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ABSTRACT: Amide synthesis is one of the most important transfor-
mations in chemistry and biology. The direct use of ammonia for the 
incorporation of nitrogen functionalities in organic molecules is an 
attractive and environmentally benign method. We present here a new 
synthesis of amides by acceptorless dehydrogenative coupling of benzyl 
alcohols and ammonia. The reaction is catalyzed by a pincer complex 
of earth-abundant manganese in the presence of stoichiometric base, 
making the overall process economical, efficient and sustainable. Inter-
esting mechanistic insights based on detailed experimental observa-
tions, indicating the crucial role of the base, are provided. 

The synthesis of amides is among the most significant transfor-
mations in organic synthesis, as they are widely used as precursors for 
the synthesis of polymers, biologically-active compounds, and pharma-
ceuticals.1 Conventional methods for the preparation of amides include 
coupling of amines with carboxylic acid derivatives, nitrile hydrolysis, 
and rearrangement of ketoximes, generating copious waste in most of 
the cases. In 2007 our group reported the synthesis of amides by dehy-
drogenative coupling of alcohols and amines, generating hydrogen gas 
as the only byproduct, catalyzed by a PNN-Ru-pincer complex.2 This 
dehydrogenative coupling method opened up a new era for the atom 
economic and environmental benign synthesis of amides, and was 
followed by several groups employing various catalysts for this reac-
tion.3 

The direct incorporation of a nitrogen atom in organic molecules by 
use of ammonia is an attractive and step-efficient process. The selective 
synthesis of primary amines by coupling of primary alcohols and am-
monia homogeneously catalyzed by an acridine-based PNP-Ru pincer 
complex was reported by our group in 2008.4 Subsequently several 
other groups reported on the selective formation of primary, secondary 
and tertiary amine by use of alcohols and ammonia catalyzed by noble 
metal complexes.5 We recently published the direct synthesis of N-
heteroaromatics from diols and ammonia (Scheme 1).6  

Due to the high abundance and lower cost, development of base- 
metal catalysts is desirable. Manganese is earth’s third most abundant 
transition metal, and considerable progress has been made by several 
groups7 including our’s8 in employing manganese complexes in various 
(de)hydrogenation reactions. Direct synthesis of amides by dehydro-
genative coupling of primary amines with alcohols or esters catalyzed 
by a manganese complex was recently reported by our group.8d We also 
reported the dehydrogenative coupling of diols and amines to form 
cyclic imides using a manganese complex.8g  

Intrigued by these recent developments in the synthesis of amides, 
we explored the possibility of acceptorless dehydrogenative coupling of 

alcohols and ammonia as the only nitrogen source, avoiding the use of 
preformed amines. Such a process  would be more step economic, 
efficient, and effective compared to other amide synthesis pathways. It 
should be noted that acceptorless dehydrogenative coupling reactions 
of alcohols are generally driven by efficient H2 removal, making such 
reactions using ammonia in a closed system quite challenging.6 To the 
best of our knowledge, formation of amides by coupling of alcohols and 
ammonia with the extrusion of H2 and water, using any catalyst, has not 
been reported. Herein, we present the synthesis of secondary amides 
by manganese catalyzed coupling of benzyl alcohols and gaseous am-
monia. 

Scheme 1. Transition Metal Catalyzed Dehydrogenative Cou-
pling of Alcohols and Amines or Ammonia 

 
Reaction of benzyl alcohol (0.5 mmol) with ammonia (7 bar) in the 

presence of complex 28k (2 mol%) and KH (3 mol%) at 150°C in to-
luene resulted after 24 h in the formation of N-
benzylidenebenzylamine (A, Table 1) in 25% yield and N-
benzylbenzamide (B) in 13% yield (Table 1, entry 1). Complex 1 (see 
SI) as catalyst afforded N-benzylidenebenzylamine in 26% yield as the 
only product under similar conditions (Table 1, entry 2). Increasing 
the base loading to 25 mol%, using 1 under the same reaction conditi-
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ons resulted 32% yield of (A) and 12% of N-benzylbenzamide (B), 
whereas using an equivalent amount of KH (with respect to the al-
cohol) resulted in the formation of 48% of N-benzylidenebenzylamine 
and 38% of N-benzylbenzamide, the overall conversion being 90% 
(Table 1, entries 3 and 4 respectively). Quite remarkably, using com-
plex 2 and a stoichiometric amount of KH (relative to the alcohol) 
under 7 bar ammonia at 150°C for 24 h resulted in 92% conversion 
with 100% selectivity to N-benzylbenzamide (Table 1, entry 5). Thus, 
the amount of base used in the catalysis has a crucial effect on the selec-
tivity towards amide formation.  

