# Direct $\alpha$ -Benzylation of Methyl Enol Ethers with Activated Benzyl Alcohols: Its Rearrangement and Access to (+)-Tetrahydronyasol, Propterol A, and 1,3-Diarylpropane

Tapan Kumar Jena and Faiz Ahmed Khan\*©

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502 285, India

**S** Supporting Information

ABSTRACT: Herein, we report a one-pot Lewis acid mediated synthesis of bi- and triarylpropanal derivatives and their corresponding isomeric ketones from aromatic enol ethers. This transformation takes place via nucleophilic attack of enol ethers to electron-rich benzyl alcohols. The substrate scope of this indicates that it might proceed via quinomethoxy methide as a key intermediate leading to propanal derivatives, and their Wagner-Meerwein rearrangement afforded isomeric ketones. Further, this methodology was applied for the synthesis of  $(\pm)$ -tetrahydronyasol, propterol A, and 1,3diarylpropane.

1,3-Biarylated carbonyl compounds are among the versatile intermediates in organic synthesis for the preparation of various biologically, naturally occurring compounds.<sup>1</sup> Owing to their biological properties present in several small natural products and pharmaceutical agents (Figure 1), many



Figure 1. Biologically important natural products.

methods have been developed for their synthesis.<sup>2-5</sup> Carbonyl compounds with aldehyde functional groups are prone to undergo skeletal rearrangement to ketones via 1,2group shift,<sup>6</sup> and strategies used for the synthesis of diarylated ketone derivatives include C-H insertion of diazoalkane,<sup>7</sup> Dakin–West syntheses,<sup>8</sup> and the carbonylative coupling of benzyl bromide.9 However, for the direct construction of a C-C bond for preparing substituted carbonyl compounds,  $\alpha$ -alkylation is one of the fundamental approaches in organic synthesis.<sup>10</sup> Moreover, they enable the access creation of stereocenters or quaternary centers at  $\alpha$ position of aldehydes or ketones, which are highly epidemic



in natural products. Because of this, these reactions have invigorated scientific exploration in the field of organic synthesis. As alcohols are readily available, their exploitation in C-C bond-forming reactions has become one of the suggestive approaches in direct functionalization of  $\alpha$ -C-H bonds of carbonyl compounds in place of halogenated compounds. This approach avoids the formation of stoichiometric amount of byproducts and makes reaction environmentally friendly by the formation of water as a byproduct.<sup>11</sup> Moreover, the widely used methods for  $\alpha$ alkylation of carbonyl compounds involve expensive tran-sition-metal catalysts.<sup>12,13</sup> Non-metal-catalyzed methods have also been developed for the construction of a quaternary center at the  $\alpha$ -position by means of enamine catalysis with a wide range of electrophiles.<sup>14</sup> In this direction, List and coworkers have reported the first amino catalyzed  $\alpha$ -alkylation of branched aldehydes with benzyl bromide as alkylating agent.<sup>15</sup> Cozzi et al. used the amino organocatalyst and acid cocatalyst to activate the aldehydes via enamine intermediates and Bronsted acids for the formation of diaryl methyl cations from the corresponding diaryl methanols.<sup>16</sup> Mazet et al. also reported Pd-catalyzed  $\alpha$ - and  $\gamma$ -benzylation of aldehydes for the formation of quaternary centers using benzyl methyl carbonates.<sup>17</sup> Due to the possible side reactions,  $\alpha$ functionalization is particularly challenging.<sup>18</sup> To the best of our knowledge, a direct synthesis of 1,3-bi- or tri arylated carbonyl derivatives with activated benzyl alcohol and methyl enol ether in one step remains unexplored.

Herein, we describe a one-pot synthesis of di- and triaryl propanals using a simple, zinc salt as catalyst and their

Received: July 29, 2019 Published: September 23, 2019





| MeO                  | ти<br>+ <u>МеО</u><br>1а 2а             | solvent<br>reagent, temp. MeO | a OMe + MeO 4a                                   | OMe                                       |
|----------------------|-----------------------------------------|-------------------------------|--------------------------------------------------|-------------------------------------------|
| entry                | reagent (equiv)                         | temp (°C)                     | yield <sup><math>b</math></sup> (%) of <b>3a</b> | yield <sup><math>b</math></sup> (%) of 4a |
| 1                    | $BF_3 \cdot OEt_2$ (0.5)                | rt                            | 70                                               | ND                                        |
| 2                    | $BF_3 \cdot OEt_2$ (1.5)                | 50                            |                                                  | 73                                        |
| 3                    | $FeCl_3$ (1.0)                          | 50                            |                                                  | 54                                        |
| 4                    | $ZnCl_2$ (1.0)                          | rt                            | 63                                               | ND                                        |
| 5                    | $ZnCl_2$ (2.0)                          | 50                            | 59                                               | ND                                        |
| 6                    | $ZnBr_2$ (1.0)                          | rt                            | 86                                               | ND                                        |
| 7                    | $ZnBr_2$ (2.0)                          | 50                            | 79                                               | ND                                        |
| Departies and itions | $1_{2}$ (0.4 mm al) $2_{2}$ (0.4 mm al) | 12 DCE (2 mI) 4 6 h           | biolated wields ND - not date                    | ata d                                     |

<sup>a</sup>Reaction conditions: **1a** (0.4 mmol), **2a** (0.4 mmol), 1,2-DCE (2 mL), 4–6 h. <sup>b</sup>Isolated yields. ND = not detected.

skeletal rearrangement to isomeric ketones via direct  $\alpha$ benzylation of methyl enol ethers with activated primary benzyl alcohols. Further, synthesized compounds via this methodology have been utilized for the synthesis of (±)-tetrahydronyasol, propterol A, and 1,3-diarylpropane in short synthetic routes.

To find the optimum reaction conditions for alkylation, 1methoxy-4-(1-methoxyprop-1-en-2-yl)benzene (1a) and 4methoxybenzyl alcohol (2a) were chosen as model substrates.

Initially, the reaction was carried out in the presence of BF3·OEt2 as Lewis acid catalyst in 1,2-dichloroethane at room temperature, which furnished the desired product 3a in 70% yield (entry 1, Table 1). When the reaction temperature was raised to 50 °C, a new product started to appear (TLC monitoring) with concomitant depletion of 3a. Subsequent additions of two 0.5 equiv of BF<sub>3</sub>·OEt<sub>2</sub> batches at 30-40 min intervals allowed the reaction to proceed to completion with complete disappearance of 3a. On the basis of the spectral data, the new product was assigned as ketone 4a, a rearranged product of 3a. When the reaction was performed with 1.0 equiv of FeCl<sub>2</sub> at 50 °C, we observed the rearranged product 4a in 54% yield (entry 3, Table 1). Among the different Lewis acids examined, ZnBr2 was found to be efficient for  $\alpha$ -benzylation transformation to obtain the product 3a in 86% (entry 6, Table 1). Interestingly, 4a was not detected even at 50 °C with zinc salts (entry 5 and 7, Table 1). For the selective preparation of benzylated isomeric ketone 4a,  $BF_3 \cdot OEt_2$  was found to give best results (73%, entry 2, Table 1).

Encouraged by these observations from the optimized condition, we have investigated the substrate scope of reaction (Table 2) using the optimum reaction condition mentioned in (entry 6 of Table 1). First, we examined different substituted derivatives of ketone and aldehyde derived enol ethers with electron-donating as well as electron-withdrawing substituents. As shown, a wide variety of ketone derived enol ether derivatives reacted with 4-methoxybenzyl alcohol to afford in all cases the expected product in one pot. Enol ethers having electron-withdrawing group such as -F, -Cl, and -Br at *para* position afforded good yields (3g-3i). Similarly, substituents with -Br at *meta* and -Cl at *ortho* position also gave good yields (3k-3l). Moreover, enol ethers 1j and 1m possessing an  $-NO_2$  group also reacted with 2a and delivered good yields (3j, 3m).

Similarly, enol ethers with electron-donating groups such as -OMe, -Me, and -H at different positions also reacted well with 2a and provided the corresponding products (3b-3f, 3o) in good yields. Enol ethers having both aryl groups (R and  $R^1 = aryl$ ) possessing electron-donating groups also gave the expected products (3p, 3q, 3r) in good yields, while in the case of enol ether 1r, rearranged product formation was also observed (3r'). We also tested aldehyde derived enol ether (1n), which reacted well with 2a to give 72% yield of 3n. Cyclic aliphatic enol ether 1s and 1t when reacted with 2a gave compound 3s and 3t in moderate yields.

After having the aldehyde derivative 3 in hand, we became interested in exploring the direct skeletal rearrangement of biaryl propanal derivatives to its isomeric ketone products (Table 3). Employing the conditions depicted in Table 1 (entry 2), 1,3-diaryl butanone derivatives 4a and 4b were synthesized in good yield. The reaction works well for the preparation of symmetrical 1,3-bi- (4c, 52%) and triarylpropanone (4d, 58%), *albeit* in somewhat lower yield. When the reaction was carried out keeping R<sup>1</sup> as an ethyl group we observed inseparable 1,2-alkyl along with 1,2-aryl group migration with 70:30 ratio respectively (4e, 4e', Table 3). The assignment is based on comparison of <sup>1</sup>H and <sup>13</sup>C NMR of mixture of 4e, 4e' with the authentic compound 4e synthesized from 4c (Scheme 1, B, also see the Supporting Information).

