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a b s t r a c t

Propargylic alcohols are activated toward 1,3-diketones by Lewis or Brønsted acidic ionic liquids (ILs)
without an added catalyst, but significantly better conversions are achieved with metallic triflates [in
particular Sc(OTf)3 and Ln(OTf)3] and bismuth nitrate in imidazolium ILs. The scope of this condensation
reaction was investigated with a variety of propargylic alcohols and a host of acyclic and cyclic dicarbonyl
compounds. Concomitant cycloisomerization leading to tetrasubstituted furans was observed with the
propargylic alcohols 1b and 1c in reaction with 1,3-diketone 2b and the b-ketoester 2c. With propargylic
alcohol 1c, propargylation, cycloisomerization, or dienone formation were observed, depending on the
structure of the 1,3-dicarbonyl compound. The [BMIM][PF6]/Bi(NO3)3�5H2O system proved efficient for
propargylation, vinylation, and alkylation of 4-hydroxycoumarins. The recycling and reuse of the IL are
added advantages of this method.

� 2011 Elsevier Ltd. All rights reserved.
Condensation of 1,3-dicarbonyl compounds with benzylic,
allylic, and propargylic moieties is an important C–C bond forming
method capable of generating a wide range of valuable synthetic
intermediates that are utilized in the synthesis of functional mate-
rials, natural products, and pharmaceuticals. There has been a flur-
ry of research activity in this area in the past few years and a
number of methods employing various catalysts have been re-
ported. Thus tris(pentafluorophenyl)borane,1 bismuth nitrate
pentahydrate,2 and phosphomolybdic acid supported on silica gel
(PMA/SiO2)3 were employed for alkylation of 1,3-dicarbonyl com-
pounds with benzylic alcohols, and PMA/SiO2,3 FeCl3,4 and
MoO2(acac)2/NH4PF6

5 were used as catalysts in propargylation.
Other workers employed an Ir-Sn bimetallic complex in DCE sol-
vent to achieve propargylation or allenylation, depending on the
structure of the propargylic alcohol.6 The rhenium-catalyzed cou-
pling of 2-propynyl alcohols with 1,3-diketones via dehydration
was also studied.7 Indium tribromide was employed in annulation
of cyclic 1,3-diketones with aryl propargyl alcohols to synthesize
2,4-diaryldihydropyrans.8 Cycloaddition between propargylic alco-
hols and cyclic 1,3-dicarbonyl compounds was effected by using
thiolate-bridged diruthenium complexes via allenylidene interme-
diates.9 Depending on the structure of alkynol, propargylation or
allenylation products were obtained with PTS/MeCN10 and with
ll rights reserved.

: +1 904 620 3535.
.

Yb(OTf)3/MeCN.11 Propargylation and cycloisomerization leading
to furans were observed in variable amounts in the reaction of 1-
phenylprop-2-yn-1-ol with 1,3-dicarbonyl compound by using
Au(III) catalysis in organic solvents.12 Tandem propargylation/
cycloisomerization leading to substituted furans was observed
with FeCl3 in refluxing toluene.13 A two-step process using TFA
to effect propargylation followed by an allyl-ruthenium complex
to effect cycloisomerization has also been reported.14

Propargylation of coumarins represents a related useful trans-
formation. Alkylation of 4-hydroxycoumarin with benzylic, allylic,
and propargylic alcohols was reported by using amberlite IR-120
(H+)15 and with Yb(OTf)3.11

To our knowledge one study on propargylation of 1,3-dicar-
bonyl compounds in ILs has so far appeared,16 in which a Brønsted
acidic IL was used as catalyst with an imidazolium IL acting as sol-
vent to effect benzylation, allylation, and propargylation of 1,3-
dicarbonyl compounds at 100 �C.

In continuation of our work on electrophilic chemistry in room
temperature ionic liquids (RT-IL),17 and in relation to a recent study
from this laboratory focusing on propargyl group introduction into
aromatics and heteroaromatics and cross coupling of propargylic
alcohols,18 we report here on propargylation of acyclic and cyclic
1,3-dicarbonyl compounds and 4-hydroxycoumarins in ILs.19

With propargylation of 1,3-diphenylpropan-1,3-dione as a
benchmark ( Fig. 1) a survey study was performed using
various ILs, with and without an added catalyst (Table 1). With
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Figure 2. Condensation of propargylic alcohols with 1,3-dicarbonyl compounds with IL/Lewis acid systems.

