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NOVEL ONE-POT SYNTHESIS FOR 2,5-DIARYL AND
5-ARYL-PYRIDAZIN-3(2H)-ONES

Mahantesha Basanagouda and Manohar V. Kulkarni
P. G. Department of Chemistry, Karnatak University, Dharwad,
Karnataka, India

GRAPHICAL ABSTRACT

Abstract A novel method for the synthesis of 2-phenyl-5-(o-hydroxyphenyl)-pyridazin-

3(2H)-ones and 5-(o-hydroxyphenyl)-pyridazin-3(2H)-ones has been found during

the reaction of 4-bromomethylcoumarins with phenylhydrazine and hydrazinehydrate,

respectively, under controlled alkaline conditions.

Keywords Coumarin; diphenyl; heterocycle; hydrazinehydrate; phenylhydrazine;

pyridazinone

INTRODUCTION

Pyridazine is an electron-deficient heterocyclic system isosteric with benzene
and other six-membered heterocycles. Derivatives of pyridazine have gained con-
siderable importance in the fields of medicine and agriculture.[1,2] Among the func-
tionalized pyridazines, the pyridazin-3(2H)-one moiety has been found to be a
part of clinically accepted cardiovascular[3,4] and anti-inflammatory[5–7] drugs. The
importance of pyridazin-3(2H)-ones in agriculture is best exemplified by established
weedicidal and muticidal agents such as chloridazon and pyridaben (Fig. 1).[8,9]

Earlier approaches to the pyridazine skeleton make use of 1,4-diketonyl com-
pounds and derivatives of hydrazine[10] to obtain a variety of functionalized pyrida-
zines. Introduction of the aryl moiety on the carbon skeleton in pyridazine has been
a challenge, which has been met by a variety of coupling reactions involving the use
of arylboronic acids, palladium complexes, and organotin compounds. It has been
the subject of an extensive review.[9,11] In addition to the stringent experimental
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conditions, all these methods of introduction of the aryl moiety require a preformed
pyridazine, preferentially a chloro pyridazine.

Recently we have reported the formation of 5-(o-hydroxyphenyl)-pyridazin-
3(2H)-ones from 4-bromomethylcoumarins, facilitating the introduction of a func-
tionalized aryl moiety at C-5 position in a single step.[12] In the present article, we
have found that in the presence of anhydrous potassium carbonate, phenylhydrazine
also reacts with 4-bromomethylcoumarins to yield 2,5-diaryl-pyridazin-3(2H)-ones.
Our earlier methodology of using hydrazinehydrate has been extended to other func-
tionalized bromomethylcoumarins, showing that 4-bromomethylcoumarins are good
synthons to introduce aryl groups on the pyridazine ring.

RESULTS AND DISCUSSION

The required substituted 4-bromomethylcoumarins[13] 1 were prepared by the
Pechmann cyclization of substituted phenols with 4-bromoethylacetoacetate[14] using
sulfuric acid as the condensing agent.

Initially, we extended our earlier method for the synthesis of 5-(o-hydroxy
phenyl)-pyridazin-3(2H)-ones from 4-bromomethylcoumarins by synthesizing newer
compounds (Table 1).[12] It was then thought to explore this method to synthesize
diaryl-pyridazin-3(2H)-ones by modifying the procedure (Scheme 1). We examined
the optimum reaction conditions for the reaction with 6-methyl-4-bromomethylcou-
marin 1h, and the results are summarized in Table 2. With 1 equivalent of K2CO3,
conversion of starting material 1h was the best (Table 2, entry 6). As a part of
ongoing efforts to synthesize 2-phenyl-5-aryl-pyridazin-3(2H)-ones, we have
attempted the reaction with 6-methyl-4-bromomethylcoumarin 1h and phenylhydra-
zine 4 as a model system. We first envisioned reaction conditions without any addi-
tives or catalyst; however, refluxing the equimolar amounts of starting materials 1h
and 4 in ethanol did not result in the formation of desired product 5h as monitored
by thin-layer chromatography (TLC) even after 24 h and longer (Table 2, entry 1).
Then we increased the amount of 4 in 2 and 5 equivalents refluxed for 8–24 h, which
resulted in formation of product 5h in 5% and 9% respectively (Table 2, entries 2
and 3). Increasing amounts of K2CO3 (0.25 equivalent) and (0.50 equivalent) as a
base increased the yields of the product 5h to 12% and 30% respectively (Table 2,
entries 4 and 5). With 1 equivalent of K2CO3, conversion of starting material 1h
and 4 took place quantitatively within 3 h. Product 5h was isolated after workup

