is an emerging research area in molecular synthesis.3

More particularly, iron, being the most abundant and
inexpensive transition metal on Earth, the last two decades
have seen an impressive growth of its use in homogeneous
catalysis.8 Thus, numerous examples of iron-catalyzed

reductive coupling reactions were reported9 including
amination reactions which can be efficiently promoted via a
hydrogen borrowing pathway at rather high temperatures
starting from alcohols,10 notably using Knölker-type cata-
lysts.11−13

On the other hand, the reduction of nitroarenes represents a
powerful and widely used technology to access anilines, even if
often conducted in drastic conditions.14 Such reductions were
successfully conducted with iron. The most known technology
is Bećhamps reduction of nitroarenes which was reported using
more than a stoichiometric amount of iron powder in acidic
conditions.15 More recently, iron-catalyzed hydrosilylation,16

hydrogenation,17 and hydrogen transfer18 were also reported as
efficient and chemoselective reactions. Interestingly, Baran,
Cui, Thomas and Driver reported cascade reactions involving
reduction of nitroarenes via hydrosilylation to anilines and
then hydroamination of alkenes yielding to alkylated amines.19

Iron-catalyzed cascade reduction of nitroarenes leading to
imines and N-heterocyclic compounds was also described by
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hydrogenation with carbonyl derivatives using an iron
nanocomposite.20 Additionally, quinoxalines and benzimida-
zoles can be prepared from nitroarenes by hydrogen transfer
catalyzed by sodium sulfide in combination with an iron salt21

or a ferrocenyldiphosphine.22 Such cascade reduction can be
also performed with other first row metals such as cobalt23 or
manganese.24

Following our recent contributions involving iron-catalyzed
cascade reactions,25 we report herein the use of the well-
defined Knölker catalyst for the selective hydrogen transfer
transformation of nitroarenes, leading to imines and
benzimidazoles by reaction with alcohols and to quinoxaline
by reaction with diols. To the best of our knowledge, there is
no report dealing with the direct formation of imines from

nitroarenes at iron under hydrogen transfer conditions
(Scheme 1). It should be noticed that the Knölker-type
complex was used for two very recent contributions dealing
with N-heterocycles synthesis starting from nitroarenes.26

■ RESULTS AND DISCUSSION

Using the Knölker complex [Fe] (5 mol %) associated to 10
mol % Me3NO, we commenced our study by performing the
reaction of 4-nitroanisole (1a) with benzylalcohol (2a) as a
model system in the presence of 3 equiv of Cs2CO3 in toluene
at 140 °C under argon for 20 h (Table 1). To our delight, the
corresponding imine (3a) was selectively obtained in 84% GC-
yield which demonstrated that the hydrogen transfer reaction
transforming nitroarene to aniline derivatives can be performed

Figure 1. Representative examples of imines and quinoxalines with biological activities.

Scheme 1. Fe-Catalyzed Hydrogen Transfer of Nitroarenes

Table 1. Optimizations of Reaction conditionsa

entry 2a (equiv) base (equiv) 3a/4a (%)b

1 4 Cs2CO3 (3) 84/0
2 6 Cs2CO3 (3) 87/0
3 2 Cs2CO3 (3) 45/0
4c 4 Cs2CO3 (3)
5d 4 Cs2CO3 (3) 64/0
6 4
7 4 K2CO3 (3) trace
8 4 KOAc (3) trace
9 4 CsOAc (3) trace
10 4 EtONa (3) 4/-
11 4 t-BuOK (3) 55/10
12 4 KOH (3) 41/22
13 4 NaOH (3) 39/7
14 4 K3PO4·H2O (3) 90/0
15 4 K3PO4·H2O (1) 75/0

aReaction conditions: 1a (0.2 mmol), 2a (2−6 equiv), [Fe] (5 mol %), Me3NO (10 mol %), base (3 equiv), toluene (2 mL), 140 °C, 20 h, under
argon. bDetermined by GC using dodecane as an internal standard. cWithout [Fe] and Me3NO.

dWithout Me3NO.
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under such reaction conditions (Table 1, entry 1). Noticeably,
no trace amount of the N-benzyl-4-methoxyaniline 4a,
resulting from the reduction of 3a was observed. A similar
result was obtained with 6 equiv of benzylalcohol (87%, entry
2), whereas a decrease of the benzylalcohol amount (2 equiv)
had a deleterious effect on the activity (45%, entry 3). It is
worth mentioning that [Fe], Me3NO, and base are crucial for
the success of the transformation. Indeed, no reaction occurred
in the absence of the iron catalyst or base, and the efficiency
decreased without the addition of Me3NO (entries 4−6).
Among the different solvent tested, toluene showed a superior
catalytic performance (Table S1 in the Supporting Informa-
tion). Several sources of bases were then examined (Table 1,
entries 7−14), with K3PO4·H2O found to afford the highest
efficiency and selectivity (90% of 3a). The use of common
bases such as K2CO3, CsOAc, or KOAc did not lead to any
resulting imine, while either t-BuOK, NaOH, or KOH led to
3a in moderate yields, with notable amount of the secondary
amine 4a. Nevertheless, the yield of product was lowered to
75% with decreasing the amount of K3PO4·H2O to 1 equiv
(entry 15). This protocol represents one of the rare examples
of formation of imines from nitroarenes by the hydrogen
transfer methodology in homogeneous conditions.27,28 Notice-
ably, even if its role is not clearly explained and confirmed by
experimental evidences, the use of a base has a crucial
consequence on the course of the reaction. Base was necessary
to perform the reduction of nitroarenes to anilines, but it
inhibited the reduction of the obtained imines to amines and
then subsequent alkylation, as already mentioned by Gandon
and Bour for the contribution on ethylation of imines with
ethanol.29

Having the optimized reaction conditions in hand, a variety
of nitroarene derivatives were subjected to the reaction with
benzylalcohol 2a, as summarized in Scheme 2. Nitroarenes

with electron-donating methoxy, methyl, N,N-dimethylamino,
and benzyloxy substituents reacted nicely with 2a, providing
the resulting imines (3a−3d, 3h, and 3o) in good NMR yields
and 68−80% yields. Notably, the reaction proceeded efficiently
with o,m,p-nitrotoluene. Nevertheless, when using the more
sterically hindered 2,6-dimethyl-1-nitrobenzene 1g, lower
activity was observed even at higher temperature (150 °C);
the corresponding imine 3g was obtained in only 45% NMR
yield, thus demonstrating that steric hindrance can hamper the
transformation. Additionally, the reaction of nitrobenzene and
3-phenyl-1-nitrobenzene with 2a gave the corresponding
imines 3e and 3f in 66 and 70% yields, respectively. Starting
from p-substituted halogenated nitroarenes, the corresponding
imines 3i-3k were obtained in 48−65% yields, showing that
fluoro, chloro, and bromo groups can be tolerated. The
reaction can be also performed with p-iodonitroarene 1n with a
lower efficiency (66% NMR, 30% yields). Whereas 3-bromo-1-
nitrobenzene 1m led to the corresponding imine 3m in 60%,
the reaction of 2-bromonitrobenzene with 2a gave a mixture of
N-(2-bromophenyl)benzylideneimine 3l and the debrominated
derivative N-phenyl-benzylideneimine 3e in 37 and 32% NMR
yields, respectively. Impressively, 1,4-dinitrobenzene could also
undergo this transformation to afford corresponding bis-imine
3p in 57% yield.
The scope of the reaction with respect to the alcohols was

next explored (Scheme 3). Various benzylalcohols substituted
with electron-donating groups (MeO, alkyl) reacted efficiently
with 4-nitroanisole to furnish the desired products 3q−3t in
68−91% yields. Gratifyingly, halogen substituents (F, Cl, and
Br) at the ortho- and para-positions of benzylalcohols were
tolerated and the resulting imines 3u−3y were obtained in
modest to good yields up to 88%. It is worth noting that
benzylalcohols decorated with electron-deficient trifluorometh-
yl or cyano moieties were compatible for the reductive

Scheme 2. Scope of the Reaction of Nitroarenes with Benzylalcohola

aReaction conditions: nitroarene 1 (0.5 mmol), benzylalcohol 2a (4 equiv), [Fe] (5 mol %), Me3NO (10 mol %), K3PO4·H2O (3 equiv), toluene
(5 mL), 140 °C, 20 h under argon. 1H NMR yields were determined by using CH2Br2 as an internal standard, yields in parentheses.

