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Abstract

The trans-configurated square-planar palladium complex trans-[{(Ph2PC6H4CONH)2C6H4}PdCl2] (1), which catalyzes the Suzuki
cross coupling of 4-bromotoluene with phenylboronic acid, was found to react with potassium carbonate in toluene at 90 �C (Suzuki
conditions) to give cis-[{(Ph2PC6H4CON)2C6H4}Pd] (2). The single-crystal X-ray structure analysis of 2 reveals the square-planar pal-
ladium center to be in a cis configuration. The trans–cis configuration change at palladium is possible because of the elimination of two
HCl equivalents in the conversion of 1 into 2. Both complexes 1 and 2 show approximately the same catalytic performance for Suzuki
reactions, suggesting 2 to be the catalytically active species.
� 2006 Elsevier B.V. All rights reserved.
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The Suzuki cross-coupling (Suzuki–Miyaura reaction),
catalyzed by various palladium complexes, is among the
most powerful synthetic tools for the generation of
carbon–carbon bonds [1]. Although many different palla-
dium(II) or palladium(0) complexes catalyze this cou-
pling reaction, significant efforts have been put on the
design of suitable ligands that can increase the catalytic
activity of the palladium center. Some of the most active
Suzuki catalysts are palladium complexes susceptible to
ortho-metallation or palladacycle formation [2,3]. Still,
the best results for the Suzuki cross-coupling of the deac-
tivated and sterically hindered aryl bromide with aryl
boronic acid have been obtained by Buchwald and co-
1387-7003/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.inoche.2006.07.007

* Corresponding author. Tel.: +41 32 718 2405; fax: +41 32 718 2511.
E-mail address: georg.suess-fink@unine.ch (G. Süss-Fink).
workers [4] with ligands avoiding palladacycles forma-
tion. Recently, several palladium(II) complexes contain-
ing trans-spanning diphosphine ligands that contain a
rigid ligand backbone have been synthesized [5,6]. Thus,
trans-[PdCl2(SPANphos)] reported by van Leeuwen does
not show any tendency to cis-trans isomerization [5], the
complex trans-[PdCl2-(diphos)] (diphos = 2,6-bis(2-((diph-
enylphosphino)methyl)phenyl)benzene) reported by Prot-
asiewicz [6] has been successfully used as Heck and
Suzuki catalyst, in spite of the rigid trans-geometry [7].
With the diphosphine Xantphos, developed by van Leeu-
wen [8] and used as a ligand for Suzuki reaction, palla-
dium complexes with trans-standing alkyl and chloro
ligands [9] and with trans-standing aryl and bromo ligands
[10] have been isolated and characterized by X-ray crystal-
lography. Since we recently synthesized a square planar
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Table 1
Catalytic turnover numbers (TON), indicating the moles of product
formed per mol of catalyst used after 18 h, for the Suzuki cross-coupling
of phenylboronic acid with the substrate 4-bromotoluene catalyzed by 1

and 2 in toluene in the presence of K2CO3 (2 equivalents with respect to
substrate) [12]

Br + (HO)2B

T (�C) Catalyst/substrate 1 2

30 1:1000 280 450
30 1:10000 1350 2000
30 1:100000 0 0
60 1:1000 1000 1000
60 1:10000 5100 7400
60 1:100000 33000 49000
90 1:1000 1000 1000
90 1:10000 7350 8800
90 1:100000 61500 71000

1152 L. Chahen et al. / Inorganic Chemistry Communications 9 (2006) 1151–1154
trans-palladium complex containing a rigid diphosphine
ligand backbone, trans- [{(Ph2PC6H4CONH)2C6H4}PdCl2]
(1) [11], we tested it as a catalyst for Suzuki cross-cou-
pling reactions.
Scheme

Fig. 1. ORTEP view of 2 with thermal ellipsoids at the 50% probability level;
P(1) 2.2528(10), Pd(1)–P(2) 2.2481(11), Pd(1)–N(1) 2.032(4), Pd(1)–N(2) 2.069
N(2) 1.353(5), C(9)–P(1) 1.817(4), C(20)–P(2) 1.823(4). Selected bond angles (�
82.29(10), P(1)–Pd(1)–N(2) 161.74(10), P(2)–Pd(1)-N(1) 172.01(10), P(2)–Pd(1
We studied the Suzuki cross-coupling of phenylboronic
acid with 4-bromotoluene catalyzed by complex 1 at differ-
ent temperatures and in different catalyst/substrate ratios.
The results compiled in Table 1 show that complex 1 has
a medium catalytic performance with respect to known
Suzuki catalysts [1–4], the highest catalytic turnover num-
ber (TON) being 61500 (catalyst/substrate ratio of
1:100 000 at 90 �C) for the cross-coupling with the deacti-
vated substrate 4-bromotoluene.

