
Carboxylation of Aryl Triflates with CO2 Merging Palladium and
Visible-Light-Photoredox Catalysts
Samir Kumar Bhunia,†,‡ Pritha Das,†,§ Shantanu Nandi,†,§ and Ranjan Jana*,†,‡

†Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur,
Kolkata 700032, West Bengal, India
‡Academy of Scientific and Innovative Research (AcSIR), Kolkata 700032, West Bengal, India

*S Supporting Information

ABSTRACT: We report herein a visible-light-promoted, highly
practical carboxylation of readily accessible aryl triflates at ambient
temperature and a balloon pressure of CO2 by the combined use of
palladium and photoredox Ir(III) catalysts. Strikingly, the stoichio-
metric metallic reductant is replaced by a nonmetallic amine
reductant providing an environmentally benign carboxylation
process. In addition, one-pot synthesis of a carboxylic acid directly
from phenol and modification of estrone and concise synthesis of pharmaceutical drugs adapalene and bexarotene have been
accomplished via late-stage carboxylation reaction. Furthermore, a parallel decarboxylation−carboxylation reaction has been
demonstrated in an H-type closed vessel that is an interesting concept for the strategic sector. Spectroscopic and
spectroelectrochemical studies indicated electron transfer from the Ir(III)/DIPEA combination to generate aryl carboxylate and
Pd(0) for catalytic turnover.

Due to stringent regulation by the Environmental
Protection Agency (EPA), petrochemical industries are

being forced to utilize CO2 that is produced during the
processing of fossil fuel.1 Moreover, carboxylic acids and their
derivatives are ubiquitously found in natural products,
biologically active compounds, and polymeric materials.2

Hence, there is an urgent call for the development of synthetic
methods using CO2 as an abundant, inexpensive, and nontoxic
C1 building block.3 An impressive array of transition metal-
catalyzed (Pd, Ni, and Cu) carboxylations of aryl, alkyl, alkenyl
halides, triflates, or (pseudo)halides has been developed in the
past few decades with CO2.

4 However, due to the inherent
thermodynamic stability of CO2, most of the transformations
require high temperatures, high pressures of CO2, and
stoichiometric amounts of organometallic reductants like
Et2Zn, AlEt3, Zn or Mn powder, etc. (Scheme 1), which
leads to accidental and environmental hazards.4 Therefore, to
explore the full potential of carboxylation reactions, the
development of a mild and practical catalytic protocol without
any stoichiometric metal additive is in high demand.
Previously, the group of Nielsen and Jutand reported

palladium-catalyzed electrosynthesis of aromatic and α,β-
unsaturated carboxylic acids from the corresponding triflates
with CO2.

5 Deleterious homocoupling, hydrolysis to phenol,
and reduced product formation at elevated temperatures lead
to the carboxylation products in moderate yields. However,
their mechanistic studies are intriguing for the development of
transition metal and photoredox dual catalysis.6 In recent
years, activation of inert CO2 for the synthesis of carboxylic
acids is emerging.7 In this vein, the group of Martin and
Iwasawa developed an elegant methodology for the carbox-

ylation of aryl bromides and chlorides combining palladium
and visible-light-photoredox iridium catalysts.8 Subsequently,
the group of König reported a nickel and organic photo-
sensitizer dual catalytic approach for the carboxylation of aryl
and alkyl bromides and a few aryl triflates using K2CO3 as a
CO2 source (Scheme 1).9 Thus, we were motivated to develop
a general method for carboxylation of aryl triflates using CO2
directly.
In 2015, Murakami and co-workers proposed the carbox-

ylation of o-alkylphenyl ketones with CO2 under ultraviolet-
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Scheme 1. Carboxylation Reaction with CO2
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light or solar-light irradiation.7a Jamison and co-workers
reported the α-carboxylation of inert amine in a continuous
flow via single-electron activation of CO2 under ultraviolet-
light irradiation.7c In 2015, Tsuji and co-workers published
cobalt- and nickel-catalyzed carboxylation of alkenyl and
sterically hindered aryl triflates utilizing CO2 with a metallic
reductant at elevated temperatures.3j Very recently, Mei and
co-workers published nickel-catalyzed carboxylation of aryl and
heteroaryl fluorosulfates by CO2 where 3.0 equiv of manganese
has been used as a reducing agent.10