b150 °C. cYield
of debrominated product. dBenzylalcohol 2a (10 equiv) for 72 h. eReaction performed in 5 mmol scale, 81% yield.
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coupling leading to 3z and 3aa in 81 and 48% yields,
respectively, performing the reaction at 150 °C for 24 h. The
reaction conditions were applied to the reaction of the more
challenging cinnamyl alcohol with 4-nitroanisole. Nicely the
corresponding allylic imine 3ab was produced in 58% yield.
Moreover, various heterocyclic alcohols, such as 2-pyridylme-
thanol, 2-furfuryl alcohol, and 2-thiophene-methanol were
successfully coupled to 4-nitroanisole, nitrobenzene, and 1-
(benzyloxy)-4-nitrobenzene, leading to the targeted imines
3ac−3ai in good yields. Noticeably, under standard conditions
(140 °C, 20 h), the reaction of 4-nitroanisole with alkyl
alcohols such as 3-phenylpropan-1-ol and hexan-1-ol gave the
corresponding imine derivatives in low NMR yields (<10%).
Additionally, the reaction of nitroalkanes such as 1-nitro-
propane and 2-nitropropane with benzylalcohol did not lead to
the corresponding imines.
The above results led us to further investigate the generality

of this reaction, and we then evaluated this hydrogen transfer/
coupling methodology for the direct synthesis of aza
heterocyclic derivatives from 2-nitroaniline 5. By reaction

with benzylalcohol, benzimidazole30,31 6a can be obtained in
28% yield when performing the reaction with 5 mol % of the
Knölker complex, 10 mol % of Me3NO, and 1 equiv of K3PO4·
H2O in mesitylene at 160 °C for 24 h. Noticeably using the
(1,4-dimethyl-5,7-diphenyl-3,4-dihydro-1H-cyclopenta-[b]-
pyrazine-6(2H)-one)iron tricarbonyl complex developed by
Renaud et al.9d as the catalyst, only 17% of 6a was obtained
under the same conditions (see Table S2 for details of the
optimization). Thus, 6a−c can be obtained with 64−72%
yields but an additional step with DDQ (2,3-dichloro-5,6-
dicyano-1,4-benzoquinone, 0.5 equiv) was required to oxidize
the dihydrobenzimidazole intermediate.32 (Scheme 4).
Finally, we applied this methodology for the direct synthesis

of quinoxalines from 2-nitroaniline derivatives and diols
(Scheme 4).33,34 As a benchmark reaction, 2-nitroaniline can
react with 1-phenylethane-1,2-diol using similar conditions (5
mol % [Fe]; 10 mol % Me3NO, 3 equiv K3PO4·H2O, toluene,
150 °C, 48 h, see Table S3 in the Supporting Information for
details of the optimization) and the corresponding quinoxaline
8a was isolated in 80% yield. 4,5-Dimethyl-2-nitroaniline

Scheme 3. Scope of the Reaction of Nitroarenes with Various (Hetero)aromatic Methanola

aReaction conditions: nitroarene 1 (0.5 mmol), alcohol 2 (4 equiv), [Fe] (5 mol %), Me3NO (10 mol %), K3PO4·H2O (3 equiv), toluene (5 mL),
140 °C, 20 h under argon. 1H NMR yields were determined by using CH2Br2 as an internal standard, yields in parentheses. b30 h. c150 °C, 48 h.
d150 °C, 24 h. e16 h. fReaction performed in 5 mmol scale, 83% yield.

The Journal of Organic Chemistry pubs.acs.org/joc Article

https://dx.doi.org/10.1021/acs.joc.0c02505
J. Org. Chem. XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acs.joc.0c02505/suppl_file/jo0c02505_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.joc.0c02505/suppl_file/jo0c02505_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02505?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02505?fig=sch3&ref=pdf
pubs.acs.org/joc?ref=pdf
https://dx.doi.org/10.1021/acs.joc.0c02505?ref=pdf


reacted also with 1-phenylethane-1,2-diol, leading to 8b in 83%
yield. Noticeably, 1,2-diphenylethane-1,2-diol was also a good
partner for this transformation and the corresponding
quinoxalines 8c−e were obtained in 71−96% yields. Non-
activated diols such as cyclohexane-1,2-diol or ethylene glycol
are more challenging partners for this transformation. Never-
theless, the corresponding quinoxalines 8f−j were obtained in
48−70% yields starting from 1,2-cyclohexanediol. Whereas
fluoro and chloro substitutions were tolerated on the 2-
nitroaniline motif (8e and 8j), 4-bromo-2-nitroaniline led to
the expected quinoxaline 8k (28%) in the mixture with the
debrominated derivative 8f (15%). The reaction can be also
conducted with 1,2-ethanediol yielding 8l in 42%. Noticeably,
tBuOK was used as the base. Indeed, using optimized
conditions with K3PO4·H2O, the transformation was not
selective.
Even if it is a more expensive starting material than 2-

nitroaniline 5, we also performed the reaction of 1,2-
dinitrobenzene with 1,2-cyclohexanediol under the optimized
conditions (150 °C, 48 h). The resulting quinoxaline 8f was
obtained in 40% yield, showing that this methodology can be
extended to 1,2-dinitroarene derivatives, even if it is less
efficient than the one with 2-nitroaniline (Scheme 5).
The Knölker catalyst is known to promote efficiently

hydrogen transfer and hydrogen borrowing transformation
via outer-sphere hydride transfer/protonation-deprotonation
fashion.7−13 The catalytic reduction of nitroarenes to anilines
can be evolved along two pathways (Scheme 6). Thus, starting
from nitroarenes, the reduced iron species [FeH2] underwent
the reduction of the nitro moiety, leading to an arylnitroso 9

regenerating the Knölker catalyst [Fe] and aldehyde. Similarly,
the arylnitroso is then reduced to N-hydoxyaniline 10. Two
competitive pathways can be then envisaged: either the direct
reduction route (in blue) of N-hydroxyaniline to aniline 14, or
the red pathway via the condensation of arylnitroso 9 with N-
hydroxyarylamine 10, leading to azoxyarene 11 and then
azoarene 12. Noticeably, when the reaction of 4-nitroanisole
1a was conducted with 2 equiv of benzylalcohol under the
optimized conditions (140 °C, 20 h), the corresponding
azoxyarene 11a and 4-methoxyaniline 14a were detected in
GC−MS analysis (Scheme S1 in the Supporting Information).
Additionally, during the reaction with 4-bromo-1-nitrobenzene
with benzylalcohol, under the optimized conditions, 4-
bromoazobenzene 12k was also observed in GC−MS and
isolated (10%). Both observations seem to suggest that this
iron-catalyzed process might proceed through the condensa-
tion/reduction pathway.

■ CONCLUSIONS
In summary, an efficient and selective protocol for the
reduction of nitroarenes with various alcohols was efficiently
developed using the Knölker iron catalyst via a transfer

Scheme 4. Scope of the Synthesis of Aza Heterocyclic Derivatives

aReaction conditions: (i) ortho-nitroaniline 5 (0.5 mmol), alcohol 2 (3 equiv), [Fe] (5 mol %), Me3NO (10 mol %), K3PO4·H2O (1 equiv),
mesitylene (3 mL), 160 °C, 15 h under argon; (ii) DDQ (0.5 equiv), 160 °C, 24 h. bReaction conditions: ortho-nitroaniline 5 (0.5 mmol), 1,2-diols
7 (3 equiv), [Fe] (5 mol %), Me3NO (10 mol %), K3PO4·H2O (3 equiv), toluene (2.5 mL), 150 °C, 48 h under argon. cIn parentheses, the yield of
debrominated product 8f. dt-BuOK (1 equiv). eReaction performed in 5 mmol scale, 66% yield.

Scheme 5. Reaction of 1,2-Dinitrobenzene with 1,2-
Cyclohexanediol
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hydrogen methodology. This protocol led specifically to imines
in 30−91% yields, exhibiting a good functional group
tolerance. This represents one of the rare examples of
reduction of nitroarenes, leading to exclusively imines
derivatives. Starting from o-nitroaniline derivatives, in the
presence of alcohols, benzimidazoles were selectively obtained
if the reaction was performed with DDQ as a final oxidant,
whereas in the presence of 1,2-diols, quinoxalines were
synthetized in 28−96% yields. This hydrogen transfer
methodology, unprecedented at iron for imine synthesis from
nitroarenes, also provides a sustainable alternative for the
preparation of quinoxalines and benzimidazoles.

■ EXPERIMENTAL SECTION
Materials and General Methods. All reagents were obtained

from commercial sources and used as received. All reactions were
carried out with dried glassware using standard Schlenk techniques
under an inert atmosphere of dry argon. Technical grade heptane and
ethyl acetate were used for column chromatography. Analytical TLC
was performed on Merck 60F254 silica gel plates (0.25 mm thickness)
and 60F254 aluminum oxide neutral plates. Column chromatography
was performed on Acros Organics Ultrapure silica gel (mesh size 40−
60 μm, 60 Å) and aluminum oxide (40−300 μm, 60 Å).