After having 1,3-arylated carbonyl compounds from the substrate scope of enol ether, we moved to check the scope of benzyl alcohol (Table 4). Benzyl alcohols having an -OMe group in the ortho and para positions provided the corresponding products in moderate yields (Table 4). Unfortunately, when benzyl alcohol having an electron-donating group (-OMe) at the *meta* position, product formation was not observed (**3ab**, **3ac**). When 2,4,5-trimethoxybenzyl alcohol was used, we observed product formation with moderate yield after 24 h (**3aa**).

Further, we extend the synthetic utility of this methodology for the synthesis of natural products such as propterol A,  $(\pm)$ -tetrahydronyasol (derivative of nyasol), and 1,3-diarylpropane using 4c as a representative example (Scheme 1). Reduction of compound 4c followed by deprotection in the presence of BBr<sub>3</sub> (1.0 M in DCM) afforded compound 5 and propterol A (6), respectively.  $(\pm)$ -Tetrahydronyasol was synthesized by alkylation of 4c with iodoethane, which led Table 2. Substrate Scope of Different Aromatic Enol Ethers $^{a-c}$ 



"Reaction conditions: 1a (0.4 mmol), 2a (0.4 mmol), ZnBr<sub>2</sub> (1.0 equiv), in 1,2-DCE (2 mL), for 4–11 h. <sup>b</sup>Yields are reported for compounds isolated after silica gel column chromatography. <sup>c</sup>2a (0.8 mmol) was used portionwise.

to compound **4e** in 56% yield. Further reduction of the carbonyl functional group to methylene unit using triethylsilane and  $BF_3 \cdot OEt_2$  gave compound 7 in 80% yield. Finally, compound **8** was synthesized by deprotection of compound **7** in the presence of BBr<sub>3</sub> in 99% yield. Similarly, compound **9** (1,3-bis(4-methoxyphenyl)propane), a natural product,<sup>19</sup> was also synthesized by using the same conditions as were used for the synthesis of compound 7. After obtaining the results and careful observation of the reactivity of different substrates, we proposed a plausible reaction mechanism (for compounds 3 and 4). Initially, nucleophilic addition of methyl enol ethers to in situ generated 1,6-quinomethoxy methide from activated benzyl alcohol 2a in the presence of acid catalyst through the intermediate 10 would take place to form compound 11 (Scheme 2). In the next step, hydrolysis of compound 11

# Table 3. Direct Rearrangement from Enol Ether<sup>a-c</sup>



<sup>*a*</sup>Reaction conditions: **1** (0.4 mmol), **2a** (0.4 mmol), BF<sub>3</sub>·OEt<sub>2</sub> (1.5 equiv), in 1,2-DCE (2 mL), for 6–12 h. <sup>*b*</sup>Yields are reported for compounds isolated after silica gel column chromatography. <sup>*c*</sup>**2a** (0.8 mmol) was used portionwise.

#### Scheme 1. Synthetic Applications A. Synthesis of Propterol A (6) MeOH ö óн MeO OMe `OMe MeO NaBH<sub>4</sub> (4 equiv), 5 4c 0° C to 40° C, 12 h, 93% DCM, -78 <sup>0</sup>C to rt, 16 h BBr<sub>3</sub> (1.0 M in DCM) óн но ОH 6 **B.** Synthesis of (±)-Tetrahydronyasol DMF, NaH (4 equiv) ö ö MeO OMe MeO OMe C<sub>2</sub>H<sub>5</sub>I (1.6 equiv) 4e 4c 0 <sup>0</sup>C, 1 h, BF<sub>3</sub>-OEt<sub>2</sub> (4 equiv), Et<sub>3</sub>SiH (4equiv), 56% DCM, rt, 12 h 80% DCM, BBr<sub>3</sub> (1.0 M) HC 8 -78 °C to rt, MeO OMe 7 (±)-Tetrahydronyasol 20 h,99% C. Synthesis of 1,3-diaryl propane DCM, BF<sub>3</sub>-OEt<sub>2</sub> (4equiv) ö MeO OMe MeO OMe Et<sub>3</sub>SiH (4equiv), 9 4c rt, 12 h, 90%

#### Table 4. Substrate Scope of Benzyl Alcohol



would lead to the desired product 3a. At the same time, after formation of compound 3a directly from enol ethers, it could undergo Wagner-Meerwein rearrangement via a stable carbocation leading to 1,2-alkyl shift with subsequent hydride ion transfer for the formation of compound 4a (Scheme 2).

#### CONCLUSIONS

In summary, we have developed a one-pot direct benzylation reaction of different substituted methyl enol ethers with activated benzyl alcohol for the synthesis of biaryl, triaryl propanal, symmetrical 1,3-diarylpropanone, and also bi- and triaryl ketone derivatives via Wagner–Meerwein rearrangement in the presence of Lewis acid with moderate to good yield. Also, we applied this methodology to synthesize small natural products in short synthetic sequence. This method allows a facile alternative method for the construction of a quaternary center.

#### EXPERIMENTAL SECTION

**General Procedure.** IR spectra were recorded on an FTIR spectrophotometer. <sup>1</sup>H NMR spectra were recorded on 400 MHz spectrometer in CDCl<sub>3</sub>; chemical shifts ( $\delta$  ppm) and coupling constants (Hz) are reported in standard fashion with reference to either internal standard tetramethylsilane (TMS) ( $\delta_{\rm H} = 0.00$  ppm) or CHCl<sub>3</sub> ( $\delta_{\rm H} = 7.25$  ppm). <sup>13</sup>C NMR spectra were recorded on 100 MHz spectrometer at in CDCl<sub>3</sub>; chemical shifts ( $\delta$  ppm) are reported relative to CHCl<sub>3</sub> [ $\delta_{\rm C} = 77.00$  ppm (central line of triplet)]. In the <sup>1</sup>H NMR, the following abbreviations were used throughout: s = singlet, d = doublet, t = triplet, q = quartet, qui =

Scheme 2. Plausible Reaction Mechanism



quintet, dd = doublet of doublets, m = multiplet and brs = broad singlet. The assignment of signals was confirmed by <sup>1</sup>H, <sup>13</sup>C, and DEPT spectra. High-resolution mass spectra (HR-MS) were recorded using electron spray ionization (ESI) or atmospheric chemical ionization (APCI) mode. Melting points were determined on an electrothermal melting point apparatus and are uncorrected. Zinc bromide (ZnBr<sub>2</sub>) was purchased from Alfa Aeser, and boron trifluoride diethyl etherate (BF3·OEt2) was purchased from a commercial source and purified immediately before use. Tetrahydrofuran (THF) solvent was dried prior to use over sodium/ benzophenone ketyl under argon. 1,4-Dioxane was distilled prior to use from sodium metal. K<sup>t</sup>OBu was purchased from Avra Synthesis Pvt, Ltd. All reactions were performed in oven-dried apparatus under N2 atmosphere. Commercial grade solvents were distilled before use. The reactions were monitored by thin-layer chromatography (TLC) on microscopic slides coated with silica gel, and visualization of spots was accomplished by exposure to iodine vapor or by UV radiation. The silica gel (100-200) column chromatography was carried for purification of compounds with a various combinations of hexane and EtOAc solvent system as eluent.

**General Procedure (GP-I) for the Synthesis of Enol Ethers 1a–1t.** Enol ethers **1a–1t** are known compounds except **1c** and are prepared by following the literature report.<sup>20–24</sup>

General Procedure for Synthesis of Enol Ether 1c. A flamedried RBF, charged with a magnetic stir bar and the corresponding "Wittig salt" (methoxymethyl)triphenylphosphonium chloride (5.29 g, 15.463 mmol, 1.5 equiv) in THF, was cooled to 0 °C, and potassium tert-butoxide (1.85 g, 16.494 mmol, 1.6 equiv) was added in portions to give a dark red solution. After the solution was stirred for 40 min at room temperature, a solution of substituted ketone 1-(2,5-dimethoxy-4-methylphenyl)ethanone (2 g, 10.309 mmol, 1.0 equiv) in THF was added dropwise at 0 °C, and the mixture was then warmed to room temperature. After stirring for 8 h as monitored by TLC, the reaction mixture solvent was evaporated in rotatory evaporator and then poured into water (5 mL), and the aqueous phase was extracted with ethyl acetate (20 mL  $\times$  4). The combined organic phase was washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. Purification of the crude product by column chromatography using 3% ethyl acetate in petroleum ether (3/100) as an eluent on silica gel to afford the desired compound as mixtures of E/Zisomers with excellent yield.

For benzophenone the procedure was slightly modified. To a solution of (methoxymethyl)triphenylphosphonium chloride (16.483 mmol, 1.5 equiv) in dry 1,4-dioxane (20 mL) was slowly added sodium bis(trimethylsilyl)amide (21.978 mmol, 1.0 M solution in THF, 2.0 equiv) at 0  $^{\circ}$ C and stirred for 30 min at the same

temperature. A solution of benzophenone derivative (10.989 mmol, 1.0 equiv) was then slowly added at 0 °C, and the mixture was stirred at room temperature for 24 h. The reaction mixture was treated with satd aq NH<sub>4</sub>Cl solution, and the aqueous phase was extracted with EtOAc. The combined organic layer was washed with brine and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated, and the residue was purified by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent to afford the desired product.

