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a b s t r a c t

In the present communication we prepared a series of six 4-hydroxycoumarin derivatives, isosters of
quercetin, recognized as an antioxidant natural compound, with the aim of evaluating the antitrypanos-
omal activity against Trypanosoma cruzi, the parasite responsible for Chagas disease, and the antioxidant
properties. We have used the 4-hydroxycoumarin moiety (compound 1) as the molecular template for
the synthesis of compounds 2–7. These derivates have shown moderate trypanocidal activity. However
they have been proved to be good antioxidants. In particular compound 7 is the most active antioxidant
and it is, therefore, a potential candidate for a successful employment in conditions characterized by free
radicals overproduction.

� 2012 Elsevier Ltd. All rights reserved.
Phenolic compounds are one of the major families of secondary
metabolites in plants and they include a broad group of molecules.
They have shown important properties such as antioxidant and can
act protecting from degenerative diseases in which reactive oxygen
species (ROS) are involved.1–4 These compounds contain one or
more aromatic benzene rings with one or more hydroxyl groups
and their properties are related to their chemical structure. Cou-
marins are one of the most abundant molecules of naturally occur-
ring poliphenolic compounds. A lot of them have been identified
from natural sources, especially from green plants. Due to their
structural features they are important building blocks in the natu-
ral product and synthetic chemistry areas. Coumarins are recog-
nized to possess anti-inflammatory, antioxidant, antiallergic,
hepatoprotective, antithrombotic, antiviral, enzymatic inhibition
and anticarcinogenic properties.5–13 The hydroxycoumarins are
typical phenolic compounds and can act as potent metal chelators
and free radical scavengers.14,15 Flavonoids are another important
group of natural phenolic compounds that are known for their bio-
logical activities, including the important antioxidant properties.16

The quercetin is one of the most powerful and effective antioxidant
flavonoid present in nature.17
ll rights reserved.
Antioxidants are a class of substances of many diverse chemical
structures that are capable of decrease or prevent oxidation of
other sensitive molecules through different mechanisms like che-
lation of active metal ions, free radicals scavenging or inhibition
of pro-oxidant enzymes.18 Free radicals are very unstable mole-
cules responsible of aging, cellular membrane and DNA damage,
and possibly serious diseases like cancer and heart condition. It
has been found that many hydroxycoumarins affect the formation
and scavenging of ROS, exhibiting antioxidant tissue-protective
properties.19,20

Furthermore ROS produce oxidative stress that contributes to
Chagas disease progression.21 This illness, known also as American
Trypanosomiasis, is caused by the protozoan parasite, Trypanosoma
cruzi (T. cruzi).22 It is a serious threat to health in Central and South
America, and it is one of the most important emerging parasitic
disease in developed countries.23,24 The parasite has a complex life
cycle, which involves obligatory passage through four stages.25,26

The infection is transmitted to humans predominantly by insect
vector, blood transfusion or by transmission from mother to fetus.
Current treatment is based on old and quite unspecific drugs: nif-
urtimox (Nfx) and benznidazole (Bzn). In fact this therapy is highly
toxic and usually ineffective in the chronic stages.27–30 During the
course of T. Cruzi infection and disease development, ROS can be
produced as a consequence of tissue destruction caused by toxic
secretions of parasite, immune-mediated cytotoxic reactions, and
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Scheme 1. Reagents and conditions: (a) PhI(OAc)2, Na2CO3, H2O, rt, 14 h; (b)
Pd(OAc)2, P(t-Bu)3, LiOH, DME/H20, rt, 24–48 h.

Table 1
% Trypanocidal activity results for the compounds 1–7 and nifurtimox (Nfx)

Compounds % Trypanocidal activity at (10 lmol L�1)

1 a

2 21.1 ± 0.4
3 1.6 ± 0.2
4 30.7 ± 2.2
5 16.7 ± 6.9
6 3.9 ± 3.3
7 a

Nfx 52.5 ± 2.2

a Inactive at concentration tested.
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secondary damage in the myocardium. Therefore, interventions
with antioxidant compounds, that reduce the generation or the ef-
fects of ROS, may exert beneficial effects in preventing or arresting
oxidative damage.31

Given the known antioxidant properties attributed to the cou-
marin skeleton and to the flavonoid compounds like quercetin
( Fig. 1), which presents a hydroxyl group in the pyron ring, in
the present work a series of six 4-hydroxycoumarin derivatives
were synthesized (compounds 2–7).

