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Abstract—The reaction of benzyl-2-arylmethylidenecyclopropylmethyl-amine 1 with iodine in the presence of potassium carbonate
or PhSeBr stereoselectively gives ring-closure product 1-iodo-2-aryl-3-azabicyclo[3.1.0]hexane or 1-phenylselenenyl-2-aryl-3-azabi-
cyclo[3.1.0]hexane in good yields at room temperature. A plausible reaction mechanism has been proposed.
� 2007 Elsevier Ltd. All rights reserved.
3-Azabicyclo[3.1.0]hexanes are important structural
motifs frequently found in pharmacologically interesting
structures. They are present in a large number of biolog-
ical active compounds, which exhibit activity against a
broad range of Grampositive pathogens, including
methicillin-resistant Staphylococcus aureus (MRSA)
and Staphylococcus epidermidis (MRSE) and vanco-
mycin-resistant Enteroccocus faecium (VRE).1 The cur-
rent approach toward 3-azabicyclo[3.1.0]hexanes mainly
involves rhodium(II) acetate-mediated cyclopropana-
tion of an N-protected pyrroline with ethyl diazoace-
tate.2 This method is obviously limited to small-scale
synthesis because of the expensive catalytic system.
Thus, a general and practical method to prepare 3-aza-
bicyclo[3.1.0]hexanes is still required.

Methylenecyclopropanes (MCPs), highly strained but
readily accessible molecules, have been proven to be use-
ful synthetic intermediates because the relief of ring
strain provides a potent thermodynamic driving force.3

In the past several years, a number of methods for con-
struction of complex and interesting organic molecules
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from MCPs have been developed.4 The electrophilic
cyclization of methylenecyclopropanes has been well
documented.5 Recently, we have found cyclizations of
cyclopropylideneacetic acids and cyclopropylidene alco-
hols to afford 5,6-dihydro-2H-pyran-2-ones or dihydro-
pyrans in good yields under different reaction
conditions.6 In our continual efforts on the application
of MCPs in organic synthesis, we wish to report our
recent studies on the reaction of benzyl-2-arylmethyl-
idene-cyclopropylmethyl-amine 17 with iodine or PhSeBr
to give the corresponding 1-iodo-2-aryl-3-azabicyclo-
[3.1.0]hexanes 2 or 1-phenylselenenyl-2-aryl-3-azabi-
cyclo[3.1.0]hexanes 3 in good yields under mild
conditions.

At the first attempt, we conducted the reaction of ben-
zyl-2-benzylidenecyclo-propylmethyl-amine 1a (1 mmol)
with iodine (1.5 equiv) in THF at room temperature in
the presence of potassium carbonate (1.7 equiv).8 The
desired product 2a was obtained in 63% yield with excel-
lent stereoselectivity (Table 1, entry 1). With this encour-
aging result, a systematic study was undertaken to
screen various solvents for the cyclization process. The
results are summarized in Table 1. We found that the
ring-closure reactions promoted by iodine proceeded
smoothly at room temperature to give the corres-
ponding trans-1-iodo-2-phenyl-3-azabicyclo[3.1.0]hex-
ane (2a) in moderate to good yields in all cases (Table
1, entries 1–5). In CH3CN, this reaction proceeded
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Table 1. Reaction of MCPs E-1a with iodine in a variety of solvents

N
Bn

I H

H

PhI2

K2CO3, r.t.Ph H

NHBn

1a 2a

Entry Solvent Time (h) Yield of 2aa (%)

1 THF 4 63
2 DMF 24 51
3 CH3CN 2 88
4 CH2Cl2 24 45
5 MeC6H5 24 56

a Isolated yields, I2 (1.5 equiv), K2CO3 (1.7 equiv).

Figure 1. The crystal structure of 2b.

Table 3. Reactions of benzyl-2-arylmethylidene cyclopropylmethyl-
amines 1 with PhSeCl in CH2Cl2

N
Bn

PhSe H

H

Ar

Ar H

NHBn

1 3

PhSeBr

CH2Cl2, r.t.