Figure 1. Structures of chloridazon and pyridaben.
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in 75% yield (Table 2, entry 6). This result could not be improved with more K2CO3

(2 equivalents gave 74% yield). Having established the optimized reaction conditions,
a series of 2,5-diaryl-pyridazin-3(2H)-ones 5a–o were synthesized in good to excellent
yields, and the results are shown in Table 3. The electron-donating and

Table 1. Synthesis of 5-aryl substituted pyridazin-3(2H)-ones 3a–g

Entry Substrate Product Yield (%) Melting point (�C)

1 71 244

2 69 204

3 72 255

4 68 198

5 71 191

6 65 216

7 63 206
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D
ow

nl
oa

de
d 

by
 [

Il
lin

oi
s 

St
at

e 
U

ni
ve

rs
ity

 M
iln

er
 L

ib
ra

ry
] 

at
 0

8:
53

 1
0 

D
ec

em
be

r 
20

12
 



electron-withdrawing substituents on the coumarin ring did not profoundly affect
the efficiency of the reactions. In the case of strong electron-withdrawing groups,
such as a nitro group, somewhat lower yields were obtained (Table 3, entry 7).

The plausible mechanism for this conversion resembles that already reported
by our laboratory (Scheme 2).[12] The nucleophilic attack of phenyl hydrazine on
the lactone carbonyl and the C-4 methylene on 4-bromomethylcoumarins 1 is
equally probable, because excess of this reagent is employed and would produce a
hydrazino hydrazide B. The support for the initial allylic substitution product is
from our earlier observation that this reaction in acetic acid leads to the N-acetylated
product of the intermediate A, which has been isolated and characterized.[12] Hydra-
zine hydrate and other double nucleophiles such as amidines and thiourea are known
to bring about similar ring opening of coumarins, which have resulted in the forma-
tion of o-hydroxyphenyl substituted pyrazoles[15] and pyrimidines.[16] Further, an
intramolecular nucleophilic attack of the phenyl hydrazine on the carbonyl group
of the hydrazide followed by the expulsion of phenyl hydrazine results in the inter-
mediates C, which undergo in situ dehydrogenation to give pyridazinones 5.

Intramolecular expulsion of acetic acid hydrazide has been proposed in the for-
mation of 3-hydrazinopyridazinones.[17] The driving force for this nucleophilic sub-
stitution, followed by ring opening and ring closure (SNRORC), seems to be the
stability of the aromatic pyridazinones. Numbering of 3 and 5 are given in Scheme 3.

EXPERIMENTAL

Materials

All the starting materials and reagents were purchased from commercial sup-
pliers and used after further purification. Thin-layer chromatography (TLC) was

Table 2. Optimization of the reaction conditions for the synthesis of 5h

Entry Phenylhydrazine K2CO3 Time (h) Yield (%)

1 1 equivalent — 24 —

2 2 equivalents — 8 5

3 5 equivalents — 8 9

4 5 equivalents 0.25 equivalent 8 12

5 5 equivalents 0.50 equivalent 8 30

6 5 equivalents 1.00 equivalent 3 75

Scheme 1. Synthesis of phenyl pyridazin-3(2H)-ones 3 and 5.
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Table 3. Synthesis of 2,5-diaryl substituted pyridazin-3(2H)-ones 5a–o

Entry Substrate Product Yield (%) Melting point (�C)

1 71 201

2 73 195

3 75 212

4 76 184

5 76 188

6 70 208

7 66 170

(Continued )
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Table 3. Continued

Entry Substrate Product Yield (%) Melting point (�C)

8 75 226

9 74 244

10 78 224

11 72 169

12 71 270

13 70 237

14 68 192

15 71 258
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carried out on silica-gel plates obtained from Merck (Germany). The melting
points were determined by using a Shital melting-point apparatus and are uncor-
rected. All the compounds were analyzed satisfactorily for C, H, and N. Infrared
(IR) spectra (KBr disc) were recorded on a Nicolet-5700 Fourier transform (FT)–IR

Scheme 2. Plausible mechanism for the formation of 2,5-diaryl-pyridazin-3(2H)ones 5 from coumarins.

