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Abstract: The cycloaddition reactions of difluorocarbene, generat-
ed by the decomposition of FSO2CF2CO2SiMe3, with a,b-acetylen-
ic ketones give gem-difluorocyclopropenyl ketones in good yields.
Treatment of these gem-difluorocyclopropenyl ketones with aque-
ous potassium carbonate results in the formation of gem-difluorinat-
ed dihydrofurans.
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The cycloaddition of difluorocarbene to carbon–carbon
double or triple bonds is one of the most important meth-
ods for the synthesis of organofluorine compounds.1 As
the smallest cyclic organofluorine, gem-difluorocyclopro-
pene derivatives command much attention on account of
their theoretical interest and synthetic application.2

During the course of our studies on difluorocarbene chem-
istry, we conducted cyclopropanation reactions using our
difluorocarbene precursor, i.e., trimethylsilyl fluorosulfo-
nyldifluoroacetate (TFDA), with 1-iodoalkynes3 and a,b-
unsaturated aldehydes or ketones.3 It was found that intro-
duction of an iodine atom into the alkyne of the former
leads to the formation of stable 3,3-difluoro-1-iodocyclo-
propene, whereas carbonyl groups in the latter should be
protected as 1,3-dioxolanes, otherwise the reaction did not
occur. Furthermore, deprotection of these fluorinated
compounds with oxalic acid either gave the corresponding
gem-difluorocyclopropyl ketones or 2-aryl-3-fluoro-
furans. In connection with the above, we were interested
in the cycloaddition reaction of difluorocarbene with a,b-
acetylenic ketones; herein, we present the results.

Unlike a,b-unsaturated aldehydes and ketones, a,b-acety-
lenic ketone 1a, without protection, reacted smoothly with
TFDA (3 equiv) in diglyme (DG) in the presence of 10
mol% anhydrous NaF at 120 °C for about three hours to
give the corresponding adduct 3,3-gem-difluorocyclopro-
penyl ketone (2a), in 83% conversion and 89% yield
(Scheme 1). The use of more TFDA (5 equiv) did not in-
crease the conversion or yield significantly. Similarly,
other a,b-acetylenic ketones4 reacted under the same
conditions5 (Table 1).

Scheme 1 Cycloaddition of difluorocarbene to 1

As shown in Table 1 the yields of gem-difluorocyclopro-
penyl ketones 2 varied from modest to good. When R1 or
R2 was a phenyl with electron-donating groups such as
OMe or Me, the yields of 2 were higher than those sub-
strates with electron-withdrawing groups such as Br, CF3

(Table 1, entries 2, 3 vs 4, 5 and entries 6, 7 vs 8, 9). When
R1 was an alkyl group, the yield of 2 was lower than when
R1 was an aryl group (Table 1, entry 10 vs 11).

The structures of all gem-difluorocyclopropenyl ketones 2
were confirmed by 1H and 19F NMR spectroscopy, MS,
and elemental analysis or HRMS. The structure of 2a was
further determined by single-crystal X-ray analysis
(Figure 1), which suggests that the molecule is almost pla-
nar. Notably the length of C1–C2 is 1.33 Å, similar to that
of a normal carbon–carbon double bond (1.34 Å).6

Table 1 Cycloaddition of Difluorocarbene to 1a

Entry Substrate 1 Product 2 Yieldb (%)

1 1a (R1 = Ph, R2 = Ph) 2a 89

2 1b (R1 = Ph, R2 = 4-t-BuC6H4) 2b 85

3 1c (R1 = Ph, R2 = 4-MeC6H4) 2c 80

4 1d (R1 = Ph, R2 = 4-BrC6H4) 2d 71

5 1e (R1 = Ph, R2 = 4-CF3C6H4) 2e 65

6 1f (R1 = 4-MeOC6H4, R
2 = Ph) 2f 95

7 1g (R1 = 4-MeC6H4, R
2 = Ph) 2g 90

8 1h (R1 = 4-BrC6H4, R
2 = Ph) 2h 88

9 1i (R1 = 3-CF3C6H4, R
2 = Ph) 2i 55

10 1j (R1 = n-C5H11, R
2 = Ph) 2j 50

11 1k (R1 = Ph, R2 = n-C4H9) 2k 88

a Reagents: 1/NaF/TFDA, 1:0.1:3, 120 °C, 3 h.
b Isolated yield based on conversion of 1.
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To compare gem-difluorocyclopropenyl ketones 2 with
gem-difluorocyclopropenes,3 we studied the ring-opening
reactions of compounds 2. Using 2a as an example, it was
found that acids such as HCl or BF3·OEt2 as catalyst in
various solvents always resulted in a complex reaction. To
our surprise, when treating 2a with aqueous 10% K2CO3

in MeOH, a new product was obtained in high yield and
was characterized as 3,3-difluoro-2-methoxy-2,5-diphen-
yl-2,3-dihydro-furan 3a (Figure 2).8 The X-ray analysis of
3a shows that the torsion angle of C(1)–C(2)–C(3)–C(4)
and C(1)–O(1)–C(4)–C(3) are –6.3° and 5.64°, indicating
that the fluorinated dihydrofuran ring is almost coplanar.
To our knowledge, this is the first X-ray structure of
difluorinated dihydrofuran.

Figure 2 X-ray structure for 3a

In a similar fashion, other gem-difluorocyclopropenyl
ketones 2 were converted to gem-difluorinated
dihydrofurans7 (Scheme 2, Table 2).

The data in Table 2 demonstrate that when R1 and R2 were
aryl groups having either electron-donating or electron-

withdrawing groups, the reactions proceeded smoothly to
furnish 3 in good yields (Table 2, entries 2–9), but alkyl
substituents resulted in a slightly lower yield of 3. 

The formation of 3 may be rationalized as follows: addi-
tion of methanol to cyclopropene gives A. The carbon
bearing methoxy group in A is then subjected to intra-
molecular attack by the enolate ion generated by collapse
of the cyclopropane B (Scheme 3).

Scheme 3 A possible mechanism for the formation of 3.

In conclusion, we have accomplished the synthesis of
gem-difluorocyclopropenyl ketones by the cycloaddition
of difluorocarbene to a,b-acetylenic ketones. These
ketones can be converted into gem-difluorinated dihydro-
furans easily in high yields under basic conditions.
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Figure 1 X-ray structure of 2a

Scheme 2 Synthesis of gem-difluorinated dihydrofurans
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Table 2 Synthesis of Difluorinated Dihydrofuransa

Entry Substrate 2 Product 3 Yieldb (%)

1 2a (R1 = Ph, R2 = Ph) 3a 75

2 2b (R1 = Ph, R2 = 4-t-BuC6H4) 3b 88

3 2c (R1 = Ph, R2 = 4-MeC6H4) 3c 80

4 2d (R1 = Ph, R2 = 4-BrC6H4) 3d 97

5 2e (R1 = Ph, R2 = 4-CF3C6H4) 3e 89

6 2f (R1 = 4-MeOC6H4, R2 = Ph) 3f 88

7 2g (R1 = 4-MeC6H4, R
2 = Ph) 3g 92

8 2h (R1 = 4-BrC6H4, R
2 = Ph) 3h 90

9 2i (R1 = 3-CF3C6H4, R2 = Ph) 3i 75

10 2j (R1 = n-C5H11, R
2 = Ph) 3j 70

11 2k (R1 = Ph, R2 = n-C4H9) 3k 75

a Excess aq K2CO3 was used.
b Isolated yield after silica gel column chromatography. 
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