Generation and Reactions of Ammonium Ylides in Basic Two-Phase Systems: Convenient Synthesis of Cyclopropanes, Oxiranes and Alkenes Substituted with Electron-Withdrawing Groups

Andrzej Jończyk*, Anna Konarska

Warsaw University of Technology, Faculty of Chemistry, Koszykowa 75, 00-662 Warsaw, Poland Fax +48 (22) 628 2741; E-mail: anjon@pw.edu.pl *Received 29 April 1999*

Abstract: Quaternary ammonium salts 1 react with electrophilic alkenes 2, aromatic aldehydes 3 and alkylating agents 4, in the presence of 50% aq sodium hydroxide or powdered potassium carbonate, in dichloromethane, to form cyclopropanes 5, oxiranes 6 and alkenes 7, respectively, usually in high yields. A key-step of these transformations is the deprotonation of salts 1 which generates ammonium ylides 1^+ , undergoing further reactions.

Key words: quaternary ammonium salts, ammonium ylides, cyclopropanes, oxiranes, alkenes

Ammonium,¹ unlike phosphorus² ylides have attracted chemist's attention mainly because they undergo interesting sigmatropic rearrangements.³ Searching of the literature reveals that reactions of ammonium ylides with electrophiles like Michael acceptors, carbonyl compounds or alkylating agents etc., have not been sufficientexplored. Thus, an ylide generated lv from cyanomethyl(trimethyl)-ammonium iodide by means of sodium hydride in THF was allowed to react with chalcones, ethyl acrylate and cinnamate, to give the corresponding cyclopropanes in 21-86% yield.⁴ Pyridinium ylides formed from the corresponding salts,⁵ also resinbound ones,⁶ with triethylamine in ethanol⁵ or DMF,⁶ entered the reaction with methylidene malonate derivatives to afford functionalized cyclopropanes in good yields. However, these reactions are restricted to alkenes substituted with two electron-withdrawing groups (EWG). Furthermore, pyridinium ylides can also react as 1,3-dipoles with electrophilic alkenes.^{1,5,7} Reactions of alkyl halides and carbonyl compounds engage nucleophilic center of ammonium ylides affording functionalized ammonium salts.1

Now, we have found that reactions of ammonium ylides with electrophilic alkenes, aldehydes or alkyl halides open up a synthetically attractive approach to functionalized cyclopropanes, oxiranes and alkenes, respectively. Thus, ylides 1^+ generated from phenyl- **1a**, 2-thienyl- **1b** or 2methyl-1-propenyl- **1c** substituted salts,⁸ by means of 50% aq. sodium hydroxide (conditions A) or powdered potassium carbonate (conditions B), in dichloromethane, react with electrophilic alkenes **2** to form cyclopropanes **5**^{9,10} (Scheme 1, Table 1).

Cyclopropanes **5** were obtained in good to excellent yields as mixtures of Z and E isomers. In the case of perchlorate **1b** which is poorly soluble in dichloromethane, beneficial

Table 1Synthesis of cyclopropanes 5.

Entry	Substrates	Conditions	2/1	Time	Producta	Yield ^b
			(mol/mol)	(h)	Troduct	(%)
1	1a + 2a	Α	3	6	5aa	96¢
2	1a + 2b	В	5	7.5	5ab	80 d
3	1a + 2c	Α	3	7.5	5ac	91¢
4	1a + 2d	В	7	7.5	5ad	46
5	1a + 2e	в	5	3.5	5ae	90
6	1a + 2f	В	1	6	5af	60
7	1a + 2g	Α	0.5	3	5ag	60
8	1b + 2c	Α	3	6	5bc	84
9	1b + 2f	Be	1	2	5bf	79
10	1c + 2c	Α	1.5	4.5	5cc	82
11	1c + 2e	В	5	2.5	5ce	92

^a Mixtures of E and Z isomers. ^b Isolated yield. All compounds were identified by ¹H NMR, HRMS or elemental analyses. ^c Ref. 10. ^d Ref. 12. ^e With DMSO.

effect of DMSO under conditions B, was noticed. Conditions B are recommended for reactions with methyl acrylate (**2b**) and α,β-unsaturated carbonyl compounds **2d-f**, which under conditions A undergo undesired processes. Preliminary experiments indicated that the use of α- or βalkyl substituted electrophilic alkenes, significantly decrease the yields of the products.¹³

Stirring of salts **1a**,**c** with aromatic aldehydes under conditions A led to formation of substituted oxiranes **6**, in moderate yields (Scheme 1, Table 2). In all reactions, formation of significant amounts of decomposition products (dark material which remained on silica gel column) was observed. Furthermore, the mixtures from salt **1c** contained products of the Canizzaro reaction (in the case of **3a** benzyl alcohol and benzoic acid). ¹H NMR spectra of crude reaction mixtures from salt **1a** exhibit that only one, *Z* stereoisomer of **6** was produced. On the other hand, oxiranes **6ca** and **6cc** were formed as mixtures of *Z* and *E* isomers, the corresponding structures were ascribed as the result of NOE experiments.¹⁴ To the best of our knowledge, such an approach to the synthesis of oxiranes is unprecedented.^{9a,10,15}

Table 2 Synthesis of oxiranes 6.