1,4-Dimethoxy-2-(1-methoxyprop-1-en-2-yl)-5-methylbenzene (1c). Colorless liquid; 2.2 g, 96%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.73 (s, 1 H), 6.68 (s, 2 H), 6.63 (s, 1 H), 6.22 (d, *J* = 1.5 Hz, 1 H), 6.02 (q, *J* = 1.5 Hz, 1 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.77 (s, 3 H), 3.77 (s, 3 H), 3.68 (s, 3 H), 3.54 (s, 3 H), 2.21 (s, 6 H), 1.96 (d, *J* = 1.5 Hz, 3 H), 1.87 (d, *J* = 1.5 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 151.5, 151.1, 150.5, 146.1, 143.2, 133.8, 133.6, 128.5, 126.0, 125.9, 125.3, 114.9, 114.6, 113.2, 112.5, 111.6, 59.7, 59.6, 56.5, 56.3, 56.1, 56.0, 18.7, 16.3, 16.1, 14.0. IR  $\nu_{max}$  (neat): 2935, 1671, 1504, 1458, 1398, 1208, 1140, 1043, 861 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>13</sub>H<sub>22</sub> NO<sub>3</sub> 240.1594, found 240.1586.

1,2-Dimethoxy-4-(1-methoxyprop-1-en-2-yl)benzene (1d).<sup>22</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.24 (s, 1 H), 7.03 (d, *J* = 8.3 Hz, 1 H), 6.79-6.71 (m, 4 H), 6.25 (s, 1 H), 5.99 (s, 1 H), 3.81 (s, 6 H), 3.79 (s, 6 H), 3.63 (s, 3 H), 3.60 (s, 3 H), 1.90 (s, 3 H), 1.82 (s, 3 H).

1-Methoxy-4-(1-methoxybut-1-en-2-yl)benzene (10).<sup>23</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.44–7.40 (m, 2 H), 7.21–7.18 (m, 2 H), 6.88–6.81 (m, 4 H), 6.17 (s, 1 H), 6.02 (s, 1 H), 3.78 (s, 6 H), 3.65 (s, 3 H), 3.60 (s, 3 H), 2.49 (d, *J* = 7.8 Hz, 2 H), 2.29 (dd, *J* = 1.0, 7.3 Hz, 2 H), 0.99 (dt, *J* = 4.9, 7.3 Hz, 6 H).

(Methoxymethylene)cycloheptane (1t).<sup>25</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 5.78–5.76 (m, 1 H), 3.54 (s, 3 H), 2.29–2.25 (m, 2 H), 2.07–2.02 (m, 2 H), 1.59–1.47 (m, 8 H).

General Procedure A for the Synthesis of Compound 3a. To a stirred solution of compounds 1a (1-methoxy-4-(1-methoxyprop-1-en-2-yl)benzene (71 mg, 0.4 mmol, 1.0 equiv) and 2a (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL) was added ZnBr<sub>2</sub> (90 mg, 0.4 mmol, 1.0 equiv) at room temperature, and the mixture stirred until complete conversion of starting material (monitored by TLC) for 5 h. After completion of the reaction, it was diluted with water (2 mL), and the aqueous layer was extracted with dichloromethane (2 × 10 mL). All organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, solvent was evaporated at reduced pressure, and the product was isolated by using column chromatography 3% ethyl acetate in petroleum ether (3/100) as an eluent.

2,3-Bis(4-methoxyphenyl)-2-methylpropanal (**3a**). Colorless liquid (98 mg, 86%), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.58 (s, 1 H), 7.09 (d, *J* = 8.9 Hz, 2 H), 6.90 (d, *J* = 8.9 Hz, 2 H), 6.74–6.67 (m, 4 H), 3.82 (s, 3 H), 3.74 (s, 3 H), 3.15–3.06 (m, 2 H), 1.33 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  202.1, 158.8, 158.1, 131.3, 131.1, 128.9, 128.7, 114.1, 113.2, 55.2, 55.1, 54.4, 41.8, 18.3. IR  $\nu_{max}$  (neat): 2935, 1606, 1508, 1457, 1246, 1176, 1037, 816 cm<sup>-1</sup>. HRMS (ESI-TOF) *m*/*z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>18</sub>H<sub>24</sub>NO<sub>3</sub> 302.1751, found 302.1754.

2-(2,5-Dimethoxyphenyl)-3-(4-methoxyphenyl)-2-methylpropanal (**3b**). Compound **3b** was prepared according to the general procedure A by treating enol ether **1b** (83 mg, 0.4 mmol, 1.0 equiv) and **2a** (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL). Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound **3b** as a colorless liquid (89 mg, 71%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ = 9.59 (s, 1 H), 6.89–6.78 (m, 2 H), 6.67–6.57 (m, 4 H), 6.43 (d, *J* = 2.9 Hz, 1 H), 3.74 (s, 6 H), 3.68 (s, 3 H), 3.24 (d, *J* = 13.6 Hz, 1 H), 3.05 (d, *J* = 13.5 Hz, 1 H), 1.21 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 203.3, 157.9, 153.6, 150.9, 131.5, 130.9, 129.2, 115.8, 113.0, 112.5, 111.7, 55.8 (2C), 55.1, 52.8, 38.8, 19.2. IR  $\nu_{max}$  (neat): 2940, 1695, 1507, 1230, 1177, 1039, 811 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>23</sub>O<sub>4</sub> 315.1591, found 315.1589. 2-(2,5-Dimethoxy-4-methylphenyl)-3-(4-methoxyphenyl)-2methylpropanal (3c). Compound 3c was prepared according to the general procedure A by treating enol ether 1c (89 mg, 0.4 mmol, 1.0 equiv) and 2a (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL). Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound 3c as a colorless liquid (96 mg, 73%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.59 (s, 1 H), 6.75 (s, 1 H), 6.68–6.51 (m, 4 H), 6.28 (s, 1 H), 3.73 (s, 6 H), 3.60 (s, 3 H), 3.19 (d, *J* = 13.7 Hz, 1 H), 3.06 (d, *J* = 13.7 Hz, 1 H), 2.24 (s, 3 H), 1.20 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  203.6, 157.9, 151.7, 150.4, 131.6, 129.4, 127.3, 126.9, 114.1, 112.9, 111.9, 56.3, 55.9, 55.1, 52.7, 38.9, 19.2, 16.2. IR ν<sub>max</sub> (neat): 2936, 1721, 1505, 1457, 1396, 1205, 1037, 881 cm<sup>-1</sup>. HRMS (ESI-TOF) *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>20</sub>H<sub>25</sub>O<sub>4</sub> 329.1747, found 329.1754

2-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)-2-methylpropanal (3d). Compound 3d was prepared according to the general procedure A by treating enol ether 1d (83 mg, 0.4 mmol, 1.0 equiv) and 2a (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL). Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound 3d as a colorless liquid (92 mg, 73%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ = 9.57 (s, 1 H), 6.85 (d, *J* = 8.3 Hz, 1 H), 6.74–6.71 (m, 3 H), 6.70–6.67 (m, 2 H), 6.61 (d, *J* = 2.0 Hz, 1 H), 3.88 (s, 3 H), 3.81 (s, 3 H), 3.73 (s, 3 H), 3.11 (s, 2 H), 1.34 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 202.1, 158.2, 149.0, 148.4, 131.6, 131.3, 129.9, 128.9, 120.0, 113.6, 113.3, 111.2, 111.0, 55.9, 55.9, 55.1, 54.7, 41.8, 18.4. IR  $\nu_{max}$  (neat): 2934, 1597, 1511, 1456, 1255, 1028, 810 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>22</sub>O<sub>4</sub>Na 337.1410, found 337.1408

3-(4-Methoxyphenyl)-2-methyl-2-(p-tolyl)propanal (3e). Compound 3e was prepared according to the general procedure A by treating enol ether 1e (65 mg, 0.4 mmol, 1.0 equiv) and 2a (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL). Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound 3e as a colorless liquid (81 mg, 72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ = 9.58 (s, 1 H), 7.16 (d, *J* = 7.8 Hz, 2 H), 7.06 (d, *J* = 8.3 Hz, 2 H), 6.75–6.64 (m, 4 H), 3.73 (s, 3 H), 3.22–2.99 (m, 2 H), 2.34 (s, 3 H), 1.33 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H}NMR (100 MHz, CDCl<sub>3</sub>) δ 202.2, 158.2, 137.1, 136.4, 131.4, 129.5, 128.9, 127.5, 113.3, 55.1, 54.8, 41.8, 21.0, 18.3. IR ν<sub>max</sub> (neat): 2928, 1609, 1509, 1456, 1245, 1177, 1032, 819 cm<sup>-1</sup>. HRMS (ESI-TOF) *m*/*z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>18</sub>H<sub>24</sub>NO<sub>2</sub> 286.1802, found 286.1801.

3-(4-Methoxyphenyl)-2-methyl-2-phenylpropanal (**3f**). Compound **3f** was prepared according to the general procedure A by treating enol ether **1f** (59 mg, 0.4 mmol, 1.0 equiv) and **2a** (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL). Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound **3f** as a colorless liquid (74 mg, 73%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) *δ* = 9.62 (s, 1 H), 7.38–7.33 (m, 2 H), 7.31–7.27 (m, 1 H), 7.19–7.15 (m, 2 H), 6.79–6.55 (m, 4 H), 3.18–3.08 (m, 2 H), 1.36 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) *δ* 202.2, 158.2, 139.4, 131.3, 128.7, 127.6, 127.4, 113.2, 55.1, 55.1, 41.8, 18.2. IR ν<sub>max</sub> (neat): 2931, 1707, 1607, 1507, 1458, 1245, 1176, 1032, 819 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>19</sub>O<sub>2</sub> 255.1380, found 255.1383.

