A New, Convenient Synthesis of Glafenine and Floctafenine

Gilbert Mouzin, Henri Cousse, Jean Marie Autin

Centre de Recherche Pierre Fabre, 17 Avenue Jean Moulin, F-81 106 Castres, France

Glafenine [α -glyceryl N-(7-chloro-4-quinolyl)-anthranilate; 5] and Floctafenine [α -glyceryl N-(8-trifluoromethyl-4-quinolyl)-anthranilate; 6] are the common, international, proprietry names of two analgesically active substances* with no anti-inflammatory action.

At present these compounds are prepared by the Allais method¹⁻⁵ [(a) and (b)] and by the milder Pavao method⁶ (c).

- (a) 4-Chloroquinoline undergoes condensation with methyl anthranilate, the resultant methyl ester is transesterified with glyceryl acetonide, and the acetonide moiety is hydrolysed.
- (b) Glyceryl acetonide is esterified by *o*-nitrobenzoyl chloride, the nitro group is reduced to an amino group, the resultant glyceryl acetonide anthranilate is condensed with 4-chloroquinoline, and the acetonide moiety is hydrolysed.
- (c) Glyceryl *o*-chlorobenzoate undergoes condensation with a 4-aminoquinoline.

Methods (a) and (b) are relatively long (4 stages) and Method (c) is not very competitive as the intermediates are expensive and/or difficult to prepare; also the aminoquinoline has only low reactivity. Thus, we have developed a more competitive synthesis, which may also be useful for industrial purposes, based on the new intermediate α -glyceryl anthranilate⁷ (3).

5 X = 7-Cl, Glafenine

6 $X = 8 - F_3C$, Floctafenine

January 1980 Communications 55

sis, in press.

Intermediate 3 is obtained in quantitative yield by reaction of the commercially available⁸ and readily available⁹ isatoic anhydride (1) with excess glycerol (2) in the presence of sodium hydroxide. The glycerol solution of 3 is then treated with 4,7-dichloroquinoline (4, X = 7-Cl) to give 5¹⁰ or with 4-chloro-8-trifluoromethylquinoline (4, X = 8-F₃C) to give 6¹¹.

α -Glyceryl Anthranilate (3):

Glycerol (2; 2.93 kg, 31.8 mol) and sodium hydroxide pellets (15.7 g, 0.39 mol) are charged into a 10 litre reactor. Isatoic anhydride (1; 510 g, 3.1 mol) is then added and the reaction mixture is slowly warmed to $60\,^{\circ}$ C. The evolved carbon dioxide is trapped by extractor and the mixture is heated at $80\,^{\circ}$ C for 1 h. At this stage the yield is quantitative and this glycerol solution can be used for the preparation of 5 and 6.

An analytical sample was obtained by evaporation of the glycerol under reduced pressure and chromatography of the residue on a column of silca gel with ethanol as eluent; m.p. 90 °C (recrystallised from 1:1 chloroform/ethanol).

C₁₀H₁₃NO₄ calc. C 56.86 H 6.20 N 6.63 (211.2) found 56.51 6.21 6.71

1.R. (KBr): ν =3500-3400 (NH₂); 3300 (OH); 1690 cm⁻⁻¹ (C · O). ¹H-N.M.R. (CD₃OH): δ =8.0-6.5 (m, 4H_{arom}); 4.8 (s, 4H); 4.4 (d, 2H); 4.0 (m, 1H); 3.7 ppm (d, 2H).

α -Glyceryl N-(7-Chloro-4-quinolyl)-anthranilate (5; Glafenine):

To a glycerol solution of 3 (\sim 2.8 l, corresponding to 654.7 g, 3.12 mol of 3), obtained as described above, is added 0.5 normal hydrochloric acid (6.63 l) and 4.7-dichloroquinoline (4; X = 7-Cl; 520 g, 2.63 mol). The reaction mixture is heated at 80 °C for 40 min, cooled to 20 °C, and transferred to a 20 litre vessel. The mixture is treated with 0.9 normal sodium hydroxide solution (6 l) and neutralisation is completed by addition of solid sodium hydrogen carbonate (\sim 50 g). Glafenine slowly crystallises out and is purified by recrystallisation from chloroform or by conversion to the hydrochloride and subsequent regeneration of the free base. The product is then dried in a vacuum oven (80 °C/15 torr) for 24 h; yield: 65-75%; m.p. 169-170 °C; Lit. 2 m.p. 170 °C.

I.R. (KBr): ν =3500, 3100 (OH+NH); 1680 (C O); 1620-1580 cm⁻¹ (C=C_{arom}).

¹H-N.M.R. (DMSO- d_6): $\delta = 8.7-7.0$ (m, $9H_{arom}$); 4.4 (d, 4H); 3.8 (m, 1H); 3.5 ppm (d, 2H).

α -Glyceryl N-(8-Trifluoromethyl-4-quinolyl)-anthranilate (6; Floctafenine):

To a glycerol solution of 3 (\sim 2.8 l, corresponding to 654.7 g, 3.12 mol of 3) obtained as described above, is added 1 normal hydrochloric acid (3.3 l) and 4-chloro-8-trifluoromethylquinoline (4; X = 8-F₃C; 530 g, 2.29 mol). The mixture is heated at 80 °C for 1 h, allowed to cool to room temperature, and neutralised by addition of 1 normal sodium hydrogen carbonate solution (\sim 4.5 l). The coarse Floctafenine crystallises out and is purified either by recrystallisation from 1:1 chloroform/ethanol or by conversion to the hydrochloride and regeneration of the free base; yield: 60–80%; m.p. 179–180 °C; Lit. ⁴ m.p. 180 °C. The I.R. and ¹H-N.M.R. spectra are identical to those of an authentic sample prepared by Method (a).

Received: July 23, 1979

0039-7881/80/0132-0055 \$ 03.00

- ⁵ A. Allais et al., Chim. Therap. 8, 154 (1973).
- ⁶ M. Pavao, M. Mladen, German Patent 2251646, C. R. C. (1972); C. A. 81, 25 400 (1974).
- G. Mouzin, H. Cousse, French Patent 2398719, Centre de Recherches Pierre Fabre (1977).
- ⁸ Prepared on an industrial scale by BASF, Ludwigshafen.
- D. R. Hill, W. A. Shire, U. S. Patent 3 324119, Maumee Chemical Co. Inc., (1967); C. A. 68, 2904 (1968).
 For a review on isatoic anhydride, see G. M. Coppola, Synthe-
- O S. Casadio, H. Cousse, P. Hascoet, G. Mouzin, French Patent 2398733, Centre de Recherches Pierre Fabre (1977).
- S. Casadio, H. Cousse, G. Mouzin, French Patent 2398734, Centre de Recherches Pierre Fabre (1977).

^{*} Trade names of commercial products: Glifanan, Glifan, Adalgur, Idarac marketed by Laboratoires Hoechst-Roussel.

A. Allais, J. Meier, Netherlands Patent 296 793, Roussel-Uclaf (1962); C. A. 64, 3504 (1966).

² A. Allais, G. Rousseau, P. Girault, J. Mathieu, *Chim. Therap.* 2, 65 (1966).

³ A. Allais, French Patent 1151280, Roussel-Uclaf (1967); C. A. 70, 68 195 (1969).

⁴ A. Allais, German Patent 1815467, Roussel-Uclaf (1969); C. A. 71, 91 340 (1969).