Entry	Substratesa	3/1 (mol/mol)	Time (h)	Product	Yield ^d (%)
1	1a + 3a	1	20	6aa ^b	50e
2	1a + 3b	0.5	8	6ab ^b	46 ^e
3	1a + 3c	1	9	6ac ^b	47 ^f
4	1c + 3a	2	7	6ca ^c	52
5	1c + 3c	1	10	6cc ^c	32

^a All reactions were carried out under conditions A. ^b Pure (by ¹H NMR) Z isomers. ^c Z/E ca 2.5 (by ¹H NMR). ^d Isolated yield. All compounds were identified by ¹H NMR, HRMS or elemental analyses. ^e Ref. 16. ^f Ref. 10.

Hetaryl substituted salt **1b** did not form the corresponding oxirane when it was allowed to react with benzaldehyde (**3a**), but fumaronitrile derivative **8** was produced, instead. The same product was isolated when salt **1b** was stirred without aldehyde, under conditions A^{17} (Scheme 2).

Scheme 2

Finally, alkylation of salts **1a** and **1c** afforded alkenes, conjugated dienes or trienes, substituted with a cyano group **7** (Scheme 1, Table 3).

Except for **7ad** (Z isomer), all products were formed as mixtures of Z and E isomers. This reaction is restricted to active alkylating agents, like benzyl or allyl halides, and

Table 3 Synthesis of alkenes 7.

Entry	Substratesa	4/1 (mol/mol)	Time (h)	Product	Yield ^b (%)
1	1a + 4a	15	1.5	7aa	93
2	1a + 4b	5	3	7ab	94
3	1a + 4d	1	2.5	7ad	80c,d
4	1c + 4b	1	4	7cb	93
5	1c + 4c	1.25	7	7cc	72
6	1c + 4d	1	4	7cd	89e

^a All reactions were carried out under conditions A. ^b Isolated yields All compounds were identified by ¹H NMR, HRMS or elementa analyses. ^c Z isomer, in other cases mixtures of Z and E isomers ^d Ref. 19. ^e Ref. 20.

requires conditions A. Olefination of alkyl halides by means of ammonium ylides complements earlier methodologies which rely on use dimethylsulfonium methylide²¹ or triphenylarsonium alkylides.²² Reaction of salt **1b** with benzyl bromide (**4d**) again led to formation of dinitrile **8**, instead of the expected cyanoalkene.

The reactions reported above consist in deprotonation of salts 1, addition of ylides 1^{+-} to alkenes 2 or aldehydes 3, and cyclization of the betaines thus formed to cyclopropanes 5 and oxiranes 6, respectively. On the other hand, alkylation of ylides 1^{+-} with 4 produces alkylated salts which form alkenes 7 via base-mediated elimination of amine (Scheme 1). The reactions are very simple, consist in stirring of the salt 1 with electrophiles 2-4, usually used in excess, in a two-phase basic system, at ca 25 °C, and are exemplified by the synthesis of 5ac, 5bf, 6ac and 7cd.²³ This approach to products 5-7 is fully competitive with known methods, and is recommended for laboratory praxis.

Acknowledgement

We thank the State Committee for Scientific Research, Warszawa (Grant No. 3 T09A 082 11) for the financial support of this work.