Scheme 3. Numbering of 3 and 5.
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spectrophotometer. 1H and 13C NMR spectra were recorded on Bruker 300- and
400-MHz spectrometer using CDCl3 as a solvent and tetramethylsilane (TMS) as
an internal standard. The chemical shifts are expressed in d ppm scale downfield
from TMS, and proton signals are indicated as s, singlet; d, doublet; t, triplet; and
m, multiplet. Autospec electron-impact mass spectrometer (70 ev) was used to record
mass spectra.

General Procedure for Synthesis of 5-Aryl-pyridazin-3(2H)-ones
(3a–g)

A mixture of subtituted-4-bromomethylcoumarin 1 (10mmol) was refluxed
with hydrazine hydrate 2 (99%) (50mmol) in ethanol (10mL) for 2 h. The reaction
mixture was cooled and poured on ice-cold water, and the separated solid 3 was fil-
tered off. It was washed several times with cold ethanol, dried, and recrystallized
from a suitable solvent.

Selected Data

5-(2-Hydroxy-phenyl)-pyridazin-3(2H)-one (3a). Colorless solid (ethanol),
mp 244 �C, yield 71%; IR (KBr, t in cm�1): 3210 (br), 1655 (pyridazinone C=O);
1H NMR (400MHz, DMSO): d 6.25 (s, 1H, C4-H of pyridazinone), 6.74–7.96 (m,
4H, Ar-H), 8.05 (s, 1H, C6-H of pyridazinone), 10.25 (s, 1H, NH, D2O exchange-
able), 12.60 (s, 1H, OH, D2O exchangeable). Anal. calc. for C10H8N2O2: C, 63.82;
H, 4.28; N, 14.89. Found: C, 63.71; H, 4.20; N, 14.82.

5-(2,4-Dihydroxy-phenyl)-pyridazin-3(2H)-one (3b). Colorless solid (etha-
nol), mp 204 �C, yield 69%; IR (KBr, t in cm�1): 3232 (br), 1645 (pyridazinone
C=O); 1H NMR (400MHz, DMSO): d 6.49 (s, 1H, C4-H of pyridazinone), 6.80
(s, 1H, C30-H), 6.94 (d, 1H, J¼ 7.34Hz, C50-H), 7.42 (d, 1H, J¼ 7.56Hz, C60-H),
8.09 (s, 1H, C6-H of pyridazinone), 10.30 (s, 1H, OH, D2O exchangeable), 10.92
(s, 1H, OH, D2O exchangeable). Anal. calc. for C10H8N2O3: C, 58.82; H, 3.95; N,
13.72. Found: C, 58.87; H, 4.03; N, 13.81.

5-(2-Hydroxy-4-methoxy-phenyl)-pyridazin-3(2H)-one (3c). Colorless
solid (ethanol), mp 255 �C, yield 72%; IR (KBr, t in cm�1): 3129 (br), 1652 (pyrida-
zinone C=O); 1H NMR (400MHz, DMSO): d 3.74 (s, 3H, OCH3), 6.52 (m, 2H,
C4-H of pyridazinone and C30-H), 6.91 (d, 1H, J¼ 7.38Hz, C50-H), 7.37 (d, 1H,
J¼ 7.60Hz, C60-H), 8.11 (s, 1H, C6-H of pyridazinone), 10.27 (s, 1H, NH, D2O
exchangeable), 12.84 (s, 1H, OH, D2O exchangeable). 13C NMR (100MHz, DMSO):
55.32, 113.42, 119.34, 121.63, 128.75, 130.21, 132.29, 148.57, 155.63, 156.31, 161.14;
LCMS m=z: 219 [Mþ 1]. Anal. calc. for C11H10N2O3: C, 60.55; H, 4.62; N, 12.84.
Found: C, 60.48; H, 4.70; N, 12.78.

5-(2-Hydroxy-4,6-dimethyl-phenyl)-pyridazin-3(2H)-one (3d). Colorless
solid (ethanol), mp 198 �C, yield 68%; IR (KBr, t in cm�1): 3188 (br), 1664 (pyrida-
zinone C=O); 1H NMR (400MHz, DMSO): d 2.25 (s, 3H, CH3), 2.29 (s, 3H, CH3),
6.16 (s, 1H, C4-H of pyridazinone), 6.55 (s, 1H, C30-H), 6.68 (s, 1H, C50-H), 8.00 (s,
1H, C6-H of pyridazinone), 10.22 (s, 1H, NH, D2O exchangeable), 12.36 (s, 1H, OH,
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D2O exchangeable). Anal. calc. for C12H12N2O2: C, 66.65; H, 5.59; N, 12.96. Found:
C, 66.56; H, 5.70; N, 12.79.

