Original paper

Compounds with potential anti-tumor activity VII. Synthesis and anti-tumor activity of 1-aryl-N, N'-di(1,3,4-thiadiazol-2-yl)methylenediamines

Alba CHIMIRRI, Silvana GRASSO, Pietro MONFORTE*, Giovanna FENECH, Maria ZAPPALÀ and Anna-Maria MONFORTE

Dipartimento Farmaco-Chimico, Università di Messina, Viale SS. Annunziata, 98010 Messina, Italy

(Received May 3, 1988, accepted September 5, 1988)

Summary — The synthesis of a series of 1-aryl-N, N'-di(1,3,4-thiadiazol-2-yl)methylenediamines is reported. The compounds are obtained by means of reaction between 2-amino-1,3,4-thiadiazole and aromatic aldehydes. The title compounds were evaluated against the leukemia P388 tumor system in mice and some of them were found to be active. 1-(2,6-Dichlorophenyl)-N, N'-di(1,3,4-thiadiazol-2-yl)methylenediamine 1, whose significant activity against P388 leukemia was reported in a previous paper, was tested against other experimental tumors. It exhibits significant activity against L1210 leukemia and M 5076 ascitic sarcoma.

Résumé — **Composés à activité anti-tumorale potentielle VII. Synthèse et activité anti-tumorale d'aryl-1** N,N'-di-(thiadiazol-1,3,4 yl-2) méthylènediamines. Des nouvelles aryl-1 N,N'-di(thiadiazol-1,3,4 yl-2) méthylènediamines ont été synthétisées par une réaction de condensation de l'amino-2 thiadiazole-1,3,4 avec des aldéhydes aromatiques. Les composés obtenus ont été testés pour leurs propriétés anti-tumorales dans la leucémie expérimentale P388 sur les souris et certains composés se sont montrés actifs. De plus, la (dichloro-2,6 phényl)-1 N,N'-di(thiadiazol-1,3,4 yl-2) méthylènediamine dont une activité significative dans la leucémie P388 a été précédemment reportée, s'est avérée active dans la leucémie L1210 et le sarcome M 5076.

1,3,4-thiadiazole derivatives / N,N'-di(1,3,4-thiadiazol-2-yl)methylenediamines / P388 lymphocytic leukemia / anti-tumor activity

Introduction

The anti-tumor activities of 2-amino-1,3,4-thiadiazole (NSC 4728) and many of its derivatives have been reported by numerous investigators [1-8]. For several years, anti-neoplastic clinical trials had been limited due to marked hyperuricemia [9]. Recent studies have shown that concomitant administration of the xanthine oxidase inhibitor, allopurinol, prevents the dose-limiting toxic effect to hyperuricemia [10-12] and have renewed attention in 2-amino-1,3,4-thiadiazole and related compounds [13, 14].

In particular, N, N'-di(1,3,4-thiadiazol-2-yl)methylenediamine (NSC 143019) showed a higher and more rapid anti-tumor effect than that of the parent compound (NSC 4738). Consequently, we found it worthwhile to extend our research to derivatives containing a series of substituents at the methylene group, in order to explore the influence of these molecular modifications on anti-leukemic activity.

Recently, the synthesis and anti-leukemic evaluation of a series of 1-arylsubstituted N,N'-di(1,3,4-thiadiazol-2-yl)-

methylenediamines were reported from our laboratories [15] and many of them were found to be active against murine P388 leukemia. In particular, high anti-leukemic activity (T/C 192%) was demonstrated for 1-(2,6-dichlorophenyl)-N,N'-di(1,3,4-thiadiazol-2-yl)methylene diamine 1 which was designated a 'selected agent compound' by the National Cancer Institute, Bethesda, MD, U.S.A., for evaluation versus human xenograft passaged in athymic mice and other murine tumors. This report outlines the synthesis and the evaluation against P388 leukemia of new N, N'-di(1,3,4-thiadiazol-2-yl)methylene diamines 4 and the results of the screening of compound 1 against additional experimental tumors.

^{*}Author to whom correspondence should be addressed.

