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Abstract: Quaternary ammonium salts 1 react with electrophilic
alkenes 2, aromatic aldehydes 3 and alkylating agents 4, in the pres-
ence of 50% aq sodium hydroxide or powdered potassium carbon-
ate, in dichloromethane, to form cyclopropanes 5, oxiranes 6 and
alkenes 7, respectively, usually in high yields. A key-step of these
transformations is the deprotonation of salts 1 which generates am-
monium ylides 1+–, undergoing further reactions.
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Ammonium,1 unlike phosphorus2 ylides have attracted
chemist’s attention mainly because they undergo interest-
ing sigmatropic rearrangements.3 Searching of the litera-
ture reveals that reactions of ammonium ylides with
electrophiles like Michael acceptors, carbonyl com-
pounds or alkylating agents etc., have not been sufficient-
ly explored. Thus, an ylide generated from
cyanomethyl(trimethyl)-ammonium iodide by means of
sodium hydride in THF was allowed to react with chal-
cones, ethyl acrylate and cinnamate, to give the corre-
sponding cyclopropanes in 21–86% yield.4 Pyridinium
ylides formed from the corresponding salts,5 also resin-
bound ones,6 with triethylamine in ethanol5 or DMF,6 en-
tered the reaction with methylidene malonate derivatives
to afford functionalized cyclopropanes in good yields.
However, these reactions are restricted to alkenes substi-
tuted with two electron-withdrawing groups (EWG). Fur-
thermore, pyridinium ylides can also react as 1,3-dipoles
with electrophilic alkenes.1,5,7 Reactions of alkyl halides
and carbonyl compounds engage nucleophilic center of
ammonium ylides affording functionalized ammonium
salts.1

Now, we have found that reactions of ammonium ylides
with electrophilic alkenes, aldehydes or alkyl halides open
up a synthetically attractive approach to functionalized
cyclopropanes, oxiranes and alkenes, respectively. Thus,
ylides 1+– generated from phenyl- 1a, 2-thienyl- 1b or 2-
methyl-1-propenyl- 1c substituted salts,8 by means of
50% aq. sodium hydroxide (conditions A) or powdered
potassium carbonate (conditions B), in dichloromethane,
react with electrophilic alkenes 2 to form cyclopropanes
59,10 (Scheme 1, Table 1).

Cyclopropanes 5 were obtained in good to excellent yields
as mixtures of Z and E isomers. In the case of perchlorate
1b which is poorly soluble in dichloromethane, beneficial
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effect of DMSO under conditions B, was noticed. Condi-
tions B are recommended for reactions with methyl acry-
late (2b) and a,b-unsaturated carbonyl compounds 2d-f,
which under conditions A undergo undesired processes.
Preliminary experiments indicated that the use of a- or b-
alkyl substituted electrophilic alkenes, significantly de-
crease the yields of the products.13

Stirring of salts 1a,c with aromatic aldehydes under con-
ditions A led to formation of substituted oxiranes 6, in
moderate yields (Scheme 1, Table 2). In all reactions, for-
mation of significant amounts of decomposition products
(dark material which remained on silica gel column) was
observed. Furthermore, the mixtures from salt 1c con-
tained products of the Canizzaro reaction (in the case of
3a benzyl alcohol and benzoic acid). 1H NMR spectra of
crude reaction mixtures from salt 1a exhibit that only one,
Z stereoisomer of 6 was produced. On the other hand, ox-
iranes 6ca and 6cc were formed as mixtures of Z and E
isomers, the corresponding structures were ascribed as the
result of NOE experiments.14 To the best of our know-
ledge, such an approach to the synthesis of oxiranes is un-
precedented.9a,10,15

Hetaryl substituted salt 1b did not form the corresponding
oxirane when it was allowed to react with benzaldehyde
(3a), but fumaronitrile derivative 8 was produced, instead.
The same product was isolated when salt 1b was stirred
without aldehyde, under conditions A17 (Scheme 2).

Scheme 2

Finally, alkylation of salts 1a and 1c afforded alkenes,
conjugated dienes or trienes, substituted with a cyano
group 7 (Scheme 1, Table 3).

Except for 7ad (Z isomer), all products were formed as
mixtures of Z and E isomers. This reaction is restricted to
active alkylating agents, like benzyl or allyl halides, and

requires conditions A. Olefination of alkyl halides by
means of ammonium ylides complements earlier method-
ologies which rely on use dimethylsulfonium methylide21

or triphenylarsonium alkylides.22 Reaction of salt 1b with
benzyl bromide (4d) again led to formation of dinitrile 8,
instead of the expected cyanoalkene.

The reactions reported above consist in deprotonation of
salts 1, addition of ylides 1+– to alkenes 2 or aldehydes 3,
and  cyclization  of  the  betaines  thus formed to cyclo-
propanes 5 and oxiranes 6, respectively. On the other
hand, alkylation of ylides 1+– with 4 produces alkylated
salts which form alkenes 7 via base-mediated elimination
of amine (Scheme 1). The reactions are very simple, con-
sist in stirring of the salt 1 with electrophiles 2-4, usually
used in excess, in a two-phase basic system, at ca 25 °C,
and are exemplified by the synthesis of 5ac, 5bf, 6ac and
7cd.23 This approach to products 5-7 is fully competitive
with known methods, and is recommended for laboratory
praxis.
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