5-(2-Hydroxy-3,4-dimethyl-phenyl)-pyridazin-3(2H)-one (3e). Colorless
solid (ethanol), mp 191 �C, yield 71%; IR (KBr, t in cm�1): 3185 (br), 1659 (pyrida-
zinone C=O); 1H NMR (400MHz, DMSO): d 2.35 (s, 3H, CH3), 2.40 (s, 3H, CH3),
6.31 (s, 1H, C4-H of pyridazinone), 7.18 (d, 1H, J¼ 7.41Hz, C50-H), 7.49 (d, 1H,
J¼ 7.78Hz, C60-H), 8.12 (s, 1H, C6-H of pyridazinone), 10.24 (s, 1H, NH, D2O
exchangeable), 12.94 (s, 1H, OH, D2O exchangeable). Anal. calc. for C12H12N2O2:
C, 66.65; H, 5.59; N, 12.96. Found: C, 66.52; H, 5.71; N, 12.82.

5-(3-Chloro-6-hydroxy-2,4-dimethyl-phenyl)-pyridazin-3(2H)-one (3f).
Colorless solid (benzene), mp 216 �C, yield 65%; IR (KBr, t in cm�1): 3232 (br),
1645 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 2.24 (s, 3H, CH3), 2.28
(s, 3H, CH3), 6.14 (s, 1H, C4-H of pyridazinone), 6.51 (s, 1H, C30-H), 8.10 (s, 1H,
C6-H of pyridazinone), 10.21 (s, 1H, NH, D2O exchangeable), 12.68 (s, 1H, OH,
D2O exchangeable). Anal. calc. for C12H11ClN2O2: C, 57.49; H, 4.42; N, 11.17.
Found: C, 57.32; H, 4.34; N, 11.10.

5-(2-Hydroxy-4-methyl-3,5-dinitro-phenyl)-pyridazin-3(2H)-one (3g).
Yellow-colored solid (ethanol), mp 206 �C, yield 65%; IR (KBr, t in cm�1): 3212
(br), 1651 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 2.41 (s, 3H,
CH3), 6.28 (s, 1H, C4-H of pyridazinone), 7.55 (s, 1H, C60-H), 8.10 (s, 1H, C6-H
of pyridazinone), 10.28 (s, 1H, NH, D2O exchangeable), 12.62 (s, 1H, OH, D2O
exchangeable). Anal. calc. for C11H8N4O6: C, 45.21; H, 2.76; N, 19.17. Found: C,
45.10; H, 2.65; N, 19.06.

General Procedure for Synthesis of 2,5-Diaryl-pyridazin-3(2H)-ones
(5a–o)

K2CO3(10mmol) was added in ethanol (25mL) to a mixture of subtituted-
4-bromomethylcoumarin 1 (10mmol) and phenylhydrazine 4 (50mmol). The
reaction mixture was refluxed for 3 h, cooled, and poured on ice-cold water, and
the separated solid 5 was filtered off. It was washed several times with aqueous
ethanol, dried, and recrystallized from suitable solvent.

Selected Data

5-(2-Hydroxy-phenyl)-2-phenyl-pyridazin-3(2H)-one (5a). Colorless solid
(benzene), mp 201 �C, yield 71%; IR (KBr, t in cm�1): 3260 (OH), 1664 (pyridazi-
none C=O); 1H NMR (400MHz, DMSO): d 6.61 (s, 1H, C4-H of pyridazinone),
6.92 (t, 1H, J¼ 7.28Hz, C400-H), 7.16 (d, 2H, J¼ 7.60Hz, C300 and C500-H),
7.28–7.33 (m, 2H, Ar-H), 7.38 (d, 1H, J¼ 8.60Hz, Ar-H), 7.80 (d, 1H, J¼ 8.82Hz,
Ar-H), 8.10 (s, 1H, C6-H of pyridazinone), 8.38 (d, 1H, J¼ 9.50Hz, Ar-H), 8.53 (d,
1H, J¼ 8.90Hz, Ar-H), 11.30 (s, 1H, OH, D2O exchangeable). Anal. calc. for
C16H12N2O2: C, 72.72; H, 4.58; N, 10.60. Found: C, 72.80; H, 4.64; N, 10.69.