We report herein a mild and general protocol for the
carboxylation of aryl or (hetero)aryl triflates with a balloon
pressure of CO2 combining Pd(OAc)2 and an iridium(III)
photocatalyst and i-Pr2NEt as the nonmetallic reducing agent
at room temperature (Scheme 1).
Our initial trials with 2-naphthyl triflate using nickel and

photoredox dual catalysts were not effective. Gratifyingly,
palladium complexes in combination with electron-rich ligands
such as xantphos and photocatalyst 1 provided 25% of the
desired carboxylation product in DMA (entry 1, Table 1). The
yield was further improved to 45% when photocatalyst Ir(4-F-
ppy)2(dtbpy)(PF6) 2 was used (entry 2, Table 1). The yield
was drastically improved to 82% by using Xphos ligand (entry
7, Table 1), and further screening reveals that 2.0 equiv of i-
Pr2NEt and Cs2CO3 are optimal reducing agents and bases,
respectively. The optimal yield of 89% was obtained with
davephos ligand and photocatalyst 3 (entry 12, Table 1).
Other organic dyes such as 4CzIPN, 5CzBN, and 3DPAFIPN
were found to be inferior compared to Ir catalyst 3. Our
control experiments reveal that all reagents are essential for
furnishing the desired product (for details, see the Supporting
Information).
Next, we examined the generality of the reaction with a

variety of ortho-, meta-, and para-substituted aryl triflates
furnishing corresponding carboxylic acids in excellent to
moderate yields (Scheme 2). As shown in Scheme 2, aryl
triflates with various functional groups such as cyano (2j),
trifluoromethoxy (2k), fluoro (2l), trifluoromethyl (2m), ether
(2b, 2f, 2h, 2q, 2w, 2ab, and 2ac), esters (2x), ketone (2z), or
NBoc or NHBoc (2y and 2aa) groups were well-tolerated
under the reaction conditions. This carboxylation reaction took
place selectively at the triflate group, leaving chloro (2g and
2ac) and bromo (2c) intact for further manipulations, which is
a remarkable contrast from Martin’s work.8 However, DMSO
solvent was found to be optimal for 2c, which may act as a
ligand to tune the electronic nature of the palladium complex
for selective oxidative addition.11 Gratifyingly, 4-allyl (2q)- and
2-allyl (2r)-substituted aryl triflates also provided moderate to
excellent yields. The sterically demanding substrate also
delivered the desired product in good to moderate yields (2i,
2n, 2p, and 2v). Overall, electron-rich substrates undergo
carboxylation faster than electro-deficient arenes. Interestingly,
heterocyclic triflates such as thiophene, indole, and carbazole
provided the corresponding carboxylic acids (2x, 2y, and 2ad)
in moderate yields. However, pyridine-3-triflate proved to be
unsuccessful for this transformation. Notably, triflate of (+)-δ-
tocopherol afforded the corresponding carboxylic acid (2ae) in
20% yield with 75% substrate recovery. The carboxylation of a
vinyl triflate derived from β-tetralone provided the correspond-
ing carboxylic acid in a 45% yield (2af) along with the
formation of the homocoupling product. Unfortunately, other
-OH derivatives of 2-naphthol such as tosylate, mesylate,
nonaflate, and benzylic and allylic triflates provided a very low

yield (<10%) of the carboxylation product under the optimized
reaction conditions.
To demonstrate the practical utility of this methodology,

one-pot carboxylation reaction starting from phenol was
performed to provide the desired product in good yield
(Scheme 3a). This methodology was applied for the late-stage
modification of estrone to provide the corresponding
carboxylated estrone in a 40% yield (2ag) (Scheme 3b).
Interestingly, bis-triflate of the corresponding 2,2′-biphenol
provided a lactone product directly through selective
monocarboxylation and subsequent lactonization 2ah (Scheme
3c).12 The late-stage carboxylation was also applied for an
expedient synthesis of adapalene 2ai (Scheme 3e), a Food and
Drug Administration-approved drug for acne treatment.13

Inexpensive 6-bromo-2-naphthol was used in this protocol
instead of expensive 6-bromo-2-naphthoic acid in earlier
methods.14 Furthermore, an improved synthesis of anticancer

Table 1. Optimization of the Reaction Conditionsa

entry catalyst ligand photocatalyst yield (%)

1 Pd(OAc)2 xantphos 1 25
2 Pd(OAc)2 xantphos 2 45
3 Pd(OAc)2 xantphos 4 not determined
4 Pd(OAc)2 xantphos 5 35
5 Pd(OAc)2 xantphos 3 50
6 Pd(PPh3)4 − 2 20
7 Pd(OAc)2 xphos 3 82
8 Pd(OAc)2 johnphos 3 50
9 Pd(OAc)2 ruphos 3 76
10 Pd(OAc)2 sphos 3 72
11 Pd(OAc)2 t-buxphos 3 50
12 Pd(OAc)2 davephos 3 91, 89b