2-(4-Fluorophenyl)-3-(4-methoxyphenyl)-2-methylpropanal (**3g**). Compound **3g** was prepared according to the general procedure A by treating enol ether **1g** (66 mg, 0.4 mmol, 1.0 equiv) and **2a** (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL). Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound **3g** as white solid (80 mg, 74%). Mp = 97–98 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.60 (s, 1 H), 7.15–7.09 (m, 2 H), 7.08–7.01 (m, 2 H), 6.69 (s, 4 H), 3.74 (s, 3 H), 3.16–3.04 (m, 2 H), 1.36 (s, 3 H). <sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.9, 162.03 (d,  $J_{CF}$  = 245 Hz), 158.2, 135.1, 131.3, 129.28 (d,  $J_{CF}$  = 8 Hz), 128.4, 115.57 (d,  $J_{CF}$  = 21 Hz), 113.3, 55.1,

54.6, 42.0, 18.4. IR  $\nu_{\rm max}$  (neat): 2933, 1605, 1509, 1458, 1239, 1172, 1032, 834 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>17</sub>H<sub>21</sub>NFO<sub>2</sub> 290.1551, found 290.1566.

2-(4-Chlorophenyl)-3-(4-methoxyphenyl)-2-methylpropanal (**3h**). Compound **3h** was prepared according to the general procedure A by treating enol ether **1h** (73 mg, 0.4 mmol, 1.0 equiv) and **2a** (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL). Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound **3h** as a colorless liquid (82 mg, 71%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.59 (s, 1 H), 7.39–7.28 (m, 2 H), 7.16–6.94 (m, 2 H), 6.69 (s, 4 H), 3.73 (s, 3 H), 3.13–3.05 (m, 2 H), 1.35 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.7, 158.3, 137.9, 133.4, 131.3, 129.7, 129.0, 128.9, 128.8, 128.2, 113.3, 55.1, 54.8, 41.9, 18.3. IR  $\nu_{max}$  (neat): 2942, 1682, 1603, 1509, 1246, 1173, 1093, 1030, 824, 757 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>17</sub>H<sub>21</sub>NClO<sub>2</sub> 306.1255, found 306.1257.

2-(4-Bromophenyl)-3-(4-methoxyphenyl)-2-methylpropanal (3i). Compound 3i was prepared according to the general procedure A by treating enol ether 1i (90 mg, 0.4 mmol, 1.0 equiv) and 2a (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL). Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound 3i as a colorless liquid (93 mg, 70%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.59 (s, 1 H), 7.51–7.43 (m, 2 H), 7.07–6.99 (m, 2 H), 6.70 (s, 4 H), 3.74 (s, 3 H), 3.13–3.05 (m, 2 H), 1.35 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.6, 158.3, 138.5, 131.8, 131.3, 129.3, 128.2, 121.6, 113.3, 55.1, 54.9, 41.8, 18.3. IR  $\nu_{max}$  (neat): 2932, 1725, 1517, 1462, 1249, 1177, 1034, 829 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>BrO<sub>2</sub>Na 355.0304, found 355.0309.

3-(4-Methoxyphenyl)-2-methyl-2-(3-nitrophenyl)propanal (3j). Compound 3j was prepared according to the general procedure A by treating enol ether 1j (77 mg, 0.4 mmol, 1.0 equiv) and 2a (83 mg, 0.6 mmol, 1.5 equiv) in 1,2-DCE (2 mL) at 40 °C in oil bath for 11 h. Purification of the crude material by silica gel column chromatography using 3% ethyl acetate in petroleum ether (3/100) as an eluent furnished the compound 3j as a yellow solid (78 mg, 65%). Mp = 113–115 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.68 (s, 1 H), 8.17 (ddd, *J* = 1.0, 2.2, 8.1 Hz, 1 H), 8.07 (t, *J* = 2.0 Hz, 1 H), 7.65–7.37 (m, 2 H), 6.76–6.54 (m, 4 H), 3.74 (s, 3 H), 3.17 (d, *J* = 1.5 Hz, 2 H), 1.48 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.1, 158.5, 148.4, 141.9, 134.0, 131.2, 129.5, 127.4, 122.5, 113.5, 55.2, 55.1, 42.2, 18.6. IR ν<sub>max</sub> (neat): 2932, 1695, 1522, 1462, 1350, 1248, 1176, 1033, 851 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>17</sub>H<sub>21</sub>N<sub>2</sub>O<sub>4</sub> 317.1496, found 317.1499.

2-(3-Bromophenyl)-3-(4-methoxyphenyl)-2-methylpropanal (**3k**). Compound **3k** was prepared according to the general procedure A by treating enol ether **1k** (90 mg, 0.4 mmol, 1.0 equiv) and **2a** (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL). Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound **3k** as a colorless liquid (101 mg, 76%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.60 (s, 1 H), 7.48–7.37 (m, 1 H), 7.32 (t, *J* = 1.7 Hz, 1 H), 7.22 (t, *J* = 7.8 Hz, 1 H), 7.14–7.03 (m, 1 H), 6.79–6.62 (m, 4 H), 3.73 (s, 3 H), 3.21–2.98 (m, 2 H), 1.35 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.5, 158.3, 142.0, 131.6, 131.3, 130.6, 130.5, 130.1, 128.1, 126.3, 123.0, 113.4, 113.3, 55.1, 55.1, 41.9, 18.3. IR ν<sub>max</sub> (neat): 2932, 1724, 1511, 1464, 1248, 1177, 1034, 827 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>BrO<sub>2</sub>Na 355.0304, found 355.0309.

2-(2-Chlorophenyl)-3-(4-methoxyphenyl)-2-methylpropanal (31). Compound 31 was prepared according to the general procedure A by treating enol ether 11 (73 mg, 0.4 mmol, 1.0 equiv) and 2a (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL). Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound 31 as a colorless liquid (69 mg, 60%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.82 (s, 1 H), 7.45 (dd, J = 1.5, 7.8 Hz, 1 H), 7.30–7.22 (m, 1 H), 7.18–7.12 (m, 1 H), 6.89 (dd, J = 1.5, 7.8 Hz,

1 H), 6.66–6.52 (m, 4 H), 3.72 (s, 3 H), 3.48 (d, J = 13.8 Hz, 1 H), 3.17 (d, J = 13.8 Hz, 1 H), 1.30 (s, 3 H).  $^{13}C{^{1}H}$  NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  202.9, 158.1, 138.2, 133.4, 131.5, 130.6, 130.1, 129.1, 128.4, 126.9, 113.1, 55.2, 55.1, 38.2, 20.2. IR  $\nu_{max}$  (neat): 2989, 1703, 1512, 1460, 1248, 1035, 823,743 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>ClO<sub>2</sub>Na 311.0809, found 311.0825.

3-(4-Methoxyphenyl)-2-methyl-2-(4-nitrophenyl)propanal (3m). Compound 3m was prepared according to the general procedure A by treating enol ether 1m (77 mg, 0.4 mmol, 1.0 equiv) and 2a (83 mg, 0.6 mmol, 1.5 equiv) in 1,2-DCE (2 mL) at 40 °C in oil bath for 12 h. Purification of the crude material by silica gel column chromatography using 4% ethyl acetate in petroleum ether (4/100) as an eluent furnished the compound 3m as a yellow solid (82 mg, 69%). Mp = 99–100 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.67 (s, 1 H), 8.19 (d, *J* = 8.8 Hz, 2 H), 7.33 (d, *J* = 9.3 Hz, 2 H), 6.69 (s, 4 H), 3.73 (s, 3 H), 3.16 (s, 2 H), 1.46 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.0, 158.5, 147.1, 147.1, 131.2, 128.6, 127.4, 123.6, 113.5, 55.6, 55.1, 42.3, 18.6. IR  $\nu_{max}$  (neat): 2932, 1725, 1605, 1515, 1459, 1346, 1250, 1032, 851, 705 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>17</sub>H<sub>21</sub>N<sub>2</sub>O<sub>4</sub> 317.1496, found 317.1495.

2,3-Bis(4-methoxyphenyl)propanal (3n). Compound 3n was prepared according to the general procedure A, by treating enol ether 1n (66 mg, 0.4 mmol, 1.0 equiv), and 2a (83 mg, 0.6 mmol, 1.5 equiv) in 1,2-DCE (2 mL) for 6 h. Purification of the crude material by silica gel column chromatography using 4% ethyl acetate in petroleum ether (4/100) as an eluent furnished the compound 3n as a colorless liquid (78 mg, 72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 9.69$  (d, J = 2.0 Hz, 1 H), 7.03 (d, J = 8.8 Hz, 2 H), 6.95 (d, J= 8.8 Hz, 2 H), 6.88-6.83 (m, 2 H), 6.74 (d, J = 8.8 Hz, 2 H), 3.79 (s, 1 H), 3.78 (s, 3 H), 3.73 (s, 3 H), 3.35 (dd, J = 14.2, 6.8 Hz, 1 H), 2.88 (dd, J = 14.2, 8.3 Hz, 1 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 200.1, 159.1, 158.0, 130.9, 130.1, 130.0, 129.4, (neat): 2931, 1718, 1606, 1509, 1456, 1244, 1172, 1031, 826 cm<sup>-</sup> HRMS (ESI-TOF) m/z:  $[M + H]^+$  calcd for  $C_{17}H_{19}O_3$  271.1329, found 271.1327.