5-(2,4-Dihydroxy-phenyl)-2-phenyl-pyridazin-3(2H)-one (5b). Colorless
solid (benzene), mp 195 �C, yield 73%; IR (KBr, t in cm�1): 3240 (OH), 1661
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(pyridazinone C=O); 1H NMR (400MHz, DMSO): d 6.64 (s, 1H, C4-H of pyrida-
zinone), 6.86 (t, 1H, J¼ 7.30Hz, C400-H), 7.17 (d, 2H, J¼ 7.56Hz, C300 and C500-H),
7.26–7.32 (m, 4H, Ar-H), 7.41 (d, 1H, J¼ 8.20Hz, Ar-H), 8.00 (s, 1H, C6-H of
pyridazinone), 11.12 (s, 1H, OH, D2O exchangeable), 11.31 (s, 1H, OH, D2O
exchangeable). Anal. calc. for C16H12N2O3: C, 68.56; H, 4.32; N, 9.99. Found: C,
68.51; H, 4.26; N, 9.87.

5-(2-Hydroxy-4-methoxy-phenyl)-2-phenyl-pyridazin-3(2H)-one (5c).
Orange-colored solid (benzene), mp 212 �C, yield 75%; IR (KBr, t in cm�1): 3237
(OH), 1656 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 3.84 (s, 3H,
OCH3), 6.64 (s, 1H, C4-H of pyridazinone), 6.90 (t, 1H, J¼ 7.28Hz, C400-H), 7.18
(d, 2H, J¼ 7.60Hz, C300 and C500-H), 7.22–7.34 (m, 2H, Ar-H), 7.52 (d, 1H,
J¼ 8.80Hz, Ar-H), 7.62 (d, 1H, J¼ 8.20Hz, Ar-H), 8.01 (s, 1H, C6-H of pyridazi-
none), 8.33 (s, 1H, C30-H), 11.31 (s, 1H, OH, D2O exchangeable). Anal. calc. for
C17H14N2O3: C, 69.38; H, 4.79; N, 9.52. Found: C, 69.28; H, 4.70; N, 9.58.

5-(2-Hydroxy-4,6-dimethyl-phenyl)-2-phenyl-pyridazin-3(2H)-one (5d).
Colorless solid (benzene), mp 184 �C, yield 76%; IR (KBr, t in cm�1): 3236 (OH),
1667 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 2.30 (s, 3H, CH3), 2.41
(s, 3H, CH3), 6.62 (s, 1H, C4-H of pyridazinone), 6.94 (t, 1H, J¼ 7.28Hz,
C400-H), 7.16 (d, 2H, J¼ 7.60Hz, C300 and C500-H), 7.26–7.39 (m, 2H, Ar-H), 7.51
(s, 1H, Ar-H), 8.01 (s, 1H, C6-H of pyridazinone), 8.31 (s, 1H, Ar-H), 11.26 (s,
1H, OH, D2O exchangeable). Anal. calc. for C18H16N2O2: C, 73.95; H, 5.52; N,
9.58. Found: C, 73.84; H, 5.39; N, 9.50.

5-(2-Hydroxy-3,4-dimethyl-phenyl)-2-phenyl-pyridazin-3(2H)-one (5e).
Orange-colored solid (benzene), mp 188 �C, yield 76%; IR (KBr, t in cm�1): 3240
(OH), 1660 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 2.30 (s, 3H,
CH3), 2.38 (s, 3H, CH3), 6.59 (s, 1H, C4-H of pyridazinone), 6.89 (t, 1H, J¼ 7.28Hz,
C400-H), 7.16 (d, 2H, J¼ 7.14Hz, C300 and C500-H), 7.26–7.35 (m, 3H, Ar-H), 8.08 (s,
1H, C6-H of pyridazinone), 8.21 (d, 1H, J¼ 8.10Hz, Ar-H), 11.26 (s, 1H, OH, D2O
exchangeable). 13C NMR (100MHz, DMSO): d 20.69, 21.20, 109.20, 113.24, 115.49,
117.64, 121.54, 126.48, 130.24, 131.49, 134.65, 134.99, 143.52, 147.24, 150.32, 161.18;
LCMS m=z: 293 [Mþ 1]. Anal. calc. for C18H16N2O2: C, 73.95; H, 5.52; N, 9.58.
Found: C, 73.89; H, 5.50; N, 9.49.