Compd	Ar	Yield ^a (%)	mp (°C)	Formula	IR (cm ⁻¹)	⁴ H NMR (DMSO-d ₆) ^b
<u>4a</u>	CI CI	55	155-156	C ₁₁ H8C12N6S2	3368 3187	6.78 ('t, 1H, J=6.5, CH); 7.26-7.86 (m, 3H, Ar); 8.72 (s, 2H, CH-5'); 8.78 (d, 2H, J=6.5, NH).
<u>4b</u>		32	118-120	C ₁₁ H8C12N6S2	3315	6.7 (br t, 1H, CH); 7.3-7.96 (m, 3H, Ar); 8.68 (br s, 4H, CH-5' and NH).
<u>4c</u>		49	154-155	C ₁₁ H ₈ F ₂ N ₆ S ₂	3320 3280	6.78 (t, 1H, J=6, CH); 7.06-7.76 (m, 3H, Ar); 8.71 (s, 2H, CH-5'); 8.76 (d, 2H, J=6, NH).
<u>4d</u>	F-	58	142-144	C ₁₁ H ₈ F2N6S2	3340 3190	6.71 (t, 1H, J=6, CH); 6.93-7.88 (m, 3H, Ar); 8.67 (s, 2H, CH-5'); 8.71 (d, 2H, J=6, NH).
<u>4e</u>	F -	92	148-150	C ₁₁ H8F2N6S2	3200 3115	6.71 (t, 1H, J=6.5, CH); 7.06-7.56 (m, 3H, Ar); 8.68 (s, 2H, CH-5'); 8.75 (d, 2H, J=6.5, NH).
<u>4f</u>		82	170-171	C ₁₁ H8F2N6S2	337 0 3190	6.9 (t, 1H, J=6, CH); 6.96-7.56 (m, 3H, Ar); 8.59 (s, 2H, CH-5'); 8.66 (d, 2H, J=6, NH).
<u>4g</u>	F -	44	155-156	C ₁₁ H8F2N6S2	3335	6.48 (br t, 1H, CH); 7.25-7.85 (m, 3H, Ar); 8.73 (br s, 4H, CH-5' and NH).
<u>4h</u>		78	175-177	c ₁₁ H ₈ C1N7O2S2	3315	6.86 (t, 1H, J=6, CH); 7.81 (d, 1H, $J_{3,4}=8.5$, H-3 Ar); 8.25 (dd, 1H, $J_{4,3}=8.5$, $J_{4,5}=2.5$, H-4 Ar); 8.48 (d, 1H, $J_{5,4}=2.5$, H-6 Ar); 8.73 (s, 2H, CH-5'); 8.91 (d, 2H, J=6, NH).
<u>4i</u>		58	161-162	c ₁₁ H ₈ C1N ₇ O ₂ S ₂	3240 3160	6.96 (t, 1H, J=6, CH); 7.28-7.95 (m, 3H, Ar); 8.58 (d, 2H, J=6, NH); 8.61 (s, 2H, CH-5').
<u>4j</u>		47	153-155	c _{ll} H8C1N7O2S2	3320	6.55 (t, 1H, J=6.5, CH); 7.81 (m, 2H, H-5 and H-6 Ar); 8.22 (d, 1H, J _{2,6} =2, H-2 Ar); 8.72 (s, 2H, CH-5'); 8.84 (d, 2H, J=6.5, NH).
<u>4k</u>		48	158-160	c _{llH8} c1n ₇ 0 ₂ s ₂	3325 3305	6.96 (br t, 1H, CH); 7.61 (dd, 1H, J _{4,3} =8.5, J _{4,6} =2, H-4 Ar); 7.71 (d, 1H, J _{6,4} =2, H-6 Ar); 8.01 (d, 1H, J _{3,4} =8.5, H-3 Ar); 8.65 (br s, 4H, CH-5' and NH).
<u>41</u>		46	138-140	C ₁₂ H ₁₁ N703S ₂	3388 3368	3.83 (s, 3H, OCH ₃); 6.56 (t, 1H, J=7, CH); 7.03-7.71 (m, 3H, Ar); 8.63 (s, 2H, CH-5'); 8.72 (d, 2H, J=7, NH).
<u>4m</u>	Br Br	45	150-152	C ₁₂ H ₁₁ BrN ₆ OS ₂	3345 3188	3.8 (s, 3H, OCH ₃); 6.61 (t, 1H, J=6.5, CH); 6.95 (d, 1H, J _{3,4} =8, H-3 Ar); 7.43 (dd, 1H, J _{4,3} =8, J _{4,6} =2, H-4 Ar); 7.51 (d, 1H, J _{6,4} =2, H-6 Ar); 8.52 (d, 2H, J=6.5, NH); 8.60 (s, 2H, CH-5').
<u>4n</u>	CH30 OCH3	42	140-141	c _{13H14} N602S2	3 32 0	3.8 (s, 6H, OCH ₃); 6.73 (t, 1H, J=6.5, CH); 7.06 (s, 3H, Ar); 8.55 (d, 2H, J=6.5, NH); 8.65 (s, 2H, CH-5').