Table 1
Screening of IL/Lewis acid systems as catalysts in condensation of 1a with 2a as model reaction

S. No. Lewis acid IL Temp (�C) Isolated yield (%)

1 [C2H5NH3][NO3] [C2H5NH3][NO3] 50 21
2 Bi(NO3)3�5H2O [C2H5NH3][NO3] 50 48
3 Bi(NO3)3�5H2O [BMIM][PF6] 30 91 (90a, 85a)
4 Bi(OTf)3 [BMIM][PF6] 50 10
5 Al(OTf)3 [BMIM][PF6] 60 Trace
6 Ln(OTf)3 [BMIM][PF6] 50 81
7 Sc(OTf)3 [BMIM][BF4] 40 88 (86a, 80a)
8 Sc(OTf)3 [BMIM][PF6] 40 85
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Figure 1. Screening of IL/Lewis acid systems as catalysts in condensation of 1a with 2a as model reaction.
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ethylammonium nitrate (EAN) the yield was modest, but conver-
sion was improved with EAN/Bi(NO3)3. Under comparable
conditions, the Lewis acidic IL nitro-substituted butyl-ethyl-
limidazolium-NTf2 gave 52% isolated yield without an added
catalyst. Among the IL/Lewis acid systems studied [BMIM][PF6]/
Bi(NO3)3�5H2O and [BMIM][PF6]/Sc(OTf)3 proved most effective
and were therefore selected to examine the scope of this transfor-
mation (Fig. 2 and Table 2).

In selected cases (Table 1 runs 3 and 7) the reactions were re-
peated in used [BMIM][PF6] IL without addition of fresh Lewis acid.
A slight decrease in the isolated yields was observed for these
cases.

Propargylic alcohols 1a–1d reacted with acyclic 1,3-diketones
2a and 2b, the ketoester 2c, and the cyclic 2d. In many cases, the
direct propargylation products were obtained in respectable iso-
lated yields under very mild conditions. The dipropargylic ethers
6b18 and 9a20 were obtained as minor byproducts (see runs 4, 7
and 10—Table 2).

Competing cycloisomerization to form tetrasubstituted furans
were observed with 1b and 1c, depending on the structure of the
1,3-dicarbonyl compound. Furan formation became predominant
in reaction with the ketoester 2c. Condensation of 1c with the cyc-
lic 2d resulted in isolation of the corresponding allene 14. For com-
parison, allyl alcohol 1e reacted with 2b to give the condensation
product 15 in 86% isolated yield. Figure 3 gives a summary of the
reactions of 2b and 2c with 1b and 1c leading to the observed
products.

The next phase of this study focused on propargylation of
4-hydroxycoumarins ( Fig. 4). Thus 4-hydroxycoumarin 16a
and 6-chloro-4-hydroxycoumarin 16b reacted with the prop-
argylic alcohols 1a–1c, as well as allyl alcohol 1e, and
diphenylmethanol 1f to give the corresponding 3-substituted
coumarins in isolated yields ranging from 96% to 81% except
for reaction of 1a with 16b where the formation of byprod-
ucts 22b and 22c lowered the isolated yield of the desired
product.

The present method offers a number of advantages over the ear-
lier reported procedures as it avoids the use of volatile solvents and
gives respectable isolated yields under very mild conditions. The
recycling/reuse of the IL is an added advantage.



Table 2
Condensation of propargylic alcohols with 1,3-dicarbonyl compounds in IL/ Bi(NO3)3�5H2O or IL/Sc(OTf)3 systems

S. No. Alcohol Diketone Products Time (h) Temp (�C) Isolated yield (%)
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Table 2 (continued)

S. No. Alcohol Diketone Products Time (h) Temp (�C) Isolated yield (%)
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a Dipropargylic ether (6b) exists in two geometrical isomers (in 1:0.74 ratio by NMR) and the unreacted alcohol (1d) was recovered.
b 90% yield was achieved with [BMIM][BF4]/Sc(OTf)3.
c GC yield (8a:8b = 60.7:39.3).
d Exists as two diastereomers.
e GC–MS yield (11a:11b = 92.2:7.8).
f GC–MS yield (11a:9a = 73.5:26.5).
g 82% yield was achieved with [BMIM][BF4]/Sc(OTf)3.
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Figure 3. Product distribution as a function of propargylic alcohol.
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Table 3
C-3 alkylation of 4-hydroxycoumarins in IL/Bi(NO3)3�5H2O system

Entry Alcohol Coumarin Product Temp (�C) Time (h) Isolated yield (%)
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