5-(3-Chloro-6-hydroxy-2,4-dimethyl-phenyl)-2-phenyl-pyridazin-3(2H)-
one (5f). Colorless solid (benzene), mp 208 �C, yield 70%; IR (KBr, t in cm�1): 3231
(OH), 1650 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 2.32 (s, 3H, CH3),
2.42 (s, 3H, CH3), 6.65 (s, 1H, C4-H of pyridazinone), 6.97 (t, 1H, J¼ 7.28Hz,
C400-H), 7.19 (d, 2H, J¼ 7.52Hz, C300 and C500-H), 7.31–7.40 (m, 2H, Ar-H), 8.01
(s, 1H, C6-H of pyridazinone), 8.24 (s, 1H, C30-H), 11.23 (s, 1H, OH, D2O exchange-
able). Anal. calc. for C18H15ClN2O2: C, 66.16; H, 4.63; N, 8.57. Found: C, 66.05; H,
4.69; N, 8.52.

5-(2-Hydroxy-4-methyl-3,5-dinitro-phenyl)-2-phenyl-2H-pyridazin-3-one
(5g). Yellow-colored solid (benzene), mp 170 �C, yield 66%; IR (KBr, t in cm�1):
3230 (OH), 1656 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 2.42 (s,
3H, CH3), 6.67 (s, 1H, C4-H of pyridazinone), 6.98 (t, 1H, J¼ 7.30Hz, C400-H),
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7.20 (d, 2H, J¼ 7.58Hz, C300 and C500-H), 7.12–7.40 (m, 2H, Ar-H), 8.04 (s, 1H,
C6-H of pyridazinone), 8.20 (s, 1H, C60-H), 11.31 (s, 1H, OH, D2O exchangeable).
Anal. calc. for C17H12N4O6: C, 55.44; H, 3.28; N, 15.21. Found: C, 55.39; H, 3.19;
N, 15.10.

5-(2-Hydroxy-5-methyl-phenyl)-2-phenyl-2H-pyridazin-3-one (5h).
Yellow-colored solid (benzene), mp 226 �C, yield 75%; IR (KBr, t in cm�1): 3237
(OH), 1671 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 2.42 (s, 3H,
CH3), 6.56 (s, 1H, C4-H of pyridazinone), 6.88 (t, 1H, J¼ 7.28Hz, C400-H), 7.16
(d, 2H, J¼ 7.76Hz, C300 and C500-H), 7.26–7.35 (m, 4H, Ar-H), 8.03 (s, 1H, C6-H
of pyridazinone), 8.43 (s, 1H, C60-H), 11.23 (s, 1H, OH, D2O exchangeable); 13C
NMR (100MHz, DMSO): d 20.69, 110.40, 112.93, 116.53, 116.63, 120.86, 125.88,
129.41, 130.99, 132.59, 133.36, 143.75, 145.57, 151.77, 160.26; LCMS m=z: 279
[Mþ 1]. Anal. calc. for C17H14N2O2: C, 73.37; H, 5.07; N, 10.07. Found: C, 73.32;
H, 5.01; N, 10.05.

5-(2-Hydroxy-4-methyl-phenyl)-2-phenyl-2H-pyridazin-3-one (5i). Yellow-
colored solid (benzene), mp 244 �C, yield 74%; IR (KBr, t in cm�1): 3238 (OH),
1665 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 2.42 (s, 3H, CH3), 6.61
(s, 1H, C4-H of pyridazinone), 6.88 (t, 1H, J¼ 7.28Hz, C400-H), 7.16 (d, 2H,
J¼ 7.60Hz, C300 and C500-H), 7.29–7.35 (m, 3H, Ar-H), 7.45 (d, 1H, J¼ 8.40Hz,
Ar-H), 8.03 (s, 1H, C6-H of pyridazinone), 8.43 (s, 1H, C30-H), 11.23 (s, 1H, OH,
D2O exchangeable); 13C NMR (100MHz, DMSO): d 21.21, 110.92, 113.45,
117.05, 117.15, 121.38, 126.41, 129.93, 131.51, 133.11, 133.88, 144.27, 146.09,
152.29, 160.79; LCMS m=z: 279 [Mþ 1]. Anal. calc. for C17H14N2O2: C, 73.37; H,
5.07; N, 10.07. Found: C, 73.29; H, 4.99; N, 10.01.