1H NMR spectra were recorded in CDCl3, CD2Cl2, or DMSO-d6 at
ambient temperature on Bruker AVANCE 400 spectrometers at 400.1
MHz using the solvent as the internal standard (CDCl3 7.26 ppm,
CD2Cl2 5.32 ppm, DMSO-d6 2.5 ppm). 13C NMR spectra were
obtained at 100 MHz and referenced to the internal solvent signals
(CDCl3, central peak 77.16 ppm, CD2Cl2 53.84 ppm, and DMSO-d6
39.52 ppm). 19F NMR spectra were obtained at 376 MHz in CDCl3.
Chemical shift (δ) and coupling constants (J) are given in ppm and in
Hz, respectively. The peak patterns are indicated as follows: s, singlet;
d, doublet; t, triplet; q, quartet; m, multiplet, and br for broad.
Melting points of the new solid compounds were measured using

Kofler hot-stage apparatus and are uncorrected.
GC analyses were performed with GC-2014 (Shimadzu) 2010

equipped with a 30-m capillary column (Supelco, SPBTM-20, fused
silica capillary column, 30 M × 0.25 mm × 0.25 mm film thickness),
which was used with N2/air as vector gas. The following GC
conditions were used: initial temperature of 80 °C for 2 min, then rate
was 10 °C/min until 220 and 220 °C for 15 min. The sample was
prepared by GC−MS and measured by GCMS-QP2010S (Shimadzu)
with GC-2010 equipped with a 30 m capillary column (Supelco,
SLBTM-5ms, fused silica capillary column, 30 M × 0.25 mm × 0.25
mm film thickness), which was used with helium as vector gas. The
following GC−MS conditions were used: initial temperature of 100
°C for 2 min, then rate was 10 °C/min until 250 and 250 °C for 10
min. At the end of the reaction, after cooling, dodecane as an internal
standard was introduced in the mixture which was then diluted with 5
mL of ethyl acetate. 1 mL of solution was then filtrate through Celite
in a vial for GC−MS analysis.
HR−MS spectra were performed using a time flight Agilent 6510

[Agilent Technologies Santa Clara (CA), USA] in an electrospray

positive ionization mode at the Centre Reǵional de Mesures
Physiques de l’Ouest, (CRMPO, ScanMAT, UMS 2001 CNRS
University Rennes 1). The Knölker complex [Fe] was prepared,
according to a published procedure.10a

General Procedures for the Synthesis of Imine Derivatives. A
typical procedure for the Fe-catalyzed reductive coupling of nitro
derivatives with alcohols is as follows: in a dried Schlenk tube
containing a magnetic bar, Knölker complex [Fe] (10.2 mg, 0.025
mmol, 5 mol %), Me3NO (3.8 mg, 0.05 mmol, 10 mol %), nitroarene
derivative 1 (0.5 mmol, 1 equiv), K3PO4·H2O (345.4 mg, 1.5 mmol, 3
equiv), alcohol 2 (2 mmol, 4 equiv), and 5 mL of toluene were added
successively under an argon atmosphere. Then, the tube was sealed
and the mixture was stirred at 140 °C using an oil bath for 20 h. After
cooling to room temperature, the resulting solution was filtrated
through a pad of neutral alumina and washed with dichloromethane
or ethyl acetate. The filtrate was collected and concentrated in vacuo.
The residue was purified by neutral alumina column chromatography
using dichloromethane/heptane or ethyl acetate/heptane as the
eluent to afford the desired product 3.

N-(4-Methoxyphenyl)-1-phenylmethanimine 3a.23d Following
the general procedure, 3a was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:20)
as the eluent. White solid (78 mg, 74%). 1H NMR (400 MHz,
CDCl3): δ 8.51 (s, 1H), 7.95−7.88 (m, 2H), 7.52−7.45 (m, 3H), 7.27
(d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H). 13C{1H}
NMR (101 MHz, CDCl3): δ 158.6, 158.4, 145.1, 136.6, 131.2, 128.9,
128.7, 122.3, 114.5, 55.6. GC−MS: m/z (%): 211 (M+, 90), 196
(100), 167 (20), 141 (10), 92 (10), 77 (10).

Procedure for the Gram-Scale Synthesis of 3a. In a dried Schlenk
tube containing a magnetic bar, Knölker complex [Fe] (102.0 mg,
0.25 mmol, 5 mol %), Me3NO (37.5 mg, 0.5 mmol, 10 mol %), 4-
nitroanisole 1a (765.8 mg, 5 mmol, 1 equiv), K3PO4·H2O (3.4 g, 15
mmol, 3 equiv), benzylalcohol 2a (2.1 g, 20 mmol, 4 equiv), and 50
mL of toluene were added successively under an argon atmosphere.
Then, the tube was sealed and the mixture was stirred at 140 °C using
an oil bath for 48 h. After completion and cooling to room
temperature, the resulting solution was filtrated through a pad of
neutral alumina and washed with ethyl acetate. The filtrate was
collected and concentrated in vacuo. The residue was purified by
neutral alumina column chromatography using ethyl acetate/heptane
(1:20) as the eluent to afford the desired product 3a as a white solid
(859 mg, 81% yield).

1-Phenyl-N-(p-tolyl)methanimine 3b.35 Following the general
procedure, 3b was purified by neutral alumina column chromatog-
raphy using a mixture of ethyl acetate and heptane (1:20) as the
eluent. Yellow oil (74 mg, 76%). 1H NMR (400 MHz, CDCl3): δ 8.53
(s, 1H), 8.02−7.94 (m, 2H), 7.56−7.49 (m, 3H), 7.27 (d, J = 8.3 Hz,
2H), 7.22 (d, J = 8.3 Hz, 2H), 2.44 (s, 3H). 13C{1H} NMR (101
MHz, CDCl3): δ 159.6, 149.5, 136.4, 135.8, 131.2, 129.8, 128.8,
128.8, 120.9, 21.1. GC−MS: m/z (%): 195 (M+, 100), 118 (20), 91
(55), 77 (10), 65 (30), 51 (10).

1-Phenyl-N-(m-tolyl)methanimine 3c.36a Following the general
procedure, 3c was purified by neutral alumina column chromatog-
raphy using a mixture of ethyl acetate and heptane (1:20) as the
eluent. Yellow oil (66 mg, 68%). 1H NMR (400 MHz, CDCl3): δ 8.47

Scheme 6. Proposed Pathways for the Iron-Catalyzed Hydrogen Transfer Reaction of Nitroarenes with Alcohols
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(s, 1H), 7.96−7.90 (m, 2H), 7.52−7.46 (m, 3H), 7.30 (t, J = 7.7 Hz,
1H), 7.12−7.00 (m, 3H), 2.42 (s, 3H). 13C{1H} NMR (101 MHz,
CDCl3): δ 160.2, 152.2, 139.1, 136.4, 131.4, 129.1, 128.9, 128.8,
126.8, 121.7, 118.0, 21.5. GC−MS: m/z (%): 195 (M+, 100), 118
(15), 91 (60), 77 (10), 65 (30), 51 (10).
1-Phenyl-N-(o-tolyl)methanimine 3d.23d Following the general

procedure, 3d was purified by neutral alumina column chromatog-
raphy using a mixture of ethyl acetate and heptane (1:20) as the
eluent. Yellow oil (73 mg, 75%). 1H NMR (400 MHz, CDCl3): δ 8.42
(s, 1H), 8.01−7.95 (m, 2H), 7.58−7.49 (m, 3H), 7.28 (t, J = 8.1 Hz,
2H), 7.19 (t, J = 6.8 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 2.44 (s, 3H).
13C{1H} NMR (101 MHz, CDCl3): δ 159.5, 151.3, 136.6, 132.0,
131.3, 130.4, 128.9, 126.8, 125.8, 117.8, 18.0. GC−MS: m/z (%): 195
(M+, 60), 118 (100), 91 (45), 65 (40), 51 (10).
N,1-Diphenylmethanimine 3e.23d Following the general proce-

dure, 3e was purified by neutral alumina column chromatography
using a mixture of ethyl acetate and heptane (1:20) as the eluent.
Yellow solid (60 mg, 66%). 1H NMR (400 MHz, CDCl3): δ 8.50 (s,
1H), 7.99−7.91 (m, 2H), 7.55−7.38 (m, 5H), 7.31−7.23 (m, 3H).
13C{1H} NMR (101 MHz, CDCl3): δ 160.5, 152.2, 136.4, 131.5,
129.3, 128.9, 128.9, 126.1, 121.0. GC−MS: m/z (%): 181 (M+,75),
152 (5), 104 (20), 77 (100), 51 (40).
N-([1,1′-Biphenyl]-3-yl)-1-phenylmethanimine 3f. Following the

general procedure, 3f was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:30)
as the eluent. Colorless oil (90 mg, 70%). 1H NMR (400 MHz,
CDCl3): δ 8.53 (s, 1H), 7.93 (dd, J = 6.5, 3.0 Hz, 2H), 7.65 (d, J = 7.2
Hz, 2H), 7.53−7.41 (m, 8H), 7.37 (t, J = 7.2 Hz, 1H), 7.24−7.17 (m,
1H). 13C{1H} NMR (101 MHz, CDCl3): δ 160.8, 152.7, 142.5,
141.0, 136.3, 131.6, 129.9, 129.1, 129.0, 129.0, 128.8, 127.6, 124.9,
119.9, 119.7. HR-MS (ESI) m/z: [M + H]+ calcd for C19H16N