2-(4-Methoxybenzyl)-2-(4-methoxyphenyl)butanal (**30**). Compound **30** was prepared according to the general procedure **A**, by treating enol ether **10** (77 mg, 0.4 mmol, 1.0 equiv), and **2a** (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL) for 4 h. Purification of the crude material by silica gel column chromatography using 4% ethyl acetate in petroleum ether (4/100) as an eluent furnished the compound **30** as a colorless liquid (94 mg, 79%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.61 (s, 1 H), 7.09–7.03 (m, 2 H), 6.97–6.86 (m, 2 H), 6.72 (s, 4 H), 3.83 (s, 3 H), 3.76 (s, 3 H), 3.22- 3.09 (m, 2 H), 1.90 (dd, *J* = 5.4, 7.3 Hz, 2 H), 0.94 (t, *J* = 7.3 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  202.8, 158.7, 158.1, 131.1, 130.4, 129.1, 128.7, 114.0, 113.3, 58.4, 55.2, 55.1, 37.8, 23.9, 8.6. IR  $\nu_{max}$  (neat): 2948, 1718, 1607, 1509, 1454, 1245, 1180, 1031, 827 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>23</sub>O<sub>3</sub> 299.1642, found 299.1635.

3-(4-Methoxyphenyl)-2,2-diphenylpropanal (3p). Compound 3p was prepared according to the general procedure A by treating enol ether 1p (84 mg, 0.4 mmol, 1.0 equiv) and 2a portionwise (110 mg, 0.8 mmol, 2.0 equiv) in 1,2-DCE (2 mL) for 5 h. Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound 3p as a colorless liquid (90 mg, 71%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.83 (s, 1 H), 7.42–7.20 (m, 6 H), 7.09 (dd, *J* = 1.7, 8.1 Hz, 4 H), 6.68–6.49 (m, 4 H), 3.78–3.73 (m, 1 H), 3.70 (s, 3 H), 3.63 (s, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  198.1, 157.9, 140.0, 131.8, 129.4, 128.8, 128.4, 127.3, 112.9, 65.3, 55.1, 39.7. IR  $\nu_{max}$  (neat): 2984, 1724, 1603, 1508, 1446, 1258, 1177, 1038, 815 cm<sup>-1</sup>. HRMS (ESI-TOF) *m*/*z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>2</sub> 334.1802, found 334.1807.

3-(4-Methoxyphenyl)-2,2-di-p-tolylpropanal (3q). Compound 3q was prepared according to the general procedure A by treating enol ether 1q (95 mg, 0.4 mmol, 1.0 equiv) and 2a portionwise (110 mg,

0.8 mmol, 2.0 equiv) in 1,2-DCE (2 mL) for 5 h. Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound 3**q** as a colorless solid (96 mg, 70%). Mp = 94–95 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.77 (s, 1 H), 7.09 (d, *J* = 7.8 Hz, 4 H), 6.96 (d, *J* = 7.8 Hz, 4 H), 6.66–6.44 (m, 4 H), 3.71 (s, 3 H), 3.58 (s, 2 H), 2.33 (s, 6 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  198.3, 157.8, 137.05, 136.9, 131.9, 130.2, 129.3, 129.1, 128.9, 112.8, 64.7, 55.1, 39.7, 21.0. IR  $\nu_{max}$  (neat): 2934, 1720, 1609, 1510, 1454, 1244, 1179, 1033, 815 cm<sup>-1</sup>. HRMS (ESI-TOF) *m*/*z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>24</sub>H<sub>28</sub>NO<sub>2</sub> 362.2115, found 362.2115.

2,2,3-Tris(4-methoxyphenyl)propanal (3r). Compound 3r was prepared according to the general procedure A by treating enol ether 1r (108 mg, 0.4 mmol, 1.0 equiv) and 2a portionwise (110 mg, 0.8 mmol, 2.0 equiv) in 1,2-DCE (2 mL) for 5 h. Purification of the crude material by silica gel column chromatography using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound 3r as a colorless liquid (60 mg, 40%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.73 (s, 1 H), 6.99 (d, *J* = 8.3 Hz, 4 H), 6.82 (d, *J* = 8.8 Hz, 4 H), 6.64–6.56 (m, 4 H), 3.79 (s, 6 H), 3.71 (s, 3 H), 3.56 (s, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  198.0, 158.7, 157.9, 131.9, 131.8, 130.5, 129.1, 128.6, 113.8, 113.2, 112.9, 64.0, 55.2, 55.2, 55.1, 40.0. IR  $\nu_{max}$  (neat): 2927, 1719, 1607, 1508, 1458, 1296, 1246, 1178, 1032, 827 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>25</sub>O<sub>4</sub> 377.1747, found 377.1749.

1,1,3-Tris(4-methoxyphenyl)propan-2-one (**3r**'). Colorless liquid (48 mg, 32%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.06–7.03 (m, 6H), 6.85–6.82 (m, 6H), 5.10 (s, 1H), 3.79 (s, 3H), 3.77 (s, 6H), 3.70 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.7, 158.7, 130.5, 130.0, 126.2, 114.1, 114.0, 113.7, 113.6, 60.9, 55.2, 48.5. IR  $\nu_{max}$  (neat): 2942, 1710, 1606, 1510, 1459, 1249, 1175, 1032, 822 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>25</sub>O<sub>4</sub> 377.1747, found 377.1755.

1-(4-Methoxybenzyl)cyclohexanecarbaldehyde (3s). Compound 3s was prepared according to the general procedure A by treating enol ether 1s (44 mg, 0.4 mmol, 1.0 equiv) and 2a portionwise (110 mg, 0.8 mmol, 2.0 equiv) in 1,2-DCE (2 mL) for 5 h. Purification of the crude material by silica gel column chromatography using petroleum ether as an eluent furnished the compound 3s as a colorless liquid (39 mg, 42%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ = 9.53 (s, 1 H), 7.04–6.93 (m, 2 H), 6.89–6.67 (m, 2 H), 3.79 (s, 3 H), 2.69 (s, 2 H), 2.00–1.87 (m, 2 H), 1.64 (d, J = 3.9 Hz, 3 H), 1.38–1.20 (m, 5 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 207.5, 158.3, 131.1, 128.2, 113.5, 55.1, 50.7, 42.6, 31.1, 25.6, 22.7. IR ν<sub>max</sub> (neat): 2928, 1697, 1607, 1508, 1452, 1245, 1179, 1034, 824 cm<sup>-1</sup>. HRMS (ESI-TOF) *m*/*z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>15</sub>H<sub>24</sub>NO<sub>2</sub> 250.1802, found 250.1807.

1-(4-Methoxybenzyl)cycloheptanecarbaldehyde (**3t**). Compound **3t** was prepared according to the general procedure A by treating enol ether **1t** (50 mg, 0.4 mmol, 1.0 equiv) and **2a** portionwise (110 mg, 0.8 mmol, 2.0 equiv) in 1,2-DCE (2 mL) for 5 h. Purification of the crude material by silica gel column chromatography using petroleum ether as an eluent furnished the compound **3t** as a colorless liquid (42 mg, 43%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.55 (s, 1 H), 7.10–6.89 (m, 2 H), 6.89–6.70 (m, 2 H), 3.79 (s, 3 H), 2.73 (s, 2 H), 1.95–1.83 (m, 2 H), 1.61–1.41 (m, 10 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.5, 158.2, 131.1, 128.9, 113.5, 55.1, 53.8, 42.8, 32.6, 30.4, 22.8. IR *ν*<sub>max</sub> (neat): 2925, 1702, 1612, 1512, 1452, 1246, 1034, 828 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>16</sub>H<sub>26</sub>NO<sub>2</sub> 264.1958, found 264.1944.

General Procedure B for the Synthesis of Compound 4. To a stirred solution of compound 1 (0.4 mmol, 1.0 equiv) and 2 (0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL) was added BF<sub>3</sub>·OEt<sub>2</sub> (0.6 mmol, 1.5 equiv) at room temperature and stirred at 50 °C in an oil bath until complete conversion of starting material (monitored by TLC) for 6–12 h. After completion of the reaction, it was diluted with saturated aqueous NaHCO<sub>3</sub> (2 mL), and the aqueous layer was extracted with dichloromethane (2 × 10 mL). The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, solvent was evaporated at reduced pressure, and the product was isolated by using column chromatography (ethyl acetate in petroleum ether).

1,3-Bis(4-methoxyphenyl)butan-2-one (4a). Compound 4a was prepared according to the general procedure B by treating enol ether 1a (71 mg, 0.4 mmol, 1.0 equiv) and 2a (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL) for 6 h. Purification of the crude material by silica gel column chromatography using 4% ethyl acetate in petroleum ether (4/100) as an eluent furnished the compound 4a as a colorless liquid (83 mg, 73%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.11 (d, *J* = 8.8 Hz, 2 H), 6.97 (d, *J* = 8.8 Hz, 2 H), 6.88 (d, *J* = 8.8 Hz, 2 H), 6.82 (d, *J* = 8.8 Hz, 2 H), 3.81 (s, 3 H), 3.79–3.74 (m, 4 H), 3.56 (s, 2 H), 1.33 (d, *J* = 6.8 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  208.7, 158.7, 158.5, 132.4, 130.4, 129.0, 126.5, 114.3, 114.0, 55.3, 55.2, 50.9, 46.9, 17.7. IR  $\nu_{max}$  (neat): 2933, 1711, 1607, 1510, 1459, 1247, 1176, 1032, 830 cm<sup>-1</sup>. HRMS (ESI-TOF) *m*/*z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>18</sub>H<sub>24</sub>NO<sub>3</sub> 302.1751, found 302.1749.