5-(2-Hydroxy-5-methoxy-phenyl)-2-phenyl-2H-pyridazin-3-one (5j).
Orange-colored solid (benzene), mp 224 �C, yield 78%; IR (KBr, t in cm�1): 3246
(OH), 1661 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 3.87 (s, 3H,
OCH3), 6.62 (s, 1H, C4-H of pyridazinone), 6.88 (t, 1H, J¼ 7.28Hz, C400-H), 7.17
(d, 2H, J¼ 7.60Hz, C300 and C500-H), 7.24–7.32 (m, 3H, Ar-H), 7.37 (d, 1H,
J¼ 9.04Hz, Ar-H), 8.04 (s, 1H, C6-H of pyridazinone), 8.20 (s, 1H, C60-H), 11.24
(s, 1H, OH, D2O exchangeable); 13C NMR (100MHz, DMSO): d 56.09, 109.46,
112.38, 113.42, 117.57, 118.37, 119.85, 121.38, 129.89, 132.60, 144.25, 145.78,
148.55, 155.89, 160.83; LCMS m=z: 295 [Mþ 1]. Anal. calc. for C17H14N2O3: C,
69.38; H, 4.79; N, 9.52. Found: C, 69.32; H, 4.75; N, 9.56.

5-(2-Hydroxy-naphthalen-1-yl)-2-phenyl-2H-pyridazin-3-one (5k). Brown-
colored solid (benzene), mp 169 �C, yield 72%; IR (KBr, t in cm�1): 3254 (OH),
1644 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 6.71 (s, 1H, C4-H of pyr-
idazinone), 6.89 (t, 1H, J¼ 7.28Hz, C400-H), 7.18 (d, 2H, J¼ 7.60Hz, C300 and
C500-H), 7.32–7.38 (m, 2H, Ar-H), 7.70–7.74 (m, 2H, Ar-H), 7.91 (d, 1H, J¼ 8.90Hz,
Ar-H), 8.02 (d, 1H, J¼ 9.12Hz, Ar-H), 8.12 (s, 1H, C6-H of pyridazinone), 8.39 (d,
1H, J¼ 9.48Hz, Ar-H), 8.51 (d, 1H, J¼ 8.90Hz, Ar-H), 11.30 (s, 1H, OH, D2O
exchangeable). Anal. calc. for C20H14N2O2: C, 76.42; H, 4.49; N, 8.91. Found: C,
76.28; H, 4.40; N, 8.82.
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5-(1-Hydroxy-naphthalen-2-yl)-2-phenyl-2H-pyridazin-3-one (5l). Orange-
colored solid (benzene), mp 270 �C, yield 71%; IR (KBr, t in cm�1): 3267
(OH), 1650 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 6.75 (s, 1H,
C4-H of pyridazinone), 6.90 (t, 1H, J¼ 7.24Hz, C400-H), 7.20 (d, 2H, J¼ 7.60Hz,
C300 and C500-H), 7.31–7.35 (m, 2H, Ar-H), 7.72–7.75 (m, 2H, Ar-H), 7.93 (d, 1H,
J¼ 9.01Hz, Ar-H), 8.04 (d, 1H, J¼ 9.16Hz, Ar-H), 8.17 (s, 1H, C6-H of pyrida-
zinone), 8.40 (d, 1H, J¼ 9.52Hz, Ar-H), 8.54 (d, 1H, J¼ 8.92Hz, Ar-H), 11.32 (s,
1H, OH, D2O exchangeable); 13C NMR (100MHz, DMSO): d 110.17, 113.02,
113.57, 121.46, 122.19, 122.30, 123.01, 124.46, 127.86, 128.32, 129.33, 129.95,
131.71, 134.61, 144.22, 147.16, 151.11, 160.53; LCMS m=z: 315 [Mþ 1]. Anal.
calc. for C20H14N2O2: C, 76.42; H, 4.49; N, 8.91. Found: C, 76.48; H, 4.54;
N, 8.94.