^aYield of pure, isolated product. ^bo in ppm downfield from TMS; *J* values are in Hz.

Chemistry

The 1-aryl-N, N'-di(1,3,4-thiadiazol-2-yl)methylenediamines (4a-n) were obtained in good yields by condensation of 2-amino-1,3,4-thiadiazole 2 with an equimolecular amount of the appropriate disubstituted aromatic aldehyde (3a-n) as shown in Scheme 1. The structure of the obtained compounds was ascertained by means of IR and ¹H NMR spectral data which are reported in Table I and supported by satisfactory elemental analysis. In the ¹H NMR spectra the benzylic hydrogen couples with the NH protons. The NH signals disappeared and the ArCH signal became a singlet upon addition of deuterium oxide.

Table II. P388 murine lymphocytic leukemia anti-tumor activity.

Pharmacological results and Discussion

Table II indicates the results of the evaluation of the title compounds versus P388 lymphocytic leukemia in mice. Only compounds **4b**, **4e**, **4f** and **4j** increased the median survival time of mice with a T/C% maximum of 131, 174, 160 and 150, respectively. A Topliss analysis [16] of antineoplastic activities of **4a**-**n** did not reveal π or σ dependencies and no unfavorable steric effect was noted.

Also the stability of compounds of our series was examined under simulated physiological conditions (phosphate buffer, pH 7.4, at 37°C) and no difference was observed between active and inactive compounds. All derivatives are stable until 40°C but they are totally hydrolized at higher temperature.

Table III reports the screening of 1 against various murine tumors and versus human xenograft implanted in mice. Apart from being a good P388 anti-leukemic (T/C 192%), as previously reported, 1 is particularly active against lymphocytic leukemia L1210 (T/C 223%), more than the parent 2-amino-1,3,4-thiadiazole [13], and against ascitic sarcoma M 5076 (T/C 195%).

Dose (mg/kg)	<i>T / C</i> %	Compd.	Dose (mg∕kg)	<i>T / C</i> %	
240	96	4h	240	119	
120	100		120	104	
60	89		60	101	
400	131	4i	240	118	
200	114		120	106	
100	109		60	96	
200	93	4j	240	150	
100	93	-	120	137	
50	99		60	109	
240	107	4k	240	126	
120	96		120	106	
60	105		60	107	
240	174	41	240	101	
120	126		120	98	
60	119		60	98	
240	160	4m	240	90	
120	109		120	92	
60	108		60	87	
240	100	4n	240	100	
120	101		120	91	
60	101		60	87	
	$\begin{array}{c} 1000 \\ (mg / kg) \end{array}$	Dose (mg/kg) $1/20$ 240 96 120 100 60 89 400 131 200 114 100 109 200 93 100 93 50 99 240 107 120 96 60 105 240 174 120 126 60 119 240 160 120 109 60 108 240 100 120 101 60 101	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dose (mg/kg) 172% Compd. Dose (mg/kg) 172% 240 96 4h 240 119 120 100 120 104 60 89 60 101 400 131 4i 240 118 200 114 120 106 100 109 60 96 200 93 4j 240 150 100 93 120 137 50 200 93 4j 240 126 120 137 50 99 60 109 240 107 4k 240 126 120 96 120 106 60 107 240 174 4l 240 101 120 120 126 120 98 60 98 240 160 4m 240 90 92 120

			c		-					•
lable	н.	Evaluation	ot	compound		against	various	tumors	in.	mice
			~ ~		_					