As we observed a color change from yellow to red dur-
ing the catalytic reaction, we decided to study the reactivity
of 1 towards a base such as K2CO3 in toluene under the
same conditions (90 �C) as those for the Suzuki cross-cou-
pling reaction but without substrate and phenylboronic
acid [13]. Under these conditions we observed the same
color change from yellow to red, and from the resulting
solution we isolated the complex cis-[{(Ph2PC6H4CON)2-
C6H4}Pd] (2). The conversion of 1 into 2 implies the loss
of two molecules of HCl, caused by the action of the base
(Scheme 1). The double HCl elimination from 1 is the same
reaction already observed for the platinum analogue trans-

[{(Ph2PC6H4CONH)2C6H4}PtCl2] which, however, works
1.

hydrogen atoms are omitted for clarity. Selected bond lengths (Å): Pd(1)–
(3), C(7)–O(1) 1.229(5), C(14)–O(2) 1.235(5), C(7)–N(1) 1.356(5), C(14)–
): P(1)–Pd(1)–P(2) 105.44(4), N(1)–Pd(1)-N(2) 82.19(13), P(1)–Pd(1)–N(1)
)–N(2) 89.85(10), O(1)–C(7)–N(1) 124.5(4), O(2)–C(14)-N(2) 122.9(4).
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already with triethylamine as a base [16], while the palla-
dium complex 1 requires a stronger base such as K2CO3.

Complex 2 was characterized by correct NMR (1H, 13C,
31P) and mass-spectroscopic data as well as by satisfactory
elemental analysis data [13]. Moreover, red crystals of
2 ÆCH2 Cl2, suitable for single-crystal X-ray structure anal-
ysis, were obtained by leaving a concentrated dichloro-
methane solution of the complex standing several days at
room temperature [14]. The molecular structure of 2 shows
the palladium atom to be in a distorted square-planar
geometry, surrounded by two chlorine atoms and two
nitrogen atoms in a cis coordination geometry, see Fig. 1.
The formation of five- and six-membered chelate rings
imposes a considerable distortion around the palladium
atom. The N–Pd–N angle [82.19(13)�] is acute, whereas
the P–Pd–P angle is obtuse by more than 15� [105.44(4)�].
The atoms Pd(1), P(1), P(2), N(1) and N(2) are almost
coplanar, with an average deviation of 0.0813 Å; the metal
lies out of the plane by 0.1038(13) Å. The Pd–P distances of
the cis complex 2 are shorter than the Pd–P distances in the
trans complex 1 [11] (see Fig. 1).

The isolation of the red complex 2, formed from the yel-
low complex 1 under Suzuki conditions, suggests 2 to be
the active species in Suzuki cross-coupling reactions cata-
lyzed by 1, given the fact that the color of the reaction solu-
tion changes from yellow to red during the Suzuki reaction
with 1 as a catalyst precursor. We therefore compared the
catalytic activities of 1 and 2 for the Suzuki cross-coupling
of phenylboronic acid with 4-bromotoluene under the same
conditions. The results compiled in Table 1 show that the
catalytic turnover numbers of both complexes are compa-
rable, 2 being always slightly more active. This is reason-
able, if one assumes that 1 is only a catalyst precursor
which has to be transformed under catalytic conditions
into the active species 2 by double HCl elimination. As this
reaction implies a trans–cis configuration change at the pal-
ladium center, it appears that the cis configuration is the
more adequate one for Suzuki activity.
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dmax = 23.995–0.817 Å. The structure was solved by direct methods
using the program SHELXS-97 [16] and refined by full matrix least
squares on F2 with SHELXL-97 [17]. The hydrogen atoms were
included in calculated positions and treated as riding atoms using
SHELXL-97 default parameters. All non-hydrogen atoms were
refined anisotropically, using weighted full-matrix least-squares on
F2. A semi-empirical absorption correction was applied using the
MULscanABS routine in PLATON [18]; transmission factors:
Tmin/Tmax = 0.80681/0.93560. All attempts to refine the disordered
molecule of CH2CL2 failed. Therefore, the SQUEEZE instruction in
PLATON [18] was used to calculate the potential solvent accessible
area in the unit cell; 4925.7 Å3 were calculated containing 1012
electrons. Therefore, 18 CH2Cl2 molecules per unit cell were included
in all further calculations. The figure was drawn with ORTEP [19].
CCDC-602847 contains the supplementary crystallographic data for



1154 L. Chahen et al. / Inorganic Chemistry Communications 9 (2006) 1151–1154
this structure. These data can be obtained free of charge at
www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge
Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ,
UK; Fax: +44 1223 336 033; E-mail:deposit@ccdc.cam.ac.uk].

[15] Stoe, X-Area V1.26 & X-RED32 V1.26 Software, Stoe & Cie GmbH,
Darmstadt, Germany, 2005.
[16] G.M. Sheldrick, SHELXS-97 Program for crystal structure determi-
nation, Acta Cryst. A46 (1990) 467–473.

[17] G. Sheldrick, SHELXL-97, Universität Göttingen, Göttingen, Ger-
many, 1999.

[18] A.L. Spek, J. Appl. Cryst. 36 (2003) 7–13.
[19] L.J. Farrugia, J. Appl. Cryst. 30 (1997) 565.

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://deposit@ccdc.cam.ac.uk

	Double HCl elimination and configuration change in the square-planar palladium complex trans-[{Ph2PC6H4CONH2C6H4}PdCl2] under Suzuki conditions: Isolation and molecular structure of cis-[{Ph2PC6H4CON2C6H4}P
	Acknowledgements
	References