In fact these compounds can be considered isosters of the men-
tioned flavonoid. We have used the 4-hydroxycoumarin (com-
pound 1) as the molecular template in the design and the
synthesis of these derivatives that present also an aryl group at
C3 (Fig. 1).

Hydroxy, methoxy, methyl and/or chloro substituents were
introduced in the 3-phenyl ring, whereas the six position in the
coumarin moiety was not substituted/or substituted with a chloro
atom.

Then the antitrypanosomal activity against Trypanosoma cruzi
and the antioxidant properties of compounds 1–7 were assessed.

The key step for the synthesis of the 3-arylcoumarin skeleton
was achieved by a palladium-catalyzed Suzuki coupling reaction
between phenyliodonium zwitterion salts and the conveniently
substituted phenyl boronic acids.32–36 Initially we have synthe-
sized the different phenyliodonium coumarinate species (I–II) that
are electrophilic molecules with a positive charge at iodine atom
delocalized to the neighboring oxygen.35 Then we have carried
out the palladium-catalyzed coupling reaction using Pd(OAc)2 as
catalyst and P(t-Bu)3 as ligand to afford the compounds 2–7 in
good yields.32,33,36

The reaction conditions are delineated in the Scheme 1.
The antitrypanosomal activity for all synthesized compounds

was evaluated using MTT assays.37,38

The results reported in Table 1 have shown that derivatives 2, 4,
and 5 respectively with any substituent, a chlorine atom or a
methyl group at p-position in the 3-phenyl ring present antitry-
panosomal activity. However, these compounds have less activity
compared with positive control nifurtimox. On the other hand
the simple 4-hydroxycoumarin (compound 1) and compounds 3,
6 and 7 with methoxy or hydroxyl substituents in the 3-phenyl
ring do not show any activity.

In the present series is clearly observed how the absence of the
3-phenyl ring or the introduction of methoxy or hydroxyl groups in
this causes a considerably decrease of antitrypanosomal activity.
On the other hand the activity improves enormously in presence
of a p-chloro atom in the 3-phenyl ring of the 4-hydroxycoumarin.
In fact the compound 4 that presents this substituent is the best of
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Figure 1. Chemical structure of compound 1, quercetin and 4-hydroxycoumarin
derivatives.
the evaluated series with around 30% of trypanocidal activity at
10 lmol L�1.

These preliminary findings and especially the antitrypanosomal
capacity found for compound 4, encourage us to the future struc-
tural optimization of these compounds.

The capacity of scavenging peroxyl radicals was studied
through the oxygen radical absorbance capacity method using
fluorescence-based technology of detection measurements
(ORAC-FL).39,40 This assay gives an relative index refering to the
hydrosoluble standard molecule (trolox), a vitamine E derivative.
Results are expressed as ORAC values and are tabulated in Table
2.41 They take account the induction time, initial rate and the range
of total inhibition obtained for each value.42

The oxidation occurs due to exposition of the fluorophore, in
this case fluorescein (FL), to the peroxyl radical leading to decay
of fluorescence emission through time.40 In ORAC assays, the loss
Table 2
ORAC values and (%) scavenging of hydroxyl radical calculated for compounds 1–7

Compounds ORAC values % scavenging

1 4.2 ± 0.26 61.9 ± 3.4
2 4.4 ± 0.16 45.1 ± 2.6
3 5.7 ± 0.30 46.3 ± 2.5
4 3.9 ± 0.15 31.3 ± 4.7
5 6.5 ± 0.23 34.6 ± 4.5
6 4.9 ± 0.35 40.2 ± 3.4
7 7.7 ± 0.54 100 ± 4.5
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of fluorescence of fluorescein generally shows an induction time
and is reliant on the oxidation potential of antioxidant molecules.
It refers to the time in which the FL is protected against peroxyl
radicals in presence of antioxidant molecules. This behavior is
associated to competitive reaction between radical both probe
and antioxidant.43 We obtained profile of fluorescence measure
at 528 nm versus the incubation time at different concentration
for all 4-hydroxycoumarin derivatives. Then the area under the
curve (AUC) was calculated for all studied compounds.