13 Pd(OAc)2 davephos 3 80c

14 Pd(OAc)2 davephos 3 0,d 15e

aReactions were carried out with naphthyl triflate (0.1 mmol), a
catalyst (0.01 mmol), a ligand (0.02 mmol), a photocatalyst (0.002
mmol), Cs2CO3 (0.3 mmol), and i-Pr2NEt (0.3 mmol) under a CO2
atmosphere in 2.0 mL of DMA, followed by irradiation with blue
light-emitting diodes at room temperature for 24−36 h. Yields are
overall isolated yields. bTwo equivalents of Cs2CO3 and i-Pr2NEt
were used for 36 h. cDMSO was used. dAny reagent absent from the
optimized reaction conditions. eWithout Cs2CO3.
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drug bexarotene 2aj has been accomplished through late-stage
carboxylation reaction (Scheme 3f).15 This late-stage carbox-
ylation reaction is particularly attractive for isotope labeling for
metabolomic and imaging studies.16 Because of the emerging
trends in decarboxylative couplings, we have demonstrated this
carboxylation reaction in an H-type COgen closed vessel
originally designed by the group of Skrydstrup.17 Thus, CO2
was generated by metal-free decarboxylative iodination of 2,6-
dimethoxybenzoic acid developed by the group of Larrosa18

and diffused through the connector to the other arm to realize
carboxylation reaction (see the Supporting Information). This
demonstration could be useful for the strategic sectors to
execute two important classes of reactions without affecting the
environment.19

To elucidate the probable mechanistic pathway, we have
performed several control experiments. In the presence of
radical scavengers such as BHT and TEMPO, the yield of 2a
was reduced to 65% and 12%, respectively. Hence, TEMPO
may interfere with the redox cascade of Pd(II)/Ir(III) dual
catalysis. Typically, Pd(0) in the presence of electron-rich
ligands is known to undergo oxidative addition to the aryl
triflate to generate a Pd complex B [detected by HRMS from
the reaction mixture (see the Supporting Information)] via a
concerted pathway.20 However, from the cyclic voltammetric
analysis, the first reduction potentials of the ligated
naphthylpalladium triflate complex [(davephos)(2-naphthyl)-
(OTf)Pd] B (for the synthesis, see the Supporting
Information) and its corresponding cationic complex (with
BArF

−) were measured as −2.07 V (Figure S6a) and −2.02 V
(Figure S6c), respectively, which is much lower than that of
the reductant Ir(II) catalyst. Therefore, the reduction of Pd
complex B by the reduced Ir(II) catalyst is thermodynamically
unfavorable, which was also observed by the Martin group.8

Surprisingly, when cyclic voltammetry was performed under a
CO2 atmosphere, a new peak at approximately −1.15 V
(Figure S6b) appeared, which indicates that a new species may
be generated in the presence of CO2, which can be reduced by
the Ir(II) catalyst [with Ir(II) as the reductant, E1 = −1.51 V vs
SCE].21 In addition, we have performed fluorescence
quenching and electrochemical experiments to elucidate the
initial electron transfer process. The fluorescence of the excited
state of Ir(ppy)2(dtbpy)(PF6) [E1/2(PC*/PC

−) = +0.66 V vs
SCE at λmax = 570 nm in CH3CN]

22 was quenched by DIPEA
[Eox(DIPEA) = +0.65 V vs SCE in MeCN]23 with a rate of
0.69 M−1 (Figure S5). It was also quenched by Pd(OAc)2 at a
rate of 0.14 M−1 (Figure S3). However, the introduction of
davephos decreased the rate to 0.11 M−1 (Figure S4).
Furthermore, we have performed the emission lifetime
measurement of the excited state of Ir(ppy)2(dtbpy)(PF6) in
the presence of DIPEA, Pd(OAc)2, and 2-naphthyl triflate. The
excited state decay profile was changed in the presence of
DIPEA but almost identical with Pd(OAc)2 and 2-naphthyl
triflate, indicating the possibility of photoinduced electron
transfer of the 3MLCT excited state, which is reductively
quenched by the superior electron donor DIPEA (Figure S7).
From these control experiments, we propose that the

mechanism is closely related to that proposed by Iwasawa
and Martin; initially, a Pd(0) species is formed, which
undergoes oxidative addition to aryl triflates providing
intermediate B (Scheme 4). It may undergo carboxylation
with CO2 in a reversible manner to form intermediate C.24

Subsequent single-electron reduction by Ir(II) may generate
intermediate D, which was reduced by one more electron to
generate aryl carboxylate and Pd(0) for subsequent runs.
In conclusion, we have developed a practical carboxylation

of readily accessible aryl triflates with CO2 under palladium
and visible-light-iridium(III) dual catalysis at ambient temper-
ature and pressure. This mild and highly chemoselective
protocol is suitable for the modification of estrone and
synthesis of adapalene and bexarotene drugs via late-stage
carboxylation. Furthermore, an interesting decarboxylation−
carboxylation reaction has been demonstrated in an H-type

Scheme 2. Substrate Scope of the Carboxylation Reactione

aDMSO was used as a solvent. bXphos was used as a ligand. ct-
Buxphos was used as a ligand. dXantphos was used as a ligand. eAll
reactions are carried out with 0.2 mmol of aryl triflate.
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closed vessel that is a novel concept for the strategic sectors in
chemical industries for sustainable development.
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