Tumor system	Sex	Dose (mg / kg)	Toxicity day survivors	b.wt. change ^a (g)	T/C (%)	
P388	F	400	6/6	-0.8	192	
lymphocytic		200	6/6	-1.0	174	
leukemia		100	6/6	-0.4	148	
	М	400	6/6	-2.4	186	
		200	6/6	-1.1	162	
		100	6/6	0.8	127	
		50	6/6	0.4	124	
L1210	М	400	5/5	0.9	223	
lymphocytic		240	6/6	0.7	171	
leukemia		144	5/5	0.5	151	
		100	6/6	-1.0	134	
		50	6/6	-0.4	131	
M 5076	F	800	10 / 10	-2.0	195	
ascitic		400	10/10	-0.8	164	
sarcoma		200	10/10	-0.2	137	
		100	10/10	0.6	125	
		50	10 / 10	-0.6	131	
	М	800	9/10	-2.0	157	
		400	10 / 10	0.2	136	
		200	10/10	-0.9	136	
		100	10/10	-0.1	142	
		50	10 / 10	-0.2	122	
LOX	F	200	6/6	-2.9	126	
amelanotic		100	6/6	-2.1	106	
melanoma		50	6/6	-2.1	106	
Human mammary	F	400	4/4	-1.7	44	
carcinoma MX-1		200	6/6	-1.7	73	
xenograft		100	6/6	-1.5	94	

^aBody weight change difference (g) computed between toxicity day and day 1.

Experimental protocols

Chemistry

Melting points were determined on a Kofler hot stage apparatus and are uncorrected. IR spectra were recorded in hexachlorobutadiene on a Perkin–Elmer model 257 spectrophotometer. ¹H NMR spectra were measured with a Bruker WP 80 SY spectrometer in DMSO-d₆ using tetramethylsilane as the internal standard: chemical shifts are expressed in δ (ppm) and coupling constants (J) in Hz.

Analytical thin – layer chromatography (TLC) was performed on silica gel 60 F_{254} Merck 5 × 10 (0.025 mm) plates using CHCl₃ / CH₃OH (8:2) as the eluant. Elemental analyses (C, H, N, S) were obtained on a C. Erba model 1106 elemental analyzer and were within ±0.4% of the theoretical values.

General procedure for the synthesis of compounds **4a**-**n**

To 5.05 g (0.05 mol) of 2-amino-1,3,4-thiadiazole 2 was added the equimolecular amount of the appropriate aldehyde (3a-n). The reaction mixture, in the absence of solvent, was vigorously stirred at 160°C for a few minutes to obtain a complete fusion. After cooling, the crude product obtained was purified by washing repeatedly with ethanol and diethyl ether. All attempts to recrystallize the compounds failed because decomposition occurred upon heating. However, final products were shown to be pure by TLC.

Pharmacology

All the biological data are the results of screening performed under the auspices of the Developmental Therapeutics Program, Division of Can-

cer Treatment, National Cancer Institute, Bethesda, MD, U.S.A., according to their protocols [17].

P388 lymphocytic leukemia

The tumor inoculum consisted of 10⁶ ascites cells, injected i.p. into CD_2F_1 mice on day 0. The compounds 4a - n (Table II) were administered i.p. in saline with Tween 80 or in hydroxypropylcellulose daily for 5 days starting on day 1. Activity was expressed as $T/C \times 100$, T being the median survival time of treated animals and C being the median survival time of control animals. A T/C value $\ge 127\%$ is considered necessary to demonstrate moderate activity. A T/C value $\ge 175\%$ is considered significant activity. A T/C value <85% indicates a toxic test

Compound 1 was also tested against other tumors (Table III) as reported below.

L1210 lymphocytic leukemia

L1210 lymphocytic leukemia (0.1 ml of diluted ascitic fluid containing 10^5 cells) was injected i.p. into male CD₂F₁ mice on day 0; compound 1, as a suspension in saline with Tween 80, was injected on day 1 and the treatment continued daily for a total of 5 injections. The final evaluation day was day 30 and toxicity was evaluated on day 5. The parameter measured was median survival time: an initial $T/C \ge 125\%$ is considered necessary to demonstrate moderate activity. A reproducible T/C \geq 150% is considered significant activity. A T/C <86% indicates toxicity.