+,
258.1277; found, 258.1278.
N-(2,6-Dimethylphenyl)-1-phenylmethanimine 3g.36b Following

the general procedure, 3g was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:20)
as the eluent. Colorless oil (29 mg, 28%). 1H NMR (400 MHz,
CDCl3): δ 8.24 (s, 1H), 7.98−7.89 (m, 2H), 7.57−7.45 (m, 3H),
7.10−6.93 (m, 3H), 2.16 (s, 6H). 13C{1H} NMR (101 MHz,
CDCl3): δ 162.7, 151.3, 136.2, 131.6, 128.9, 128.6, 128.2, 127.3,
123.8, 18.4. GC−MS: m/z (%): 209 (M+, 50), 193 (15), 132 (100),
117 (20), 89 (10), 77 (40), 51 (15).
4-(Benzylideneamino)-N,N-dimethylaniline 3h.36c Following the

general procedure, 3h was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:20)
as the eluent. Brown solid (89 mg, 80%). 1H NMR (400 MHz,
CDCl3): δ 8.53 (s, 1H), 7.89 (dd, J = 7.4, 2.1 Hz, 2H), 7.50−7.40 (m,
3H), 7.28 (d, J = 9.0 Hz, 2H), 6.77 (d, J = 9.0 Hz, 2H), 2.99 (s, 6H).
13C{1H} NMR (101 MHz, CDCl3): δ 156.1, 149.7, 141.0, 137.0,
130.6, 128.8, 128.5, 122.4, 113.0, 40.9. GC−MS: m/z (%): 224 (M+,
100), 209 (20), 180 (5), 111 (15), 104 (15), 77 (20), 51 (5).
N-(4-Fluorophenyl)-1-phenylmethanimine 3i.23d Following the

general procedure, 3i was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:20)
as the eluent. White solid (59 mg, 59%). 1H NMR (400 MHz,
CDCl3): δ 8.45 (s, 1H), 7.94−7.86 (m, 2H), 7.52−7.44 (m, 3H),
7.24−7.17 (m, 2H), 7.09 (t, J = 8.7 Hz, 2H). 13C{1H} NMR (101
MHz, CDCl3): δ 161.4 (d, J = 234 Hz), 160.3, 148.2 (d, J = 2.9 Hz),
136.2, 131.6, 128.93, 128.91, 122.3 (d, J = 8.2 Hz), 116.0 (d, J = 22
Hz). 19F NMR (376 MHz, CDCl3): δ −117.3. GC−MS: m/z (%):
199 (M+, 100), 151 (5), 122 (20), 95 (60), 75 (35), 51 (15).
N-(4-Chlorophenyl)-1-phenylmethanimine 3j.23d Following the

general procedure, 3j was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:20)
as the eluent. White solid (52 mg, 48%). 1H NMR (400 MHz,
CDCl3): δ 8.44 (s, 1H), 7.93−7.88 (m, 2H), 7.51−7.47 (m, 3H), 7.36
(d, J = 8.7 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H). 13C{1H} NMR (101
MHz, CDCl3): δ 160.9, 150.7, 136.1, 131.8, 131.6, 129.4, 129.0,
129.0, 122.3. GC−MS: m/z (%): 217 (M+, 33), 215 (M+, 100),
180(5), 138 (20), 111 (45), 89 (20), 75 (30), 51 (15).

N-(4-Bromophenyl)-1-phenylmethanimine 3k.36c Following the
general procedure, 3k was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:20)
as the eluent. White solid (85 mg, 65%). 1H NMR (400 MHz,
CDCl3): δ 8.43 (s, 1H), 7.90 (m, 2H), 7.55−7.42 (m, 5H), 7.09 (d, J
= 8.6 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3): δ 160.9, 151.2,
136.1, 132.3, 131.8, 129.0, 129.0, 122.7, 119.5. GC−MS: m/z(%) =
261 (M+, 25), 259 (M+, 30), 179 (10), 155 (20), 90 (45), 76 (100),
63 (30), 50 (60).

N-(3-Bromophenyl)-1-phenylmethanimine 3m.23d Following the
general procedure, 3m was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:20)
as the eluent. White solid (51 mg, 39%). 1H NMR (400 MHz,
CD2Cl2): δ 8.44 (s, 1H), 7.90 (dd, J = 7.6, 1.8 Hz, 2H), 7.54−7.47
(m, 3H), 7.37 (m, 2H), 7.29 (t, J = 8.2 Hz, 1H), 7.18−7.14 (m, 1H).
13C{1H} NMR (101 MHz, CD2Cl2): δ 161.8, 154.0, 136.4, 132.1,
130.9, 129.3, 129.2, 129.0, 124.1, 123.0, 120.3. GC−MS: m/z (%):
261 (M+, 95), 259 (M+,100), 179 (20), 155 (35), 90 (50), 76 (60),
51 (25).

N-(4-Iodophenyl)-1-phenylmethanimine 3n.37 Following the
general procedure, 3n was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:30)
as the eluent. Yellow solid (46 mg, 30%). 1H NMR (400 MHz,
CDCl3): δ 8.42 (s, 1H), 7.90 (m, 2H), 7.70 (d, J = 8.6 Hz, 2H),
7.54−7.44 (m, 3H), 6.97 (d, J = 8.6 Hz, 2H). 13C{1H} NMR (101
MHz, CDCl3): δ 160.9, 151.8, 138.3, 136.0, 131.8, 129.0, 128.9,
123.1, 90.4. GC−MS: m/z (%): 307 (M+, 100), 230 (10), 203 (10),
179 (20), 152 (10), 90 (20), 76 (65), 50 (20).

N-(4-(Benzyloxy)phenyl)-1-phenylmethanimine 3o. Following
the general procedure, 3o was purified by neutral alumina column
chromatography using a mixture of dichloromethane and heptane
(1:1) as the eluent. White solid (102 mg, 71%). mp 122 °C; 1H NMR
(400 MHz, CDCl3): δ 8.50 (s, 1H), 7.96−7.89 (m, 2H), 7.53−7.46
(m, 5H), 7.42 (t, J = 7.2 Hz, 2H), 7.37 (d, J = 7.2 Hz, 1H), 7.27 (d, J
= 8.9 Hz, 2H), 7.04 (d, J = 8.9 Hz, 2H), 5.11 (s, 2H). 13C{1H} NMR
(101 MHz, CDCl3): δ 158.6, 157.6, 145.3, 137.1, 136.6, 131.1, 128.8,
128.7, 128.1, 127.6, 122.3, 115.5, 70.4. HR-MS (ESI) m/z: [M + H]+

calcd for C20H18NO
+, 288.1383; found, 288.1384.

N,N′-(1,4-Phenylene)bis(1-phenylmethanimine) 3p.38 Following
the general procedure, 3p was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:10)
as the eluent. Gray solid (81 mg, 57%). 1H NMR (400 MHz, CDCl3):
δ 8.52 (s, 2H), 7.96−7.90 (m, 4H), 7.52−7.46 (m, 6H), 7.29 (s, 4H).
13C{1H} NMR (101 MHz, CDCl3): δ 159.9, 150.1, 136.4, 131.5,
128.9, 128.9, 122.0. GC−MS: m/z (%): 284 (M+, 100), 207 (5), 180
(10), 152 (20), 128 (10), 89 (5), 77 (20), 51 (10).

N,1-Bis(4-Methoxyphenyl)methanimine 3q.29 Following the
general procedure, 3q was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:10)
as the eluent. White solid (109 mg, 91%). 1H NMR (400 MHz,
CDCl3): δ 8.41 (s, 1H), 7.84 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 8.9 Hz,
2H), 6.98 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 3.87 (s, 3H),
3.83 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 162.2, 158.1,
158.0, 145.4, 130.4, 129.6, 122.2, 114.5, 114.3, 55.6, 55.6. GC−MS:
m/z (%): 241 (M+, 90), 226 (100), 154 (20), 121 (15), 92 (10), 77
(15), 64 (10), 51 (5).