Entry Ar Time (h) Yieldsa (%)

1 C6H5(1a) 1 3a, 85
2 p-CH3OC6H4(1c) 1 3b, 76
3 p-BrC6H4(1d) 1 3c, 80
4 o-CH3OC6H4(1f) 1 3d, 72
5 o-BrC6H4(1g) 1 3e, 77

a Isolated yields based on MCPs 1.
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efficiently to give 2a in 88% yield for 2 h (Table 1, entry
3). Therefore, the reaction conditions chosen to carry
out this reaction were in CH3CN with iodine (1.5 equiv)
and K2CO3 (1.7 equiv) at room temperature.

Then, we carried out the electrophilic cyclization of a
variety of benzyl-2-arylmethylidenecyclopropylmethyl-
amines E-1 with iodine under the optimized conditions.
The results are summarized in Table 2. It is obvious that
both electron-donating and electron-withdrawing sub-
stituents on the benzene ring of 1 can be applied to
afford 3-azabicyclo[3.1.0]hexanes 2 in fairly good yields.
For MCPs E-1, trans-1-iodo-2-aryl-3-azabicyclo[3.1.0]-
hexanes 2 were obtained stereoselectively in all cases
within 2 h (Table 2, entries 1–7). The cis isomers were
not detected in the crude products. The configuration
of 2b was determined by X-ray diffraction. The X-ray
crystal structure of 2b is shown in Figure 1.9

Moreover, we examined a similar electrophilic cycliza-
tion reaction of benzyl-2-benzylidenecyclopropylmethyl-
amine 1a with PhSeBr. We found that the corresponding
cyclization product 3a was obtained in 89% yield when
the reaction was carried out at room temperature in
CH2Cl2 with 1.2 equiv of PhSeBr.10 Then, the scope of
this reaction was investigated. Some typical results are
summarized in Table 3. From Table 3, it can be con-
cluded that in the presence of 1.2 equiv of PhSeBr, this
reaction proceeded efficiently to give the cyclization
Table 2. Iodocyclization of benzyl-2-arylmethylidenecyclopropylmeth-
yl-amines 1

N
Bn

I H

H

ArI2

K2CO3, r.t.Ar H

NHBn

1 2

Entry Ar Time (h) Yielda (%)

1 C6H5(1a) 2 2a, 88
2 p-CH3C6H4(1b) 2 2b, 92
3 p-CH3OC6H4(1c) 2 2c, 89
4 p-BrC6H4(1d) 2 2d, 85
5 p-ClC6H4(1e) 2 2e, 91
6 o-CH3OC6H4(1f) 2 2f, 78
7 o-BrC6H4(1g) 2 2g, 75

a Isolated yields based on MCPs 1.
products 3 in good yields in all cases. For MCPs 1,
trans-1-phenylselenenyl-2-aryl-3-azabicyclo[3.1.0]hexanes
3 were formed exclusively (Table 3, entries 1–5).11

Based on the above results, a plausible mechanism for
this electrophilic cyclization reaction of MCPs 1 with
iodine in the presence of K2CO3 and PhSeBr is depicted
in Scheme 1. The addition of I+ or PhSe+ to the double
bond of MCPs 1 would form the bridged intermediate
N
Bn

X H

H

Ar

X+

BnHN

Ar

H

BnHN

Ar

H

BnHN

Ar

H

X X

BnHN

H

Ar

X

Ar>>H

1 4 4A

4B
2 X=I
3 X=PhSe

- H+

Scheme 1.
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cation 4. The intermediate cation 4 would open up to
generate a carbocation 4A, which is stabilized by the
cyclopropyl and aryl rings.12 Due to the steric hindrance
of groups Ar and H, 4A would adopt conformation 4B
by the rotation of bond C4–C5, in which the bulkier
group Ar is trans to the I or PhSe group.13 Then, the
subsequent intramolecular nucleophilic attack of the
NH group would lead to the stereoselective formation
of cyclization product 2 or 3.

In conclusion, we have developed a highly stereoselec-
tive iodocyclization and selenidocyclization reaction of
MCPs 1 with iodine in the presence of K2CO3 or
PhSeBr, leading to the formation of 1-iodo-2-aryl-3-aza-
bicyclo[3.1.0]hexanes 2 or 1-phenylselenenyl-2-aryl-3-
azabicyclo[3.1.0]hexanes 3 in good yields under mild
conditions. The stereoselectivity may be controlled by
the steric effects of the substituent group of the C@C
bond. As the easy availability of starting materials, the
convenient operation and the usefulness of the products,
the reaction may have potential utilities in organic
synthesis.
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