Table 1. Optimization of the reaction conditions for the ami-
dation of benzyl alcohol with ammoniaa 

 
Entry Catalyst 

(2 mol%) 

Base(Y mol%) Conv. 
(%) 

Yieldb 

A(%) B(%) 

1 2 KH (3) 40 25 13 

2 1 KH (3) 28 26 0 

3 1 KH (25) 48 32 12 

4 1 KH (100) 90 48 38 

5 2 KH (100) 92 0 90 

6c 2 KH (100) 90 0 88 

7d 2 KH (100) 99 0 90 

8e 2 KH (100) 99 70 28 

9 2 tBuOK (100) 90 0 89 

10 2 KHMDS (100) 65 f 05 35 

11g - KH (100) 5 0 0 

12h 3 KH (100) 99 04 92 

Substrate Scope:i 

 

aReaction conditions: Catalyst (2 mol%), benzyl alcohol (0.5 mmol), 
KH (specified amounts), NH3 (7 bar), 150°C, 24h, toluene, the reac-
tion quenched with methanol. bGC yield with mesitylene as internal 
standard. cIn presence of 300 eq. of Hg. dSolvent 1,4-dioxane. eSol-
vent THF. fOther unidentified products formed. gWithout any cata-
lyst, a small amount benzaldehyde was formed. hCatalyst 3 (2 mol%). 
iOptimized reaction conditions: catalyst 2 (2 mol%), primary alcohol 
(0.5mmol), KH (0.5 mmol), NH3 (7 bar), 150°C, 24h, toluene (2 
ml). 

Significantly, addition of 300 equivalents of Hg to the reaction solu-
tion showed no decrease in the product formation or selectivity (Table 
1, entry 6), suggestive of a homogeneous catalytic pathway. Changing 
the solvent to 1,4-dioxane using catalyst 2 under the optimized condi-
tions resulted in a similar yield of the amide product (entry 7) whereas 
low yield of the amide was observed when THF was used (28 %) (en-
try 8). A possible reason for the observed different selectivity of the 
product with 1,4-dioxane and THF as solvents is their coordination 
ability, which competes with coordination of the hemiaminal interme-

diate, required for its dehydrogenation, as opposed to the non-
coordinating nonpolar toluene. Using an equivalent amount of tBuOK 
resulted in a similar yield and selectivity of the amide (entry 9) whereas 
using KHMDS as base, lower conversion (65%) and also selectivity 
(35%) to the amide was observed and some unidentified products were 
formed (entry 10). Under similar conditions, using stoichiometric KH 
and no catalyst, no conversion of benzyl alcohol was observed (entry 
11). Analysis of the gas phase by gas chromatography indicated the 
formation of H2 (see Figure S1). 