Procedure for the Gram-Scale Synthesis of 3q. In a dried Schlenk
tube containing a magnetic bar, Knölker complex [Fe] (102.0 mg,
0.25 mmol, 5 mol %), Me3NO (37.5 mg, 0.5 mmol, 10 mol %), 4-
nitroanisole 1a (765.8 mg, 5 mmol, 1 equiv), K3PO4·H2O (3.4 g, 15
mmol, 3 equiv), 4-methoxybenzylalcohol (2.76 g, 20 mmol, 4 equiv),
and 50 mL of toluene were added successively under an argon
atmosphere. Then, the tube was sealed and the mixture was stirred at
140 °C using an oil bath for 48 h. After completion and cooling to
room temperature, the resulting solution was filtrated through a pad
of neutral alumina and washed with ethyl acetate. The filtrate was
collected and concentrated in vacuo. The residue was purified by
neutral alumina column chromatography using ethyl acetate/heptane
(1:10) as the eluent to afford the desired product 3q as a white solid
(1.00 g, 83% yield).
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N-(4-Methoxyphenyl)-1-(p-tolyl)methanimine 3r.39 Following
the general procedure, 3r was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:15)
as the eluent. Gray solid (92 mg, 82%). 1H NMR (400 MHz, CDCl3):
δ 8.45 (s, 1H), 7.80 (d, J = 8.1 Hz, 2H), 7.29−7.23 (m, 4H), 6.94 (d,
J = 8.9 Hz, 2H), 3.84 (s, 3H), 2.43 (s, 3H). 13C{1H} NMR (101
MHz, CDCl3): δ 158.5, 158.2, 145.2, 141.6, 134.0, 129.6, 128.7,
122.3, 114.5, 55.6, 21.7. GC−MS: m/z (%): 225 (M+, 85), 210 (100),
181 (10), 167 (10), 155 (10), 91 (10), 77 (15), 64 (10), 51 (5).
1-(4-Isopropylphenyl)-N-(4-methoxyphenyl)methanimine 3s.40

Following the general procedure, 3s was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:30) as the eluent. White solid (86 mg, 68%). 1H NMR (400 MHz,
CDCl3): δ 8.45 (s, 1H), 7.82 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz,
2H), 7.22 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H),
3.04−2.90 (m, 1H), 1.29 (d, J = 6.9 Hz, 6H). 13C{1H} NMR (101
MHz, CDCl3): δ 158.7, 158.3, 152.6, 145.3, 134.3, 128.9, 127.0,
122.3, 114.5, 55.7, 34.4, 24.0. GC−MS: m/z (%): 253 (M+, 100), 238
(65), 222 (15), 196 (15), 119 (10), 77 (15), 64 (5).
N-(4-Methoxyphenyl)-1-(o-tolyl)methanimine 3t.41 Following

the general procedure, 3t was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:20)
as the eluent. White solid (80 mg, 71%). 1H NMR (400 MHz,
CDCl3): δ 8.78 (s, 1H), 8.07 (dd, J = 7.6, 1.3 Hz, 1H), 7.37−7.27 (m,
2H), 7.23 (d, J = 8.9 Hz, 3H), 6.95 (d, J = 8.9 Hz, 2H), 3.84 (s, 3H),
2.59 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 158.3, 157.3,
145.7, 138.4, 134.5, 131.1, 130.8, 127.8, 126.5, 122.3, 114.5, 55.7,
19.5. GC−MS: m/z (%): 225 (M+, 50), 208 (100), 194 (20), 180
(15), 165 (35), 116(65), 77 (55), 64 (30), 51 (15).
1-(4-Fluorophenyl)-N-(4-methoxyphenyl)methanimine 3u.39

Following the general procedure, 3u was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:20) as the eluent. Gray solid (90 mg, 79%). 1H NMR (400 MHz,
CDCl3): δ 8.44 (s, 1H), 7.91−7.87 (m, 2H), 7.23 (d, J = 8.9 Hz, 2H),
7.17−7.13 (m, 2H), 6.94 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H). 13C{1H}
NMR (101 MHz, CDCl3): δ 164.6 (d, J = 251.6 Hz), 158.5, 156.9,
144.8, 133.0 (d, J = 3.1 Hz), 130.6 (d, J = 8.7 Hz), 122.3, 116.0 (d, J =
22.0 Hz), 114.5, 55.6. 19F NMR (376 MHz, CDCl3): δ −108.7. GC−
MS: m/z (%): 229 (M+, 90), 214 (100), 185 (25), 159 (10), 133 (5),
107 (10), 92 (5), 77 (10), 64 (10), 51 (5).
1-(2-Fluorophenyl)-N-(4-methoxyphenyl)methanimine 3v.42

Following the general procedure, 3v was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:20) as the eluent. Brown oil (39 mg, 34%). 1H NMR (400 MHz,
CDCl3): δ 8.80 (s, 1H), 8.18 (td, J = 7.6, 1.7 Hz, 1H), 7.43 (td, J =
7.3, 1.8 Hz, 1H), 7.29−7.21 (m, 3H), 7.12 (m, 1H), 6.94 (d, J = 8.9
Hz, 2H), 3.84 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 162.9
(d, J = 253.0 Hz), 158.7, 151.4 (d, J = 4.9 Hz), 144.9, 132.6 (d, J = 5.8
Hz), 127.8 (d, J = 2.7 Hz), 124.6 (d, J = 3.5 Hz), 124.4 (d, J = 9.0
Hz), 122.5, 115.9 (d, J = 21.1 Hz), 114.5, 55.6. 19F NMR (376 MHz,
CDCl3): δ −121.5. GC−MS: m/z (%): 229 (M+, 85), 214 (100), 185
(25), 159 (5), 133 (10), 92 (10), 77 (15), 64 (15), 50 (5).
1-(4-Chlorophenyl)-N-(4-methoxyphenyl)methanimine 3w.39

Following the general procedure, 3w was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:20) as the eluent. White solid (106 mg, 86%). 1H NMR (400
MHz, CDCl3): δ 8.44 (s, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.43 (d, J =
8.4 Hz, 2H), 7.24 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 3.84
(s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 158.6, 156.8, 144.6,
137.1, 135.1, 129.9, 129.2, 122.4, 114.6, 55.7. GC−MS: m/z (%): 247
(M+, 35), 245 (M+, 100), 230 (100), 201 (10), 167 (20), 77 (15), 64
(15).
1-(2-Chlorophenyl)-N-(4-methoxyphenyl)methanimine 3x.43

Following the general procedure, 3x was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:20) as the eluent. Yellow oil (109 mg, 88%). 1H NMR (400 MHz,
CDCl3): δ 8.95 (s, 1H), 8.24 (dd, J = 7.1, 2.4 Hz, 1H), 7.44−7.33 (m,
3H), 7.29 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 3.84 (s, 3H).
13C{1H} NMR (101 MHz, CDCl3): δ 158.8, 154.8, 144.8, 135.9,
133.6, 131.9, 130.0, 128.5, 127.2, 122.7, 114.7, 55.6. GC−MS: m/z

(%): 247 (M+, 35), 245 (M+, 90), 230 (100), 167 (20), 92 (10), 77
(15), 64 (10), 51 (5).

1-(2-Bromophenyl)-N-(4-methoxyphenyl)methanimine 3y.44

Following the general procedure, 3y was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:20) as the eluent. Brown solid (125 mg, 86%). 1H NMR (400
MHz, CDCl3): δ 8.90 (s, 1H), 8.25 (dd, J = 7.8, 1.7 Hz, 1H), 7.63
(dd, J = 8.0, 1.0 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.35−7.29 (m,
3H), 6.98 (d, J = 8.9 Hz, 2H), 3.87 (s, 3H). 13C{1H} NMR (101
MHz, CDCl3): δ 158.8, 157.2, 144.6, 134.9, 133.3, 132.1, 128.9,
127.8, 126.0, 122.7, 114.6, 55.6. GC−MS: m/z (%): 291 (M+, 95),
289 (M+, 100) 275 (80), 167 (50), 139 (20), 77 (20), 63 (20), 51
(10).

N-(4-Methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)methanimine
3z.42 Following the general procedure, 3z was purified by neutral
alumina column chromatography using a mixture of ethyl acetate and
heptane (1:15) as the eluent. White solid (113 mg, 81%). 1H NMR
(400 MHz, CDCl3): δ 8.53 (s, 1H), 8.00 (d, J = 8.2 Hz, 2H), 7.72 (d,
J = 8.2 Hz, 2H), 7.28 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H),
3.84 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 159.0, 156.4,
144.2, 139.7, 132.5 (q, J = 32.3 Hz), 128.8, 125.8 (q, J = 3.8 Hz),
124.1 (q, J = 273.0 Hz), 122.5, 114.6, 55.7. 19F NMR (376 MHz,
CDCl3): δ −62.8. GC−MS: m/z (%): 279 (M+, 85), 264 (100), 235
(10), 209, (5), 167 (10), 134 (10), 92 (10), 77 (15), 64 (15), 50 (5).

4-(((4-Methoxyphenyl)imino)methyl)benzonitrile 3aa.43 Follow-
ing the general procedure, 3aa was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:10) as the eluent. Gray solid (57 mg, 48%). 1H NMR (400 MHz,
CDCl3): δ 8.52 (s, 1H), 7.99 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 8.3 Hz,
2H), 7.28 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 3.85 (s, 3H).
13C{1H} NMR (101 MHz, CDCl3): δ 159.2, 155.5, 143.8, 140.4,
132.6, 129.0, 122.7, 118.7, 114.7, 114.1, 55.7. GC−MS: m/z (%): 236
(M+, 85), 221 (100), 192 (20), 140 (10), 92 (10), 77 (15), 64 (15),
50 (5).