References and Notes

- Zugrăvescu, I.; Petrovanu, M. *N-Ylid Chemistry*; Editura Academiei Republicii Socialiste România, Bucuresti and Mc Graw-Hill, New York, 1976.
- (2) Organophosphorus Reagents in Organic Synthesis, Codogan, J. I. G., Ed.; Academic Press, London-New York, 1979.
- (3) Pine, S. H. Org. React. 1970, 18, 403. Maeda, Y.; Shirai, N.; Sato, Y. J. Chem. Soc., Perkin Trans. 1 1994, 393 and the references cited therein. Zdrojewski, T.; Jończyk, A. J. Org. Chem. 1998, 63, 452 and the references cited therein.
- (4) Bhattacharjee, S. S.; Ila, H.; Junjappa, H. Synthesis 1982, 301.
- (5) Shestopalov, A. M.; Litvinov, V. P.; Rodinovskaya, L. A.; Sharanin, Yu. A. *Zh. Org. Khim.* **1991**, 146.
- (6) Vo, N. H.; Eyermann, Ch. J.; Hodge, C. N. Tetrahedron Lett. 1997, 38, 7951.
- (7) Cycloaddition of azomethine ylides: Lown, J. W. in *1,3-Dipolar Cycloaddition Chemistry*, Padwa, A., Ed.; John Wiley & Sons; New York, 1984, Vol. 1, p. 653.
- (8) The crystalline salts **1a,c** were prepared by reaction of the corresponding aminonitrile with methylsulfate, carried out at ca -10 °C. Oily methylsulfate of thienylaminonitrile was

- converted into crystalline perchlorate 1b with 60% aq HClO₄. **1a**:80%; mp 115–116 °C (AcOEt/AcMe ~ 1:3); ¹H NMR, δ (ppm, 200 MHz, CDCl₃):3.35 (9H, s, N⁺Me₃), 3.65 (3H, s, MeSO₄⁻), 6.60 (1H, s, CH), 7.45-7.60 (3H, m, ArH), 7.65-7.75 (2H, m, ArH). Calcd for C₁₂H₁₈N₂O₄S: C, 50.33; H, 6.34; N, 9.78. Found: C, 50.01; H, 6.39; N, 9.69. **1b**:91%; mp 169–171 °C (MeOH); ¹H NMR, δ (ppm, 200 MHz, DMSO-d₆):3.23 (9H, s, N+Me₃), 6.82 (3H, s, CH), 7.31 (1H, dd, *J* = 5.2 Hz, *J* = 3.7 Hz, ArH), 7.60 (1H, dd, *J* = 3.7 Hz, J = 1.2 Hz, ArH), 8.05 (1H, dd, J = 5.2 Hz, J = 1.2 Hz, ArH). Calcd for C₉H₁₃N₂O₄ClS: C, 38.51; H, 4.67; N, 9.98. Found: C, 38.52; H, 4.76; N, 9.90. 1c:84%; mp 99–101 °C (AcMe); ¹H NMR (ppm, 200 MHz, DMSO-d₆):1.84 (3H, d, J = 1.4 Hz, Me), 1.88 (3H, d, J = 1.2 Hz, Me), 3.15 (9H, s, N+Me₃), 3.38 (3H, s, MeSO₄⁻), 5.50-5.65 (1H, m, C=CH), 5.70-5.80 (1H, m, CH). Calcd for C₁₀H₂₀N₂O₄S: C, 45.44; H, 7.63; N, 10.60. Found: C, 45.49; H, 7.63; N, 10.57.
- (9) Cyclopropanes via conjugate addition-nucleophilic substitution:
 (a) Arseniyadis, S.; Kyler, K. S.; Watt, D. S. Org. React. 1984, 31, 1. (b) Zwanenburg, B.; De Kimpe, N. in Methods of Organic Chemistry (Houben-Weyl), de Meijere, A., Ed.; Georg Thieme Verlag; Stuttgart, New York, 1997, Vol E17a, p. 69.
- (10) Cyclopropanes and oxiranes substituted with EWG are conveniently synthesized via phase-transfer catalysed¹¹ (PTC) reactions of arylacetonitriles with carbon tetrachloride and electrophilic alkenes or aromatic aldehydes, respectively: Makosza, M.; Kwast, A.; Kwast, E.; Jończyk, A. J. Org. Chem. **1985**, 50, 3722. However, their scope is somewhat restricted, side reactions often accompany the main pathway, and the products are formed usually in 40–60% yields.
- (11) Dehmlow, E. V.; Dehmlow, S. S. *Phase Transfer Catalysis*; 3rd Ed.; Verlag Chemie, Weinheim, 1993. Starks, C. M.; Liotta, C. L.; Halpern, M. *Phase-transfer Catalysis*; Chapman & Hall; New York, London, 1994. Mąkosza, M.; Fedoryński, M. *Polish J. Chem.* **1996**, *70*, 1093. Mąkosza, M.; Fedoryński, M. in *Handbook of Phase Transfer Catalysis*; Sasson, Y.; Neumann, R., Eds.; Blackie Academic & Professional; London, 1997, p. 135.
- (12) Saegusa, T.; Yonezawa, K.; Murase, I.; Konoike, T.; Tomita, S.; Ito, Y. J. Org. Chem. **1973**, *38*, 2319.
- (13) For example, reaction of salt 1a with an excess of methacrylonitrile under conditions A, gives 1,2-dicyano-1methyl-2-phenylcyclopropane, in 27% yield.
- (14) Irradiation of signals of oxirane protons at $\delta = 4.10$ ppm or $\delta = 4.51$ ppm in *Z* and *E* isomers mixture of **6ca** resulted in increase of only one signal of olefinic protons at $\delta = 5.40 5.45$ ppm (m), namely from *Z*-isomer.
- (15) Syntheses of oxirane substituted with EWG: Ballester, M. *Chem. Rev.* 1955, 55, 283. Newman, M. S.; Magerlein, B. J. *Org. React.* 1957, 5, 413. Shibata, I.; Yamasaki, H.; Baba, A.; Matsuda, H. *J. Org. Chem.* 1992, 57, 6909 and the references cited therein.