The highest ORAC values are found for compounds 5 and 7 (6.5
and 7.7, respectively). The results are comparable with quercetin
(7.28) and catechin (6.76), used as reference compounds.39

Figure 2a shows the kinetic profiles obtained in presence of
increasing concentration of compound 7. For all coumarin deriva-
tives the area under the curve (AUCNET) of the kinetic profiles de-
pend on the concentration of the additive as it is presented in
Figure 2b.

The different ORAC values are related to the substituents pres-
ent in the coumarin skeleton. We have used the commercially 4-
hydroxycoumarin, compound 1, as patron molecule. When it was
added a phenyl group at 3 position (compound 2), the delocaliza-
tion of semiquinone radical improved, influencing ORAC value. In
the compound 3, in which the phenyl ring presents a p-methoxy
group, and in the compound 5 with a p-methyl group, an incre-
ment in the antioxidant capacity was observed. This fact can be
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Figure 2. (a) ORAC profile for compound 7; (b) graphic AUCNET versus concentra-
tion compound 7.
explained taking into account the strong electron donating effect
that increases the electronic density around the hydroxyl group,
favoring the hydrogen atom transfer mechanism (HAT). On the
contrary in the compound 4, that presents as substituent on its
phenyl ring an electron withdrawing group like a chloro atom,
the antioxidant capacity decreases. The positive effect, although
smaller, is observed for the compound 6 with a m-hydroxyl group
on the 3-phenyl ring. This substituent, together with one chlorine
atom on the 6 position of the coumarin skeleton leads to the com-
pound 7, which resulted to be the best of the evaluated series.

So it has been found that the presence, the number and the po-
sition of electron donating groups (hydroxyl, methoxy or methyl)
on the 3-phenyl ring and the presence of an electron withdrawing
group (chlorine atom) at 6 position on the coumarin skeleton are
important structural factors that contribute to the increment of
the antioxidant capacity of these 4-hydroxycoumarins.

In order to study the antioxidant reactivity of all 3-phenyl-4-
hydroxycoumarin derivatives synthesized against hydroxyl radi-
cals, we have adapted a non-catalytic and competitive Fenton sys-
tem in which the spin trap DMPO and the antioxidant molecules
compete for hydroxyl radicals.44,45

The ESR spectrum shows four hyperfine lines, due to the DMPO-
OH adduct formation. The intensity of the spectrum decreases
Figure 3. (a) ESR spectrum for adduct DMPO-OH without antioxidant molecule
(black) and in presence of compound 1 (red); (b) ESR spectrum for adduct DMPO-
OH without antioxidant molecule (black) and in presence of compound 7 (red).
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when a 3-aryl-4-hydroxycoumarin derivative is added into the sys-
tem. Figure 3a shows the experiment carried out for the compound
1 in which a 61.9% of scavenging hydroxyl radicals was obtained. In
the spectrum of Figure 3b we can observe for the compound 7 a to-
tal scavenging. This response was observed for all derivatives and
the percentage of the hydroxyl radical scavenging activity is illus-
trated in Table 2.41 The order of best reactivity against hydroxyl
radical was 7 > 1 > 3 > 2 > 6 > 5 > 4.

In conclusion, the values obtained in the study for the antitry-
panosomal activity have not shown experacted results. Only com-
pounds 2, 4, and 5 have an appreciable activity but still lower than
nifurtimox, used in the treatment of Chagas disease. We can use
these results for a structural optimization of these series of com-
pounds. On the other hand, we have confirmed the good antioxi-
dant activity of 4-hydroxycoumarin derivatives. Their antioxidant
activity is significantly affected by the introduction of a phenyl
moiety at the C3 position. Also when a substituent with electron
donating effect is present in the phenyl group, the antioxidant
capacity increases. The results of the antioxidant assay using ESR
showed higher reactivity against hydroxyl radical for compound
1 and 7. A very interesting finding is that derivative 7 is very reac-
tive and present good antioxidant capacity against hydroxyl and
peroxyl radicals. Based of these results, we can conclude that the
compound 7 is a potential candidate for a successful employment
in conditions characterized by an overproduction of free radicals.
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