N-(4-Methoxyphenyl)-3-phenylprop-2-en-1-imine 3ab.45 Follow-
ing the general procedure, 3ab was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:10) as the eluent. Gray solid (69 mg, 58%). 1H NMR (400 MHz,
CDCl3): δ 8.29 (m, 1H), 7.53 (dd, J = 7.7, 0.7 Hz, 2H), 7.42−7.30
(m, 3H), 7.25−7.07 (m, 4H), 6.92 (d, J = 8.9 Hz, 2H), 3.82 (s, 3H).
13C{1H} NMR (101 MHz, CDCl3): δ 159.6, 158.5, 144.7, 143.1,
135.9, 129.5, 129.0, 128.9, 127.5, 122.3, 114.5, 55.6. GC−MS: m/z
(%): 237 (M+, 100), 193 (10), 115 (55), 77 (20), 64 (10).

N-(4-Methoxyphenyl)-1-(pyridin-2-yl)methanimine 3ac.46 Fol-
lowing the general procedure, 3ac was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:10) as the eluent. Brown oil (75 mg, 71%). 1H NMR (400 MHz,
CDCl3): δ 8.69 (m, 1H), 8.62 (s, 1H), 8.18 (d, J = 7.9 Hz, 1H), 7.78
(m, 1H), 7.35−7.28 (m, 3H), 6.94 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H).
13C{1H} NMR (101 MHz, CDCl3): δ 159.1, 158.3, 155.0, 149.7,
143.8, 136.7, 124.9, 122.8, 121.7, 114.6, 55.6. GC−MS: m/z (%): 212
(M+, 100), 197 (30), 170 (25), 142 (20), 92 (25), 79 (45), 64 (25),
52 (15).

1-(Furan-2-yl)-N-(4-methoxyphenyl)methanimine 3ad.43 Fol-
lowing the general procedure, 3ad was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:10) as the eluent. Brown solid (69 mg, 69%). 1H NMR (400 MHz,
CDCl3): δ 8.31 (s, 1H), 7.60 (d, J = 1.5 Hz, 1H), 7.27 (d, J = 9.0 Hz,
2H), 6.97−6.88 (m, 3H), 6.55 (dd, J = 3.4, 1.8 Hz, 1H), 3.83 (s, 3H).
13C{1H} NMR (101 MHz, CDCl3): δ 158.5, 152.4, 145.8, 145.4,
144.3, 122.4, 115.6, 114.5, 112.2, 55.5. GC−MS: m/z (%): 201 (M+,
90), 186 (100), 157 (10), 130 (10), 103 (10), 92 (10), 77 (20), 64
(10), 51 (10).

N-(4-Methoxyphenyl)-1-(thiophen-2-yl)methanimine 3ae.47 Fol-
lowing the general procedure, 3ae was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:20) as the eluent. Brown solid (73 mg, 67%). 1H NMR (400 MHz,
CDCl3): δ 8.58 (s, 1H), 7.47 (m, 2H), 7.23 (d, J = 8.9 Hz, 2H), 7.12
(dd, J = 5.0, 3.7 Hz, 1H), 6.92 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H).
13C{1H} NMR (101 MHz, CDCl3): δ 158.4, 151.2, 144.5, 143.3,
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131.7, 129.9, 127.8, 122.4, 114.5, 55.6. GC−MS: m/z (%): 217 (M+,
85), 202 (100), 173 (25), 147 (10), 77 (10), 64 (15), 51 (10).
1-(Furan-2-yl)-N-phenylmethanimine 3af.27b Following the gen-

eral procedure, 3af was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane
(1:10) as the eluent. Yellow oil (50 mg, 59%). 1H NMR (400
MHz, CDCl3): δ 8.29 (s, 1H), 7.62 (d, J = 1.5 Hz, 1H), 7.43−7.34
(m, 2H), 7.26−7.20 (m, 3H), 6.96 (d, J = 3.4 Hz, 1H), 6.56 (dd, J =
3.4, 1.8 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3): δ 152.2, 151.5,
147.9, 145.8, 129.3, 126.4, 121.1, 116.4, 112.3. GC−MS: m/z (%):
171 (M+, 100), 142 (40), 115 (35), 77 (90), 51 (50).
N-Phenyl-1-(thiophen-2-yl)methanimine 3ag.23c Following the

general procedure, 3ag was purified by neutral alumina column
chromatography using a mixture of ethyl acetate and heptane (1:10)
as the eluent. Yellow oil (69 mg, 74%). 1H NMR (400 MHz, CDCl3):
δ 8.57 (s, 1H), 7.55−7.46 (m, 2H), 7.42−7.36 (m, 2H), 7.26−7.20
(m, 3H), 7.14 (dd, J = 5.0, 3.7 Hz, 1H). 13C{1H} NMR (101 MHz,
CDCl3): δ 153.1, 151.5, 143.0, 132.3, 130.4, 129.2, 127.8, 126.1,
121.1. GC−MS: m/z (%): 187 (M+, 100), 115 (10), 93 (10), 77 (65),
51 (30).
N-(4-(Benzyloxy)phenyl)-1-(furan-2-yl)methanimine 3ah. Fol-

lowing the general procedure, 3ah was purified by neutral alumina
column chromatography using a mixture of ethyl acetate and heptane
(1:20) as the eluent. White solid (94 mg, 68%). mp 93 °C. 1H NMR
(400 MHz, CDCl3): δ 8.30 (s, 1H), 7.60 (d, J = 1.1 Hz, 1H), 7.47−
7.32 (m, 5H), 7.28−7.23 (m, 2H), 7.00 (d, J = 8.9 Hz, 2H), 6.91 (d, J
= 3.4 Hz, 1H), 6.54 (dd, J = 3.4, 1.7 Hz, 1H), 5.08 (s, 2H). 13C{1H}
NMR (101 MHz, CDCl3): δ 157.8, 152.4, 146.0, 145.5, 144.6, 137.0,
128.7, 128.1, 127.6, 122.4, 115.7, 115.5, 112.2, 70.4. HR-MS (ESI) m/
z: [M + H]+ calcd for C18H16NO2

+, 278.1176; found, 278.1172.
N-(4-(Benzyloxy)phenyl)-1-(thiophen-2-yl)methanimine 3ai. Fol-

lowing the general procedure, 3ai was purified by neutral alumina
column chromatography using a mixture of dichloromethane and
heptane (1:1) as the eluent. White solid (71 mg, 48%). mp 117 °C;
1H NMR (400 MHz, CDCl3): δ 8.58 (s, 1H), 7.55−7.27 (m, 7H),
7.22 (d, J = 8.9 Hz, 2H), 7.12 (dd, J = 5.0, 3.7 Hz, 1H), 6.99 (d, J =
8.9 Hz, 2H), 5.08 (s, 2H). 13C{1H} NMR (101 MHz, CDCl3): δ
157.6, 151.3, 144.7, 143.3, 137.1, 131.7, 129.9, 128.7, 128.1, 127.8,
127.6, 122.4, 115.5, 70.4. HR-MS (ESI) m/z: [M + H]+ calcd for
C18H16NOS

+, 294.0947; found, 294.0949.
General Procedure for the Synthesis of Benzimidazole

Derivatives 6. A typical procedure for the Fe-catalyzed reductive
coupling of ortho-nitroaniline derivatives with alcohols is as follows: in
a dried Schlenk tube containing a magnetic bar, Knölker complex [Fe]
(10.2 mg, 0.025 mmol, 5 mol %), Me3NO (3.8 mg, 0.05 mmol, 10
mol %), ortho-nitroaniline derivatives 5 (0.5 mmol, 1 equiv),
K3PO4·H2O (115.1 mg, 0.5 mmol, 1 equiv), alcohols 2 (2 mmol, 4
equiv), and 3 mL of mesitylene were added successively under an
argon atmosphere. Then, the tube was sealed and the mixture was
stirred at 160 °C using an oil bath for 15 h. After addition of DDQ
(56.8 mg, 0.25 mmol, 0.5 equiv) to the mixture under the flow of
argon at room temperature, the tube was sealed again and heated at
160 °C for 24 h. After cooling, the mixture was filtrated through a pad
of Celite and washed with dichloromethane or ethyl acetate. The
filtrate was collected and concentrated in vacuo. The residue was
purified by silica gel column chromatography using ethyl acetate/
heptane as the eluent to afford the desired product 6.
2-Phenyl-1H-benzo[d]imidazole 6a.33b Following the general

procedure, 6a was purified by silica gel column chromatography
using a mixture of ethyl acetate and heptane (1:5) as the eluent.
White solid (62 mg, 64%). 1H NMR (400 MHz, DMSO): δ 12.93 (s,
1H), 8.20 (d, J = 7.1 Hz, 2H), 7.79−7.43 (m, 5H), 7.21 (m, 2H).
13C{1H} NMR (101 MHz, DMSO): δ 151.3, 144.1, 135.4, 130.2,
129.9, 129.0, 126.5, 122.2, 122.1, 119.0, 111.4. GC−MS: m/z (%):
194 (M+, 100), 166 (5), 97 (10), 77 (10), 63 (15).
5,6-Dimethyl-2-phenyl-1H-benzo[d]imidazole 6b.33b Following

the general procedure, 6b was purified by silica gel column
chromatography using a mixture of ethyl acetate and heptane (1:5)
as the eluent. White solid (72 mg, 65%). 1H NMR (400 MHz,
DMSO): δ 12.64 (s, 1H), 8.14 (d, J = 7.3 Hz, 2H), 7.52 (t, J = 7.3 Hz,

2H), 7.48−7.26 (m, 3H), 2.33 (s, 3H), 2.31 (s, 3H). 13C{1H} NMR
(101 MHz, DMSO): δ 150.3, 142.5, 133.5, 131.1, 130.5, 129.9, 129.4,
128.8, 126.1, 118.9, 111.3, 20.0. GC−MS: m/z (%): 222 (M+, 100),
207 (50), 111 (10), 103 (10), 91 (25), 77 (15), 65 (10), 51 (10).