- (16) McDonald, K. N.; Hill, D. G. J. Org. Chem. 1970, 35, 2942.
- (17) The formation of dinitrile 8 via carbanionic route (alkylation of ylide 1b⁺⁻ with 1b, followed by elimination of trimethylamine), as previously suggested for similar transformation of α-chloro(phenyl)acetonitrile in PTC system, ¹⁸ seems feasible. Alternatively, cleavage of ylide 1b⁺⁻ may generate cyano-2-thienyl carbene which after dimerization produces 8. However, our attempts to intercept this carbene with n-butylvinyl ether, failed.
- (18) Mąkosza, M.; Serafinowa, B.; Gajos, I. Roczniki Chem. 1969, 43, 671; Chem. Abstr. 1969, 71, 101 498.
- (19) Wawzonek, S.; Smolin, E. M. Org. Synth. **1955**, Coll. Vol. III, 715.
- (20) Janecki, T. Synthesis 1991, 167.
- (21) Alcaraz, L.; Harnett, J. J.; Mioskowski, C.; Martel, J. P.; Le Gall, T.; Shin, D.-S.; Falck, J. R. *Tetrahedron Lett.* **1994**, *35*, 5453.
- (22) Seyer, A.; Alcaraz, L.; Mioskowski, C. *Tetrahedron Lett.* 1997, 38, 7871.
- (23) 5ac: to a vigorously stirred solution of 1a (1.43 g, 5 mmol) in CH₂Cl₂ (20 mL), ester 2c (1.92 g, 15 mmol) then 50% aq. NaOH (7 mL) were added, and the mixture was stirred at RT for 7.5 h. The mixture was diluted with water, the phases were separated, the water phase was extracted with CH₂Cl₂, the combined organic extracts were washed with water, dried (MgSO₄), the product was purified by column chromatography on a short pad of silica gel (Merck Silica gel 60, finer than 230 mesh, eluent hexane-AcOEt, gradient) to give 1.10 g (91%) of oily 5ac (Table 1, Entry 3). **5bf**: the solution of **1b** (1.40 g, 5 mmol) in CH_2Cl_2 (60 mL) and DMSO (15 mL) was vigorously stirred while ketone 2f (0.66 g, 5 mmol) then powdered $K_2CO_3(6.9 \text{ g})$ were added. Stirring at RT was continued for 2 h, the reaction was worked up as described for **5ac**, and the product was purified by Kugelrohr distillation [bp 130-140 °C (oven)/0.15 Torr] to give 1.00 g (79%) of **5bf** (Table 1, Entry 9). 6ac: to vigorously stirred 1a (1.43 g, 5 mmol), aldehyde 3c (0.70 g, 5 mmol) and CH₂Cl₂ (30 mL), 50% aq NaOH (12 mL) was added, and stirring was continued at RT for 0.5 h and refluxed for 8.5 h. The mixture was worked up as described for 5ac, and the product was crystallized (MeOH) to give 0.60 g (47%) of 6ac, mp 111-113 °C (Table 2, Entry 3). 7cd: the solution of 1c (1.32 g, 5 mmol) in CH_2Cl_2 (20 mL) was vigorously stirred, bromide 4d (0.86 g, 5 mmol) then 50% aq NaOH (7 mL) were added (exothermal effect), reaction was continued for 4h, and worked up as described for 5ac. The product was purified by Kugelrohr distillation [bp 125-130 °C (oven)/0.03 Torr] to give 0.81 g (89%) of oily 7cd (Table 3, Entry 6).

Article Identifier:

1437-2096,E;1999,0,07,1085,1087,ftx,en;G21599ST.pdf