5-(2-Hydroxy-5-chloro-phenyl)-2-phenyl-2H-pyridazin-3-one (5m).
Orange-colored solid (benzene), mp 237 �C, yield 70%; IR (KBr, t in cm�1):
3258 (OH), 1678 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 6.68 (s,
1H, C4-H of pyridazinone), 6.90 (t, 1H, J¼ 7.32Hz, C400-H), 7.14 (d, 2H,
J¼ 7.64Hz, C300 and C500-H), 7.30–7.35 (m, 2H, Ar-H), 7.45 (d, 1H, J¼ 8.84Hz,
Ar-H), 7.68 (d, 1H, J¼ 8.84Hz, Ar-H), 8.00 (s, 1H, C6-H of pyridazinone), 8.79
(s, 1H, C60-H), 11.29 (s, 1H, OH, D2O exchangeable); 13C NMR (100MHz,
DMSO): d 112.50, 112.94, 118.02, 118.79, 121.06, 126.13, 128.16, 128.26,
129.44, 131.34, 131.72, 143.63, 144.42, 152.30, 159.73; LCMS m=z: 299 [Mþ 1].
Anal. calc. for C16H11ClN2O2: C, 64.33; H, 3.71; N, 9.38. Found: C, 64.28; H,
3.75; N, 9.30.

5-(2-Hydroxy-4-chloro-phenyl)-2-phenyl-2H-pyridazin-3-one (5n). Orange-
colored solid (benzene), mp 192 �C, yield 68%; IR (KBr, t in cm�1): 3250 (OH),
1672 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 6.67 (s, 1H, C4-H of pyr-
idazinone), 6.91 (t, 1H, J¼ 7.32Hz, C400-H), 7.18 (d, 2H, J¼ 7.82Hz, C300 and
C500-H), 7.31–7.38 (m, 2H, Ar-H), 7.54 (d, 1H, J¼ 8.80Hz, Ar-H), 7.64 (d, 1H,
J¼ 8.82Hz, Ar-H), 8.03 (s, 1H, C6-H of pyridazinone), 8.66 (s, 1H, C30-H), 11.32
(s, 1H, OH, D2O exchangeable); 13C NMR (100MHz, DMSO): d 112.46, 112.92,
118.00, 118.75, 121.01, 126.10, 128.13, 128.23, 129.42, 131.31, 131.69, 143.60,
144.41, 152.25, 159.71; LCMS m=z: 299 [Mþ 1]. Anal. calc. for C16H11ClN2O2: C,
64.33; H, 3.71; N, 9.38. Found: C, 64.25; H, 3.77; N, 9.28.

5-(2-Hydroxy-5-bromo-phenyl)-2-phenyl-2H-pyridazin-3-one (5o).
Orange-colored solid (benzene), mp 258 �C, yield 71%; IR (KBr, t in cm�1): 3227
(OH), 1677 (pyridazinone C=O); 1H NMR (400MHz, DMSO): d 6.67 (s, 1H,
C4-H of pyridazinone), 6.90 (t, 1H, J¼ 7.24Hz, C400-H), 7.14 (d, 2H, J¼ 7.64Hz,
C300 and C500-H), 7.30–7.35 (m, 2H, Ar-H), 7.40 (d, 1H, J¼ 8.80Hz, Ar-H), 7.80
(d, 1H, J¼ 8.84Hz, Ar-H), 8.00 (s, 1H, C6-H of pyridazinone), 8.96 (s, 1H,
C60-H), 11.30 (s, 1H, OH, D2O exchangeable); 13C NMR (100MHz, DMSO): d
112.53, 112.94, 116.03, 118.49, 119.08, 121.06, 129.22, 129.43, 131.75, 134.09,
143.64, 144.34, 152.70, 159.69; LCMS m=z: 345 [Mþ 1]. Anal. calc. for
C16H11BrN2O2: C, 56.00; H, 3.23; N, 8.16. Found: C, 55.88; H, 3.17; N, 8.09.
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CONCLUSION

In conclusion, this article provides an efficient method for the synthesis of
mono- and diaryl-pyridazin-3(2H)-ones. Different substituents on coumarin and
arylhydrazine provide a plethora of substituted 2,5-diaryl-pyridazin-3(2H)-ones.
The synthetically viable yields (typically 50–80% or moderate to good isolated yield)
and straightforward procedure for the preparation make this an attractive route to
the diaryl-pyridazin-3(2H)-ones. The advantages offered by this method are readily
available starting material, simple operation, insensitivity to air and moisture, good
yields of products, and cost-effectiveness. Further, the reactivity of the phenolic
hydroxyl group of 5-aryl moiety may be extended in the synthesis of biologically
active compounds.
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