2-(4-Methoxyphenyl)-5,6-dimethyl-1H-benzo[d]imidazole 6c.48

Following the general procedure, 6c was purified by silica gel column
chromatography using a mixture of ethyl acetate and heptane (1:5) as
the eluent. White solid (91 mg, 72%). 1H NMR (400 MHz, DMSO):
δ 12.46 (s, 1H), 8.08 (d, J = 8.9 Hz, 2H), 7.32 (m, 2H), 7.08 (d, J =
8.9 Hz, 2H), 3.83 (s, 3H), 2.31 (s, 6H). 13C{1H} NMR (101 MHz,
DMSO): δ 160.3, 150.5, 130.3, 127.8, 123.0, 114.3, 55.3, 20.0. GC−
MS: m/z (%): 252 (M+, 100), 237 (50), 209 (20), 126 (15), 91 (10),
65 (5).

General Procedure for the Synthesis of Quinoxaline
Derivatives 8. A typical procedure for the Fe-catalyzed reductive
coupling of ortho-nitroaniline derivatives with diols is as follows: in a
dried Schlenk tube containing a magnetic bar, Knölker complex [Fe]
(10.2 mg, 0.025 mmol, 5 mol %), Me3NO (3.8 mg, 0.05 mmol, 10
mol %), ortho-nitroaniline derivatives 5 (0.5 mmol, 1 equiv), K3PO4·
H2O (345.4 mg, 1.5 mmol, 3 equiv), diols 7 (1.5 mmol, 3 equiv), and
2.5 mL of toluene were added successively under an argon
atmosphere. Then, the tube was sealed and the reaction mixture
was heated at 150 °C using an oil bath for 48 h. After that, the
resulting solution was filtrated through a pad of neutral alumina and
washed with dichloromethane or ethyl acetate. The filtrate was
collected and concentrated in vacuo. The residue was purified by silica
gel column chromatography using ethyl acetate/heptane as the eluent
to afford the desired product 8.

2-Phenylquinoxaline 8a.33b Following the general procedure, 8a
was purified by silica gel column chromatography using a mixture of
ethyl acetate and heptane (1:10) as the eluent. White solid (83 mg,
80%). 1H NMR (400 MHz, CDCl3): δ 9.33 (s, 1H), 8.24−8.09 (m,
4H), 7.81−7.71 (m, 2H), 7.60−7.49 (m, 3H). 13C{1H} NMR (101
MHz, CDCl3): δ 151.9, 143.4, 142.4, 141.7, 136.9, 130.4, 130.3,
129.7, 129.6, 129.2, 127.6. GC−MS: m/z (%): 206 (M+, 100), 179
(35), 152 (5), 103 (25), 76 (45), 50 (25).

6,7-Dimethyl-2-phenylquinoxaline 8b.33b Following the general
procedure, 8b was purified by silica gel column chromatography using
a mixture of ethyl acetate and heptane (1:10) as the eluent. White
solid (97 mg, 83%). 1H NMR (400 MHz, CDCl3): δ 9.21 (s, 1H),
8.16 (d, J = 7.0 Hz, 2H), 7.90 (s, 1H), 7.84 (s, 1H), 7.60−7.46 (m,
3H), 2.50 (s, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 151.1,
142.5, 141.4, 140.9, 140.7, 140.2, 137.3, 129.9, 129.2, 128.8, 128.3,
127.5, 20.5, 20.5. GC−MS: m/z (%): 234 (M+, 100), 219 (15), 207
(15), 192 (10), 117 (15), 103 (30), 77 (25), 63 (10), 51 (10).

2,3-Diphenylquinoxaline 8c.33b Following the general procedure,
8c was purified by silica gel column chromatography using a mixture
of ethyl acetate and heptane (1:20) as the eluent. White solid (134
mg, 95%). 1H NMR (400 MHz, CDCl3): δ 8.19 (dd, J = 6.4, 3.4 Hz,
2H), 7.77 (dd, J = 6.4, 3.4 Hz, 2H), 7.54 (dd, J = 7.6, 1.7 Hz, 4H),
7.38−7.30 (m, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 153.5,
141.3, 139.2, 130.0, 129.9, 129.3, 128.9, 128.4. GC−MS: m/z (%):
282 (M+, 100), 205 (5), 179 (35), 140 (20), 76 (45), 50 (30).

6,7-Dimethyl-2,3-diphenylquinoxaline 8d.23d Following the gen-
eral procedure, 8d was purified by silica gel column chromatography
using a mixture of ethyl acetate and heptane (1:20) as the eluent.
White solid (149 mg, 96%). 1H NMR (400 MHz, CDCl3): δ 7.93 (s,
2H), 7.55−7.47 (m, 4H), 7.36−7.29 (m, 6H), 2.52 (s, 6H). 13C{1H}
NMR (101 MHz, CDCl3): δ 152.6, 140.6, 140.3, 139.5, 130.0, 128.6,
128.3, 128.3, 20.5. GC−MS: m/z (%): 310 (M+, 100), 295 (5), 207
(5), 192 (5), 155 (15), 103 (30), 77 (15), 51 (5).

6-Fluoro-2,3-diphenylquinoxaline 8e.49 Following the general
procedure, 8e was purified by silica gel column chromatography using
a mixture of dichloromethane and heptane (1:1) as the eluent. White
solid (107 mg, 71%). 1H NMR (400 MHz, CDCl3): δ 8.18 (dd, J =
9.2, 5.8 Hz, 1H), 7.81 (dd, J = 9.2, 2.7 Hz, 1H), 7.58−7.48 (m, 5H),
7.39−7.31 (m, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 164.2,
161.7, 154.3, 152.9 (d, J = 3.2 Hz), 142.1 (d, J = 13.3 Hz), 138.9,
138.8, 138.5 (d, J = 0.6 Hz), 131.4 (d, J = 10.1 Hz), 129.9, 129.9,
129.1, 129.0, 128.4, 120.4 (d, J = 26.0 Hz), 112.7 (d, J = 21.5 Hz). 19F
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NMR (376 MHz, CDCl3): δ −108.1. GC−MS: m/z (%): 300 (M+,
100), 197 (35), 170 (10), 150 (20), 103 (10), 94 (30), 77 (15), 51
(10).
1,2,3,4-Tetrahydrophenazine 8f.50 Following the general proce-

dure, 8f was purified by silica gel column chromatography using a
mixture of ethyl acetate and heptane (1:5) as the eluent. Brown solid
(55 mg, 60%). 1H NMR (400 MHz, CDCl3): δ 8.01−7.91 (m, 2H),
7.69−7.60 (m, 2H), 3.20−3.11 (m, 4H), 2.05−2.00 (m, 4H).
13C{1H} NMR (101 MHz, CDCl3): δ 154.3, 141.3, 129.0, 128.5,
33.3, 22.9. GC−MS: m/z (%): 184 (M+, 100), 169 (30), 156 (10),
129 (10), 102 (15), 77 (15), 50 (15).
7,8-Dimethyl-1,2,3,4-tetrahydrophenazine 8g.50 Following the

general procedure, 8g was purified by silica gel column chromatog-
raphy using a mixture of ethyl acetate and heptane (1:5) as the eluent.
White solid (72 mg, 68%). 1H NMR (400 MHz, CDCl3): δ 7.67 (s,
2H), 3.13−3.05 (m, 4H), 2.42 (s, 6H), 2.02−1.95 (m, 4H). 13C{1H}
NMR (101 MHz, CDCl3): δ 153.0, 140.2, 139.3, 127.5, 33.2, 23.0,
20.4. GC−MS: m/z (%): 212 (M+, 100), 197 (25), 103 (15), 77 (20),
51 (10).
Procedure for the Gram-Scale Synthesis of 8g. In a dried Schlenk