3-(3,4-Dimethoxyphenyl)-1-(4-methoxyphenyl)butan-2-one (4b). Compound 4b was prepared according to the general procedure B by treating enol ether 1d (83 mg, 0.4 mmol, 1.0 equiv) and 2a (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL) for 7 h. Purification of the crude material by silica gel column chromatography using 4% ethyl acetate in petroleum ether (4/100)as an eluent furnished the compound 4b as a colorless liquid (84 mg, 67%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>2</sub>)  $\delta = 6.98-6.94$  (m, 2 H), 6.85-6.79 (m, 3 H), 6.77-6.74 (m, 1 H), 6.61 (d, J = 2.0 Hz, 1 H), 3.88 (s, 3 H), 3.83 (s, 3 H), 3.79 (s, 3 H), 3.77 (s, 1 H), 3.57 (s, 2 H), 1.34 (d, J = 6.9 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz,  $CDCl_3$ )  $\delta$  208.6, 158.5, 149.3, 148.2, 132.9, 130.4, 126.5, 120.3, 114.0, 111.5, 110.9, 55.9, 55.8, 55.2, 51.4, 47.0, 17.6. IR  $\nu_{\text{max}}$  (neat): 2942, 1710, 1600, 1513, 1454, 1252, 1159, 1029, 816 cm<sup>-</sup> . HRMS (ESI-TOF) m/z:  $[M + Na]^+$  calcd for  $C_{19}H_{22}O_4Na$  337.1410, found 337,1401

1,3-Bis(4-methoxyphenyl)propan-2-one (4c). Compound 4c was prepared according to the general procedure B by treating enol ether 1n (500 mg, 3.048 mmol, 1.0 equiv) and 2a (631 mg, 4.572 mmol, 1.5 equiv) in 1,2-DCE (15 mL) for 12 h. Purification of the crude material by silica gel column chromatography using 10% ethyl acetate in petroleum ether (10/100) as an eluent furnished the compound 4c as a light yellow solid (440 mg, 53%). Mp = 84–86 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.07–7.04 (m, 4H), 6.86–6.84 (m, 4H), 3.79 (s, 6H), 3.64 (s, 4H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 206.5, 158.6, 130.5, 126.1, 114.1, 55.2, 48.0. IR ν<sub>max</sub> (neat): 2937, 1707, 1610, 1511, 1250, 1176, 1033, 826, 730 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z:  $[M + H]^+$  calcd for C<sub>17</sub>H<sub>19</sub>O<sub>3</sub> 271.1329, found 271.1330.

1,3-Bis(4-methoxyphenyl)pentan-2-one and 2-(4-Methoxybenzyl)-1-(4-methoxyphenyl)butan-1-one (4e and 4e'). Compounds 4e and 4e' were prepared according to the general procedure B by treating enol ether 10 (77 mg, 0.4 mmol, 1.0 equiv) and 2a (55 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL) for 7 h. Purification of the crude material by silica gel column chromatography using 4% ethyl acetate in petroleum ether (4/100) as an eluent furnished the compound 4e and 4e' as a colorless liquid (86 mg, 72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.11–7.07 (m, 4 H), 6.99–6.93 (m, 4 H), 6.87-6.78 (m, 7 H), 6.73 (d, J = 8.8 Hz, 1 H), 3.79 (s, 4 H), 3.77 (s, 6 H), 3.74 (s, 2 H), 3.57–3.52 (m, 4 H), 3.32 (dd, J = 7.8, 13.7 Hz, 1 H), 2.82 (dd, J = 7.1, 13.9 Hz, 1 H), 2.39 (dd, J = 7.3, 18.1 Hz, 1 H), 2.21 (dd, J = 7.3, 17.6 Hz, 1 H), 1.98 (dd, J = 6.8, 14.2 Hz, 1 H), 1.64 (td, J = 7.5, 13.8 Hz, 1 H), 0.89 (t, J = 7.1 Hz, 3 H), 0.74 (t, J = 7.3 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 210.9,208.2, 158.8, 158.7, 158.5, 157.9, 131.9, 130.8, 130.8, 130.5, 129.9, 129.5, 129.3, 126.3, 114.2, 114.2, 114.0, 113.6, 59.9, 58.6, 55.2, 55.2, 55.1, 47.8, 37.9, 35.5, 25.3, 11.9, 7.8. IR  $\nu_{\text{max}}$  (neat): 2960, 1704, 1512, 1258, 1177, 1136, 895, 826 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z:  $[M + H]^+$  calcd for  $C_{19}H_{23}O_3$  299.1642, found 299.1649

(2-(4-Methoxyphenyl)-2-methyl-3-(2,4,5-trimethoxyphenyl)propanal (**3aa**). Compound **3aa** was prepared according to the general procedure A by treating enol ether **1a** (71 mg, 0.4 mmol, 1.0 equiv) and **2aa** (79 mg, 0.4 mmol, 1.0 equiv) in 1,2-DCE (2 mL) for 24 h. Purification of the crude material by silica gel column chromatography using 4% ethyl acetate in petroleum ether (4/100) as an eluent furnished the compound **3aa** as a colorless liquid (77 mg, 56%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.58 (s, 1 H), 7.16 (d, *J* = 8.8 Hz, 2 H), 6.90 (d, *J* = 8.8 Hz, 2 H), 6.45 (s, 1 H), 6.19 (s, 1 H), 3.85 (s, 3 H), 3.79 (s, 3 H), 3.69 (s, 3 H), 3.60 (s, 3 H), 3.42 (s, 3 H), 3.44 (d, *J* = 13.6 Hz, 1 H), 2.87 (d, *J* = 13.6 Hz, 1 H), 1.30 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  202.0, 158.7, 151.8, 148.2, 142.2, 132.2, 128.6, 116.6, 115.8, 114.0, 97.1, 56.2, 56.0, 55.9, 55.3, 54.5, 35.7, 18.2. IR  $\nu_{max}$  (neat): 2934, 1714, 1514, 1504, 1211, 1034, 864 cm<sup>-1</sup>. HRMS (ESI-TOF) *m*/*z*: [M + H]<sup>+</sup> calcd for C<sub>20</sub>H<sub>25</sub>O<sub>5</sub> 345.1697, found 345.1696.

Synthesis of Propterol A. Step 1. 1,3-Bis(4-methoxyphenyl)propan-2-ol (5). To a solution of compound 4c (100 mg, 0.370 mmol) in dry MeOH was added NaBH<sub>4</sub> (42 mg, 1.110 mmol) portionwise at 0 °C, and the resulting reaction mixture was stirred at 40 °C in an oil bath for 12 h. After complete conversion of starting material (monitored by TLC), the reaction mixture solvent was evaporated under reduced pressure and diluted with cold water, and the aqueous layer was extracted with  $CH_2Cl_2$  (2 × 10 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography. White solid (94 mg, 93%), mp = 57-59 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.14 (d, J = 8.8 Hz, 4 H), 6.85 (d, J = 8.8 Hz, 4 H), 4.00–3.89 (m, 1 H), 3.79 (s, 6 H), 2.79 (dd, J = 4.9, 13.7 Hz, 2 H), 2.68 (dd, J = 8.1, 13.9 Hz, 2 H).  $^{13}C{^{1}H}$  NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.3, 130.5, 130.4, 114.0, 73.8, 55.3, 42.4.

*Step 2* (6). Propterol A was obtained by demethylation of the compound 5 (94 mg, 0.3455 mmol, 1.0 equiv) by using a 1.0 M solution of BBr<sub>3</sub> (1.4 mL, 1.382 mmol, 4.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> at -78 °C to room temperature for 16 h. Colorless needle-like prisms (40 mg, 47%), mp = 170–172 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  = 9.29 (br. s., 2 H), 7.05 (d, *J* = 8.4 Hz, 4 H), 6.71 (d, *J* = 8.4 Hz, 4 H), 4.50–4.41 (m, 1 H), 3.13 (dd, *J* = 4.9, 14.7 Hz, 2 H), 2.93 (dd, *J* = 8.6, 14.4 Hz, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  155.3, 130.1, 129.7, 114.8, 72.8, 42.2. HRMS (ESI-TOF) *m/z*: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>3</sub> 262.1438, found 262.1430. Data reported here is identical with literature reported data.<sup>1c</sup>

Procedure for Synthesis of (+)-Tetrahydronyasol. Step 1. 1,3-Bis(4-methoxyphenyl)pentan-2-one (4e). To a stirred solution of compound 4c (100 mg, 0.370 mmol, 1.0 equiv) in DMF was added NaH (35 mg, 1.481 mmol, 4.0 equiv) at 0 °C, followed by dropwise addition of iodoethane (92 mg, 0.592 mmol, 1.6 equiv). The solution was stirred for 1 h, and the reaction mixture was quenched with saturated aqueous NH4Cl. The aqueous solution was extracted with  $2 \times 10$  mL of EtOAc. The combined organic extracts were dried over Na2SO4, filtered, and concentrated under reduced pressure. Purification of the crude material by silica gel column chromatography using 4% ethyl acetate in petroleum ether (4/100) as an eluent furnished the desired compound as a colorless liquid (62 mg, 56%). <sup>1</sup>H NMR (400 MHz,  $CDCl_3$ )  $\delta = 7.11-7.07$  (m, 2 H), 6.98-6.95 (m, 2 H), 6.88-6.79 (m, 4 H), 3.79 (s, 6 H), 3.57-3.53 (m, 3 H), 1.98 (dd, J = 6.8, 14.2 Hz, 1 H), 1.64 (td, J = 7.5, 13.8 Hz, 1 H), 0.74 (t, J = 7.3 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz,  $CDCl_3$ )  $\delta$  208.3, 158.8, 158.5, 130.8, 130.5, 129.5, 126.4, 114.3, 114.0, 58.6, 55.3, 55.2, 47.8, 25.3, 12.0. IR  $\nu_{max}$  (neat): 2924, 1697, 1603, 1511, 1252, 1174, 1032, 826 cm<sup>-1</sup>. HR-MS (ESI-TOF) m/z:  $[M + Na]^+$  calcd for  $C_{19}H_{22}O_3Na$  321.1461, found 321.1457.