Using the optimized reaction conditions, in the presence of a stoi-
chiometric amount of KH with respect to the alcohol (toluene, 150°C, 
2 mol% 2), the scope of this new dehydrogenative coupling reaction 
was explored. Electron-rich benzyl alcohols showed very good reactivi-
ty, forming the corresponding N-substituted amides as the major 
products (Table 1). Benzyl alcohol and its derivatives 4-methyl, 3-
methyl, 4-ethyl, 4-isopropyl, 4-tert-butyl benzyl alcohols afforded good 
yields of the corresponding amides with high selectivity (Table 1, entry 
A-F). 2-menthyl benzyl alcohol also showed good conversion with 47% 
of the amide product and 45% of the 2,4,5-trisubstituted imidazole as 
the side product (Entry G, and also see later for details). The sterically 
hindered 2,4,6-trimethylbenzyl alcohol was completely inactive under 
the optimized reaction conditions and unreacted alcohol was recovered 
(See SI, Table S2). 4-Methoxy benzyl alcohol and 3-(N,N-dimethyl 
amine)benzyl alcohol also afforded the corresponding amides in good 
yields and high selectivity (Table 1, entries H, I). Employing benzyl 
alcohols bearing electron withdrawing substituents such as 4-
trifluoromethyl benzyl alcohol resulted in poor yield of the secondary 
amide and moderate yield of the primary amide, in addition to the 
unreacted alcohol (see SI, Table S2). In case of 1-hexanol, N-
hexylhexan-1-imine was obtained as the major product along with 
other unidentified condensation products (due to the enolizeable ali-
phatic aldehyde intermediate) and no amide product was detected. 
The electron rich aliphatic alcohol lacking enolizeable protons, neo-
pentyl alcohol, formed 2,4,5-tri(tert-butyl)-imidazole as the major 
product (see SI Table S2). Formation of imidazole derivatives was 
reported in case of the ruthenium catalyzed reductive amination of 
carbonyl compounds with ammonia in under hydrogen.9  

To gain mechanistic insight into this unprecedented amidation reac-
tion, some control experiments were performed. Reaction of an 
equimolar amount of benzyl alcohol with either benzyl amine or 1-
hexylamine in the presence of catalyst 2 (2 mol%) and a catalytic 
amount of KH (3 mol%) at 150°C for 24 h in a closed system resulted 
in quantitative formation of the corresponding imine as the only prod-
uct and no corresponding amide was observed (Scheme 2a). However, 
when the same reaction was performed using benzyl alcohol and benzyl 
amine, but in presence of a stoichiometric amount of KH, N-
benzylbenzamide was observed as the major product (Scheme 2b). 
Although dehydrogenative coupling of alcohols and amines to form 
amides using a manganese catalyst was reported by us, the substrate 
scope for this reaction was limited to aliphatic alcohols and benzyl 
amines.8d Thus, this is the first example of amide formation by dehy-
drogenative coupling of benzyl alcohols and benzyl amines catalyzed 
by an earth-abundant metal complex.  

One possible mechanism for amide formation could involve addi-
tion of water to an intermediate imine10. To explore this possibility, we 
performed a reaction of N-benzylidenebenzylamine (0.05 mmol) with 
catalyst 2 (2 mol%) in the presence of KH (catalytic or stoichiometric 
amount with respect to substrate) in a 1,4-dioxane-water mixture (1:1) 
at 150°C for 24h. However, no amide product was observed and the 
unreacted imine was isolated with some aldehyde and amine as hydrol-
ysis products at the end of reaction. Based on this, we exclude the pos-
sibility of formation of amide by the addition of water to an imine in-
termediate (Scheme 2c).  
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Scheme 2. Using catalyst 2, effect of amount of base on amide 
formation from benzyl alcohol and benzyl amine (a, b), and lack 
of reaction of imine upon heating in dioxane/water (c).  

 
Another possibility is that benzyl alcohol reacts with ammonia to 

form benzyl amine,4 followed by reaction of the latter with benzyl alco-
hol to form an amide via dehydrogenation of a hemiaminal intermedi-
ate. To explore this possibility, a control experiment was carried out 
(Scheme 3). Reaction of equimolar amounts of 4-methylbenzyl alcohol 
and benzyl amine with a stoichiometric amount of KH (with respect to 
the alcohol) under the optimized conditions afforded a minor amount 
of 4-methyl-N-(4-methylbenzyl)benzamide as the only amide product, 
along with a major amount of a mixture of imine products (Scheme 3, 
A; see SI for details). This suggests that under these catalytic condi-
tions, benzyl alcohol and the amine do not couple to form an amide. 
Furthermore, treatment of equivalent amounts of benzyl alcohol and 4-
methyl benzyl alcohol with ammonia (7 bar), in the presence of two 
equivalents of KH (with respect to both alcohols) and complex 2 under 
similar conditions afforded a mixture of all four possible amides as the 
major products (Scheme 3, B). This suggests that the reaction pro-
ceeds via the formation of a 1-aminoalkoxide intermediate followed by 
its dehydrogenation to the primary amide, and finally its N-alkylation 
by the alcohol (see details in the mechanistic description). To establish 
the initial alkoxide formation, an independently prepared potassium 
salt of benzyl alcohol was treated with ammonia under similar condi-
tions. Analysis of the reaction mixture at the end of the reaction 
showed the formation of N-benzylbenzamide with a similar yield 
(80%) (Scheme 3, C). Additionally, N-benzylbenzamide was formed 
quantitatively by treatment of benzamide with benzyl alcohol in the 
presence of catalyst 2 (2 mol%) using a catalytic amount of KH (3 
mol%) (Scheme 3, D), supporting that the reaction proceeds via the N-
alkylation of the amide. To our knowledge, this is the first report of 
manganese catalyzed N-alkylation of an amide.11 