tube containing a magnetic bar, Knölker complex [Fe] (102.0 mg,
0.25 mmol, 5 mol %), Me3NO (37.5 mg, 0.5 mmol, 10 mol %), 3,4-
dimethyl-6-nitroaniline (830.9 mg, 5 mmol, 1 equiv), K3PO4·H2O
(3.4 mg, 15 mmol, 3 equiv), cyclohexane-1,2-diol (1.74 g, 15 mmol, 3
equiv), and 25 mL of toluene were added successively under an argon
atmosphere. Then, the tube was sealed and the reaction mixture was
heated at 150 °C using an oil bath for 48 h. After that, the resulting
solution was filtrated through a pad of neutral alumina and washed
with ethyl acetate. The filtrate was collected and concentrated in
vacuo. The residue was purified by silica gel column chromatography
using ethyl acetate/heptane (1:5) as the eluent to afford the desired
product 8g as a white solid (696 mg, 66% yield).
6-Methyl-1,2,3,4-tetrahydrophenazine 8h.50 Following the gen-

eral procedure, 8h was purified by silica gel column chromatography
using a mixture of ethyl acetate and heptane (1:10) as the eluent.
White solid (60 mg, 61%). 1H NMR (400 MHz, CDCl3): δ 7.78 (d, J
= 8.2 Hz, 1H), 7.54−7.48 (m, 1H), 7.45 (d, J = 6.9 Hz, 1H), 3.19−
3.09 (m, 4H), 2.74 (s, 3H), 2.04−1.96 (m, 4H). 13C{1H} NMR (101
MHz, CDCl3): δ 153.5, 153.0, 141.3, 140.6, 136.7, 128.9, 128.6,
126.3, 33.5, 33.2, 23.0, 17.3. GC−MS: m/z (%): 198 (M+, 100), 183
(15), 169 (10), 116 (10), 89 (30), 77 (10), 63 (15), 51 (10).
7-Methyl-1,2,3,4-tetrahydrophenazine 8i.50 Following the general

procedure, 8i was purified by silica gel column chromatography using
a mixture of ethyl acetate and heptane (1:5) as the eluent. Brown
solid (69 mg, 70%). 1H NMR (400 MHz, CDCl3): δ 7.80 (d, J = 8.5
Hz, 1H), 7.68 (s, 1H), 7.43 (dd, J = 8.5, 1.7 Hz, 1H), 3.09 (s, 4H),
2.50 (s, 3H), 2.01−1.94 (m, 4H). 13C{1H} NMR (101 MHz,
CDCl3): δ 153.9, 153.1, 141.3, 139.7, 139.2, 131.2, 127.9, 127.3, 33.2,
33.1, 22.9, 21.8. GC−MS: m/z (%): 198 (M+, 100), 183 (25), 170
(10), 116 (10), 89 (35), 77 (15), 63 (15), 51 (10).
7,8-Dichloro-1,2,3,4-tetrahydrophenazine 8j. Following the gen-

eral procedure, 8j was purified by silica gel column chromatography
using a mixture of ethyl acetate and heptane (1:5) as the eluent.
White solid (61 mg, 48%). mp 180 °C; 1H NMR (400 MHz, CDCl3):
δ 8.05 (s, 2H), 3.15−3.10 (m, 4H), 2.05−2.00 (m, 4H). 13C{1H}
NMR (101 MHz, CDCl3): δ 155.8, 140.2, 133.5, 129.3, 33.4, 22.8.
HR-MS (ESI) m/z: [M + H]+ calcd for C12H11N2Cl2

+, 253.0294;
found, 253.0293.
7-Bromo-1,2,3,4-tetrahydrophenazine 8k.51 Following the gen-

eral procedure, 8k was purified by silica gel column chromatography
using a mixture of ethyl acetate and heptane (1:10) as the eluent.
Brown solid (37 mg, 28%). 1H NMR (400 MHz, CDCl3): δ 8.14 (d, J
= 2.1 Hz, 1H), 7.82 (d, J = 8.9 Hz, 1H), 7.72 (dd, J = 8.9, 2.1 Hz,
1H), 3.18−3.11 (m, 4H), 2.08−2.01 (m, 4H). 13C{1H} NMR (101
MHz, CDCl3): δ 155.4, 154.8, 142.0, 140.1, 132.6, 130.9, 129.8,
122.8, 33.3, 22.8. GC−MS m/z (%): 264 (M+, 95), 262 (M+, 100),
247 (20), 236 (5), 182 (20), 168 (10), 155(20), 75 (50), 50 (20).
6,7-Dimethylquinoxaline 8l.52 Following the general procedure

with t-BuOK (0.5 mmol, 56 mg, 1 equiv) as the substituent, 8l was
purified by silica gel column chromatography using a mixture of ethyl

acetate and heptane (1:5) as the eluent. White solid (33 mg, 42%). 1H
NMR (400 MHz, CDCl3): δ 8.72 (s, 2H), 7.83 (s, 2H), 2.48 (s, 6H).
13C{1H} NMR (101 MHz, CDCl3): δ 144.2, 142.1, 140.8, 128.6,
20.5. GC−MS m/z (%): 158 (M+, 100), 143 (60), 104 (25), 77 (15),
63 (10), 51 (10).
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(d) Guillena, G.; Ramoń, D. J.; Yus, M. Hydrogen Autotransfer in
the N-Alkylation of Amines and Related Compounds using Alcohols
and Amines as Electrophiles. Chem. Rev. 2010, 110, 1611−1641.
(e) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Borrowing
Hydrogen in the Activation of Alcohols. Adv. Synth. Catal. 2007, 349,
1555−1575. (f) Yang, Q.; Wang, Q.; Yu, Z. Substitution of alcohols
by N-nucleophiles via transition metal-catalyzed dehydrogenation.
Chem. Soc. Rev. 2015, 44, 2305−2329.
(3) For selected reviews or books on hydrogen auto-transfer
reactions using first row transition metals, see: (a) Irrgang, T.; Kempe,
R. 3d-Metal Catalyzed N- and C-Alkylation Reactions via Borrowing
Hydrogen or Hydrogen Autotransfer. Chem. Rev. 2019, 119, 2524−
2549. (b) Alig, L.; Fritz, M.; Schneider, S. First-Row Transition Metal

The Journal of Organic Chemistry pubs.acs.org/joc Article

https://dx.doi.org/10.1021/acs.joc.0c02505
J. Org. Chem. XXXX, XXX, XXX−XXX

J

https://pubs.acs.org/doi/10.1021/acs.joc.0c02505?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.joc.0c02505/suppl_file/jo0c02505_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christophe+Darcel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-6711-5978
mailto:christophe.darcel@univ-rennes1.fr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiajun+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02505?ref=pdf
https://dx.doi.org/10.1039/c39810000611
https://dx.doi.org/10.1039/c39810000611
https://dx.doi.org/10.1021/jo00192a021
https://dx.doi.org/10.1021/jo00192a021
https://dx.doi.org/10.1039/c9ob02760b
https://dx.doi.org/10.1039/c9ob02760b
https://dx.doi.org/10.1039/c9ob02760b
https://dx.doi.org/10.1021/acs.chemrev.7b00340
https://dx.doi.org/10.1021/acs.chemrev.7b00340
https://dx.doi.org/10.1021/cr900202j
https://dx.doi.org/10.1021/cr900202j
https://dx.doi.org/10.1021/cr9002159
https://dx.doi.org/10.1021/cr9002159
https://dx.doi.org/10.1021/cr9002159
https://dx.doi.org/10.1002/adsc.200600638
https://dx.doi.org/10.1002/adsc.200600638
https://dx.doi.org/10.1039/c4cs00496e
https://dx.doi.org/10.1039/c4cs00496e
https://dx.doi.org/10.1021/acs.chemrev.8b00306
https://dx.doi.org/10.1021/acs.chemrev.8b00306
https://dx.doi.org/10.1021/acs.chemrev.8b00555
pubs.acs.org/joc?ref=pdf
https://dx.doi.org/10.1021/acs.joc.0c02505?ref=pdf


(De)Hydrogenation Catalysis Based On Functional Pincer Ligands.
Chem. Rev. 2019, 119, 2681−2751. (c) Reed-Berendt, B. G.;
Polidano, K.; Morrill, L. C. Recent advances in homogeneous
borrowing hydrogen catalysis using earth-abundant first row transition
metals. Org. Biomol. Chem. 2019, 17, 1595−1607. (d) Filonenko, G.
A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Catalytic
(de)hydrogenation promoted by non-precious metals - Co, Fe and
Mn: recent advances in an emerging field. Chem. Soc. Rev. 2018, 47,
1459−1483. (e) Kallmeier, F.; Kempe, R. Manganese Complexes for
(De)Hydrogenation Catalysis: A Comparison to Cobalt and Iron
Catalysts. Angew. Chem., Int. Ed. 2018, 57, 46−60.
(4) For selected reviews on quinoxaline activities, see: (a) Pereira, J.
A.; Pessoa, A. M.; Cordeiro, M. N. D. S.; Fernandes, R.; Pruden̂cio,
C.; Noronha, J. P.; Vieira, M. Quinoxaline, its derivatives and
applications: A State of the Art review. Eur. J. Med. Chem. 2015, 97,
664−672. (b) Mathew, T.; Papp, A. Á.; Paknia, F.; Fustero, S.; Surya
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