Step 2. Synthesis of Compound 4,4'-(Pentane-1,3-diyl)bis-(methoxybenzene) (7). To a solution of compound 4e (30 mg, 0.1 mmol, 1.0 equiv) in dichloromethane were added BF<sub>3</sub>·OEt<sub>2</sub> (57 mg, 0.4 mmol, 4.0 equiv) and triethylsilane (46 mg, 0.4 mmol, 4.0 equiv) at room temperature and the mixture stirred for 12 h. After complete conversion of the reaction, as monitored by TLC, the crude mixture was directly loaded in column chromatography for further purification using 2% ethyl acetate in petroleum ether (2/ 100) as an eluent to furnish the compound 7 as a colorless liquid (23 mg, 80%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.07 (d, J = 8.3 Hz, 2 H), 7.01 (d, J = 8.8 Hz, 2 H), 6.85 (d, J = 8.8 Hz, 2 H), 6.79 (d, J = 8.8 Hz, 2 H), 3.79 (s, 3 H), 3.76 (s, 3 H), 2.42–2.31 (m, 3 H), 1.96–1.87 (m, 1 H), 1.85–1.75 (m, 1 H), 1.68–1.60 (m, 1 H), 1.56–1.47 (m, 1 H), 0.74 (t, J = 7.3 Hz, 3 H).  $^{13}C{^{1}H}$  NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  157.8, 137.5, 134.8, 130.0, 129.2, 128.7, 113.7, 113.6, 113.5, 55.3, 55.2, 55.2, 46.4, 38.6, 32.9, 30.0, 12.1. IR  $\nu_{max}$  (neat): 2926, 1510, 1245, 1176, 1036, 824 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + NH<sub>4</sub>]<sup>+</sup> calcd for  $C_{19}H_{28}NO_2$  302.2115, found 302.2105

Step 3. Synthesis of (±)-Tetrahydronyasol (8). Demethylation of compound 7 was done by following the known literature method.<sup>3a</sup> A 1.0 M solution of BBr<sub>3</sub> in dichloromethane was added dropwise to a solution of compound 8 (20 mg, 0.07 mmol) in dichloromethane at -78 °C to room temperature for 20 h. White solid (18 mg, 99%), mp = 103–105 °C (lit.<sup>3a</sup> mp 102–103 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.96 (d, *J* = 8.3 Hz, 2 H), 6.90 (d, *J* = 8.3 Hz, 2 H), 6.78 (d, *J* = 8.3 Hz, 2 H), 6.72 (d, *J* = 8.3 Hz, 2 H), 6.31 (br. s., 2 H), 2.35–2.26 (m, 3 H), 1.91–1.80 (m, 1 H), 1.78–1.68 (m, 1 H), 1.67–1.60 (m, 1 H), 1.52–1.39 (m, 1 H), 0.70 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.6, 153.4, 137.7, 135.0, 130.2, 129.4, 128.9, 115.2, 115.1, 115.1, 46.4, 38.5, 32.9, 30.0, 12.1. IR  $\nu_{max}$  (neat): 3310, 2923, 1605, 1508, 1449, 1336, 1224, 825 cm<sup>-1</sup>. HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>21</sub>O<sub>2</sub> 257.1536, found 257.1525.

1,3-Bis(4-methoxyphenyl)propane (9). Compound 9 was prepared according to the procedure for 7 using compound 4c (20 mg, 0.074 mmol, 1.0 equiv) in dichloromethane, BF<sub>3</sub>·OEt<sub>2</sub> (42 mg, 0.296 mmol, 4.0 equiv) and triethylsilane (34 mg, 0.296 mmol, 4.0 equiv) were added at room temperature, and the mixture was stirred for 12 h. After complete conversion of the reaction, as monitored by TLC, the crude mixture was directly loaded in column chromatography for further purification using 2% ethyl acetate in petroleum ether (2/100) as an eluent furnished the compound 9 as a colorless solid (17 mg, 90%). Mp = 41–43 °C. <sup>1</sup>H  $\hat{N}MR$  (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.16–7.00 (m, 4 H), 6.90–6.68 (m, 4 H), 3.78 (s, 6 H), 2.70–2.50 (m, 4 H), 1.88 (t, J = 7.6 Hz, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 157.7, 134.5, 129.3, 113.7, 55.3, 34.5, 33.4. IR $\nu_{\rm max}$  (neat): 2929, 1610, 1510, 1456, 1243, 1177, 1036, 822 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + NH<sub>4</sub>]<sup>+</sup> calcd for C<sub>17</sub>H<sub>24</sub>NO<sub>2</sub> 274.1802, found 274.1797.

Gram-Scale Synthesis of the Product (3o). To a stirred solution of compounds 10 (1.0 g, 5.181 mmol, 1.0 equiv) and 2a (0.715 g, 5.181 mmol, 1.0 equiv) in 1,2-DCE (20 mL) was added ZnBr<sub>2</sub> (1.165 g, 5.181 mmol, 1.0 equiv) at room temperature and the mixture stirred for 6 h. After the reaction completed, it was diluted with water and the aqueous layer was extracted with dichloromethane. All organic layers were dried over  $Na_2SO_4$ , solvent was evaporated at reduced pressure, and the product was isolated by using column chromatography 4% ethyl acetate in petroleum ether (4/100) as an eluent to give 3o as a colorless liquid (998 mg, 65%).

#### ASSOCIATED CONTENT

#### **S** Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.9b02064.

Copies NMR spectra for all synthesized compounds (1c, 3a-3t, 3aa, 4a-4e, 5, 6, 7, 8, 9) (PDF)

#### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: faiz@iith.ac.in. Tel: (040) 2301 6084.

## ORCID 💿

Faiz Ahmed Khan: 0000-0001-8057-8117

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

We gratefully acknowledge the Department of Science and Technology, Science and Engineering Research Board (SERB), India, for financial support. T.K.J. thanks MHRD, India, for the award of a research fellowship.

### REFERENCES

(1) (a) Rao, A. V. S.; Mathew, J.; Sankaram, A. V. B. Propterol: A 1,3-Diarylpropan-2-ol from Pterocarpus Marsupium. *Phytochemistry* **1984**, 23, 897. (b) Kijjoa, A.; Giesbrecht, A. M.; Gottlieb, O. R.; Gottlieb, H. E. 1,3-Diaryl-propanes and Propan-2-ols from Virola Species. *Phytochemistry* **1981**, 20, 1385. (c) Maurya, R.; Ray, A. B.; Chattopadhyay, S. K.; Duah, F. K.; Lin, M. C.; Slatkin, D. J.; Schiff, P. L., Jr The Synthesis of Propterol, A Novel 1,3-Diarylpropan-2-ol from Pterocarpus Marsupium. *J. Nat. Prod.* **1985**, 48, 313.

(2) Fang, Y.; Park, H. Practical Synthesis of (±) Nysol. Synth. Commun. 2015, 45, 137.

(3) (a) Quan, W. G.; Yu, B. X.; Zhang, J. Y.; Liang, Q. R.; Sun, Y. Q.; She, X. G.; Pan, X. F. A Facile Approach to Synthesis of Di-O-Methyl Ethers of (-)-Agatharesinol, (-)-Sugiresinol, (+)-Nyasol and (+)-Tetrahydronyasol. *Chin. J. Chem.* **2007**, *25*, 688. (b) Marini-Bettolo, G. B.; Nicoletti, M.; Messana, I.; Galeffi, C.; Msonthi, J. D.; Chapya, W. A. Glucosides of Hypoxis Nyasica Bax. The Structure of Nyasoside, a New Glucoside Biologically Related to Hypoxoside. *Tetrahedron* **1985**, *41*, 665.

(4) Lassen, P. R.; Skytte, D. M.; Hemmingsen, L.; Nielsen, S. F.; Freedman, T. B.; Nafie, L. A.; Christensen, S. B. Structure and Absolute Configuration of Nyasol and Hinokiresinol Via Synthesis and Vibrational Circular Dichroism Spectroscopy. *J. Nat. Prod.* 2005, 68, 1603.

(5) Wang, P. S.; Zhou, X. L.; Gong, L. Z. An Organocatalytic Asymmetric Allylic Alkylation Allows Enantioselective Total Synthesis of Hydroxymetasequirin-A and Metasequirin-B Tetramethyl Ether Diacetates. *Org. Lett.* **2014**, *16*, 976.

(6) (a) Gutierrez-Bonet, A.; Flores-Gaspar, A.; Martin, R. Fecatalyzed Regiodivergent [1,2]-Shift of  $\alpha$ -Aryl Aldehydes. J. Am. Chem. Soc. **2013**, 135, 12576. (b) Olah, G. A.; Mathew, T.; Marinez, E. R.; Esteves, P. M.; Etzkkorn, M.; Rasul, G.; Prakash, G. K. S. Acid-Catalyzed Isomerization of Pivalaldehyde to Methyl Isopropyl Ketone via a Reactive Protosolvated Carboxonium Ion Intermediate. J. Am. Chem. Soc. **2001**, 123, 11556. (c) Prakash, G. K. S.; Mathew, T.; Marinez, E. R.; Esteves, P. M.; Rasul, G.; Olah, G. A. BF<sub>3</sub>.2CF<sub>3</sub>CH<sub>2</sub>OH (BF<sub>3</sub>.2TFE), an Efficient Superacidic Catalyst for Some Organic Synthetic Transformations. J. Org. Chem. **2006**, 71, 3952. (d) Davies, H. M. L.; Dai, X. Lewis Acid Induced Tandem Diels-Alder Reaction/Ring Expansion as an Equivalent of a [4 + 3] Cycloaddition. J. Am. Chem. Soc. **2004**, 126, 2692.