M 5076 ascitic sarcoma

M 5076 ascitic sarcoma, 10⁶ cells of ascitic fluid diluted up to 0.1 ml, was injected i.p. into $B_6C_3F_2$ mice (male or female) on day 0; compound 1, as a suspension in saline with Tween 80, was injected i.p. every 4th day for a total of 4 injections beginning on day 1. The final day of testing was day 60 and toxicity was evaluated on day 14. The parameter measured was median survival time; a T/C value $\ge 125\%$ is considered necessary to demonstrate activity. A reproducible $T/C \ge 150\%$ is considered significant activity. A \tilde{T}/C value <86% indicates toxicity.

LOX amelanotic melanoma

0.1 ml of diluted ascitic fluid containing 106 cells was injected i.p. into athymic Ncr-nu female mice; a suspension of compound 1 in saline with Tween 80 was injected i.p. one day after tumor implantation and the treatment was repeated every 4th day for a total of 3 injections. Final evaluation day was day 60 and toxicity was evaluated on day 10. The parameter measured was median survival time: an initial T/C value of \ge 140% demonstrates activity and T/C < 86% indicates toxicity.

Human mammary carcinoma MX-1 xenograft

A fragment of MX-1 human mammary carcinoma having an average dia-

meter between 9 and 12 OMUs (ocular micrometer unit) was implanted under the subrenal capsule of athymic female mice. The i.p. treatment with compound 1, suspended in saline with Tween 80, started 1 day after tumor implantation and was repeated every 4th day for a total of 3 injections. Day 11 was the final evaluation day and was also the toxicity evaluation day. The parameter measured was mean tumor weight change for test and control groups; an initial T/C < 20% is considered necessary to demonstrate activity.

References

- 1 Oleson J.J., Sloboda A., Troy W.P., Halliday S.L., Landes M.J., Angier R.B., Semb J., Cyr K. & Williams J.H. (1955) J. Am. Chem. Soc. 77, 6713
- 2 Ciotti M.M., Humphreys S.R., Venditti J.M., Kaplan N.O. & Goldin A. (1960) Cancer Res. 20, 1195
- 3 Matsumoto T., Ootsu K. & Okada Y. (1974) Cancer Chemother. Rep. 58, 331
- 4 Tsukamoto K., Suno M., Igarashi K., Kozai Y. & Sugino Y. (1975) Cancer Res. 35, 2631
- 5 Nelson J.A., Rose L.M. & Bennett L.L. Jr. (1977) Cancer Res. 37, 182
- 6 Zee-Cheng R.K.J. & Cheng C.C. (1979) J. Med. Chem. 22, 28
- 7 Hill D.L. (1980) Cancer Chemother. Pharmacol. 4, 215
- 8 Miyahara M., Nakadate M., Sueyoshi S., Tanno M., Miyahara M. & Kamiya S. (1982) Chem. Pharm. Bull. 30, 4402
- 9 Krakoff I.H. & Balis M.E. (1959) J. Clin. Invest. 38, 907 10 Stewart J.A., Ackerly C.C., Myers C.F., Newman R.A. & Krakoff I.H. (1986) Cancer Chemother. Pharmacol. 16, 287
- Shevrin D.H., McGuire W.P., Lanzotti V., Krauss S., Blough R., 11 Cobleigh M., Johnson C., Lad T. & Kukla L. (1986) Cancer Treat. Rep. 70, 417
- 12 Myers C.F., Newman R.A. & Hacker M.P. (1982) Proc. Am. Assoc. Cancer Res. 23, 136
- 13 Miyamoto K., Koshiura R., Mori M., Yokoi H., Mori C., Hasegawa T. & Takatori K. (1985) Chem. Pharm. Bull. 33, 5126
- Drug Data Report (1986) J.R. Prous Science, Barcelona, pp. 871
- Grasso S., Chimirri A., Monforte P., Fenech G. & Zappalà M. (1986) Farmaco Ed. Sci. 41, 713 15
- 16 Topliss J.G. (1977) J. Med. Chem. 20, 463
- 17 U.S. Department of Health and Human Services, Public Health Service, National Institute of Health (1984) NIH Publication No. 84-2635, pp. 15, 23, 27; (1985) Instructions No. 339B and 374B