Scheme 3. Control catalytic experiments  

Based on the aforementioned observations, a plausible mechanism is 
proposed in Scheme 4. Reaction of an equivalent amount of base (KH) 

with the alcohol generates the corresponding alkoxide salt (I), which 
could be in some equilibrium with the large excess of ammonia at the 
high reaction temperature to regenerate some alcohol and form potas-
sium amide. Reaction of the alcohol with the Mn complex forms the 
corresponding aldehyde, through β-hydride elimination.8k This is fol-
lowed by the attack of ammonia (or formed potassium amide), on the 
aldehyde to form a hemiaminal that undergoes deprotonation by the 
base to form an 1-aminoalkoxide (II). We believe that the 1-
aminoalkoxide is an important intermediate for the second dehydro-
genation, likely via the amido intermediate (III), leading to the selec-
tive formation of the amide by retarding the water elimination and 
disfavoring the imine formation. The second dehydrogenation step 
leads to the corresponding primary amide salt (IV or V, Scheme 4). N-
alkylation of the formed amide with the primary alcohol via dehydro-
genative coupling and borrowing hydrogenation affords the final amide 
salt product (VI).  

Scheme 4. Proposed mechanism for the formation of secondary 

amides from benzyl alcohols and ammonia 

In order to gain evidence about the ionic nature of the product and 
intermediate, the precipitate from the reaction mixture of benzyl alco-
hol with an equivalent of KH and catalyst 2 with ammonia (7 bar) was 
isolated. HRMS showed a mass peak at 210 (M/Z) corresponding to 
the amido anion (VI) in the negative scanning mode whereas a mass 
peak at 250 (M/Z) corresponding to the K salt of N-benzylbenzamide 
was detected in the positive scanning mode (See SI). Recently we re-
ported that the bridged BH3 moiety of complex 2 is easily eliminated 
by its reaction with gaseous ammonia or any primary amine.8k When 
the ammonia bound complex 3 was synthesized and used as catalyst of 
the reaction of benzyl alcohol with ammonia, 92% (Table 1, entry 12) 
yield of N-benzylbenzamide was formed under the optimized reaction 
conditions, which is comparable to the catalytic activity of complex 2, 
indicating that ammonia bound complex 3 is likely an active organome-
tallic intermediate during the reaction (See SI).  

In conclusion, for the first time, the synthesis of amides via dehydro-
genative coupling of an alcohol and ammonia is reported, ammonia 
serving as the nitrogen source. The reaction is catalyzed by a complex 
of the first row, earth-abundant transition metal manganese. An unusu-
al, plausible mechanism is proposed in which the role of stoichiometric 
base is to form a 1-aminoalkoxide hemiaminal intermediate (II, 
Scheme 4), which leads to selective amide formation by retarding water 
elimination from the hemiaminal intermediate. Further investigation 
regarding the mechanism of this reaction is underway. We believe that 
this reaction provides an attractive new pathway to the synthesis of 
secondary amides from benzyl alcohols and ammonia using a base-
metal catalyst.  
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Experimental procedure, and control experiments were describe in the 
SI “This material is available free of charge via the Internet at 
http://pubs.acs.org.”  
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