(7) Wommack, A. J.; Kingsbury, J. S. Synthesis of Acyclic Ketones by Catalytic, Bidirectional Homologation of Formaldehyde with Nonstabilized Diazoalkanes. Application of a Chiral Diazomethyl-(pyrrolidine) in Total Syntheses of Erythroxylon Alkaloids. *J. Org. Chem.* **2013**, *78*, 10573.

(8) Tran, K.-V.; Bickar, D. Dakin-West Synthesis of  $\alpha$ -Aryl Ketones. J. Org. Chem. **2006**, 71, 6640.

(9) Potter, R. G.; Hughes, T. S. Synthesis of Heterosubstituted Hexaarylbenzenes via Asymmetric Carbonylative Couplings of Benzyl Halides. Org. Lett. 2007, 9, 1187.

(10) (a) Su, W.; Raders, S.; Verkade, J. G.; Liao, X.; Hartwig, J. F. Pd-Catalyzed  $\alpha$ -Arylation of Trimethylsilyl Enol Ethers with Aryl Bromides and Chlorides: A Synergistic Effect of Two Metal Fluorides as Additives. Angew. Chem., Int. Ed. 2006, 45, 5852. (b) Reetz, M. T. Lewis Acid Induced  $\alpha$ -Alkylation of Carbonyl Compounds. Angew. Chem. 1982, 94, 97; Angew. Chem., Int. Ed. Engl. 1982, 21, 96. (c) Nishimoto, Y.; Onishi, Y.; Yasuda, M.; Baba, A.  $\alpha$ -Alkylation of Carbonyl Compounds to Enol Acetates. Angew. Chem., Int. Ed. 2009, 48, 9131. (d) Xing, C.; Sun, H.; Zhang, J.; Li, G.; Chi, Y. R. Bronsted Acid Catalyzed  $\alpha$ -Alkylation of Aldehydes with Diaryl Methyl Alcohols.

Chem. - Eur. J. 2011, 17, 12272. (e) Rubenbauer, P.; Bach, T. Chemo- and Diastereoselective Bi(OTf)<sub>3</sub>-Catalyzed Benzylation of Silyl Nucleophiles. *Tetrahedron Lett.* 2008, 49, 1305.

(11) (a) Kumar, R.; Van Der Eycken, E. V. Recent Approaches for C-C bond Formation via Direct Dehydrative Coupling Strategies. Chem. Soc. Rev. 2013, 42, 1121. Recent  $\alpha$ -alkylation on ketones: (b) Charvieux, A.; Giorgi, J. B.; Duguet, N.; Metay, E. Solvent-Free Direct  $\alpha$ -Alkylation of Ketones by Alcohols Catalyzed by Nickel Supported on Silica-Alumina. Green Chem. 2018, 20, 4210. (c) Das, J.; Vellakkaran, M.; Banerjee, D. Nickel- Catalyzed Alkylation of Ketone Enolates: Synthesis of Monoselective Linear Ketones. J. Org. Chem. 2019, 84, 769. (d) Genc, S.; Gunnaz, S.; Cetinkaya, B.; Gulcemal, S.; Gulcemal, D. Iridium(I)-Catalyzed Alkylation Reactions to Form  $\alpha$ -Alkylated Ketones. J. Org. Chem. 2018, 83, 2875. (e) Chakraborty, S.; Daw, P.; David, Y. B.; Milstein, D. Manganese-Catalyzed  $\alpha$ -Alkylation of Ketones, Esters, and Amides Using Alcohols. ACS Catal. 2018, 8, 10300. (f) Gawali, S. S.; Pandia, B. K.; Gunanathan, C. Manganese(I)-Catalyzed  $\alpha$ -Alkenvlation of Ketones Using Primary Alcohols. Org. Lett. 2019, 21, 3842.

(12) Selected references on  $\alpha$ -arylation of ketones: (a) Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. Highly Active and Selective Catalysts for the Formation of  $\alpha$ -Aryl Ketones. J. Am. Chem. Soc. **2000**, 122, 1360. (b) Kawatsura, M.; Hartwig, J. F. Simple, Highly Active Palladium Catalysts for Ketone and Malonate Arylation: Dissecting the Importance of Chelation and Steric Hindrance. J. Am. Chem. Soc. **1999**, 121, 1473. (c) Johansson, C. C. C.; Colacot, T. J. Metal-Catalyzed  $\alpha$ -Arylation of Carbonyl and Related Molecules: Novel Trends in C-C Bond Formation by C-H Bond Functionalization. Angew. Chem., Int. Ed. **2010**, 49, 676.

(13) Enantioselective protocols: (a) Spielvogel, D. J.; Buchwald, S. L. Nickel-BINAP Catalyzed Enantioselective  $\alpha$ -Arylation of  $\alpha$ -Substituted  $\gamma$ -Butyrolactones. J. Am. Chem. Soc. **2002**, 124, 3500. (b) Hamada, T.; Chieffi, A.; Ahman, J.; Buchwald, S. L. An Improved Catalyst for the Asymmetric Arylation of Ketone Enolates. J. Am. Chem. Soc. **2002**, 124, 1261. (c) Ahman, J.; Wolfe, J. P.; Troutman, M. V.; Palucki, M.; Buchwald, S. L. Asymmetric Arylation of Ketone Enolates. J. Am. Chem. Soc. **1998**, 120, 1918.

(14) For reviews on enamine catalysis, see: (a) List, B. The Ying and Yang of Asymmetric Aminocatalysis. *Chem. Commun.* 2006, 0, 819. (b) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Asymmetric Enamine Catalysis. *Chem. Rev.* 2007, 107, 5471. (c) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Asymmetric Aminocatalysis-Gold Rush in Organic Chemistry. *Angew. Chem.* 2008, 120, 6232; *Angew. Chem., Int. Ed.* 2008, 47, 6138. (d) Xu, L. W.; Luo, J.; Lu, Y. Asymmetric Catalysis with Chiral Primary Amine-Based Organocatalysts. *Chem. Commun.* 2009, 1807.

(15) List, B.; Coric, I.; Grygorenko, O. O.; Kaib, P. S. J.; Komarov, I.; Lee, A.; Leutzsch, M.; Pan, S. C.; Tymtsunik, A. V.; Gemmeren, M. V. The Catalytic Asymmetric  $\alpha$ -Benzylation of Aldehydes. *Angew. Chem., Int. Ed.* **2014**, *53*, 282.

(16) Cozzi, P. G.; Benfatti, F.; Zoli, L. Organocatalytic Asymmetric Alkylation of Aldehydes by  $S_N$ 1-type Reaction of Alcohols. *Angew. Chem.* **2009**, 121, 1339; *Angew. Chem., Int. Ed.* **2009**, 48, 1313.

(17) Franzoni, I.; Guenee, L.; Mazet, C. A general Pd-Catalyzed  $\alpha$ and  $\gamma$ -Benzylation of Aldehydes for the Formation of Quaternary Centers. *Org. Biomol. Chem.* **2015**, *13*, 6338.

(18) Hodgson, D. M.; Charlton, A. Methods for Direct Generation of  $\alpha$ -Alkyl-Substituted Aldehydes. *Tetrahedron* **2014**, *70*, 2207.

(19) Du, S. Z.; Kuang, F.; Liu, Y.; Chen, Y. G.; Zhan, R. A New Dimeric DiarylPropane from Horsfieldia Tetratepala. *Nat. Prod. Res.* **2018**, *32*, 162.

(20) Lippincott, D. J.; Trejo-Soto, P. J.; Gallou, F.; Lipshutz, B. H. Copper-Catalyzed Oxidative Cleavage of Electron-Rich Olefins in Water at Room Temperature. *Org. Lett.* **2018**, *20*, 5094.

(21) Sorensen, U. S.; Bleisch, T. J.; Kingston, A. E.; Wright, R. A.; Johnson, B. G.; Schoepp, D. D.; Ornstein, P. L. Synthesis and Structure-Activity Relationship Studies of Novel 2-Diarylethyl Substituted (2-Carboxycycloprop-1-yl)glycines as High-Affinity Group II Metabotropic Glutamate Receptor Ligands. *Bioorg. Med. Chem.* 2003, 11, 197.

(22) Tian, G.; Fedoseev, P.; Van der Eycken, E. V. Hypervalent Iodine(III)-Mediated Cascade Cyclization of Propargylguanidines and Total Syntheses of Kealiinine B and C. *Chem. - Eur. J.* 2017, 23, 5224.

(23) Hoffmann, S.; Nicoletti, M.; List, B. Catalytic Asymmetric Reductive Amination of Aldehydes via Dynamic Kinetic Resolution. *J. Am. Chem. Soc.* **2006**, *128*, 13074.

(24) Chepiga, K. M.; Feng, Y.; Brunelli, N. A.; Jones, C. W.; Davies, H. M. L. Silica-Immobilized Chiral Dirhodium(II) Catalyst for Enantioselective Carbenoid Reactions. *Org. Lett.* **2013**, *15*, 6136.

(25) Reichardt, C.; Ferwanah, A. R.; Pressler, W.; Yun, K. Y. Syntheses with Aliphatic Dialdehydes, XXXVIII- Synthesis and Properties of Cycloalkylmalonaldehydes. *Liebigs Ann. Chem.* **1984**, .649