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Abstract

Eluding the involvement of solvents in organic $ysis and introducing environment friendly
procedures can control environmental problems. A&ildaand an efficient solvent free
mechanochemical method (grinding) is achieved tath®size novebis-biphenyl substituted
thiazolidinones using non-toxic and cheapN-acetyl glycine (NAG). Organocatalytic
condensation of a series of Schiff's bases beatiffgrent substituents with thioglycolic acid
produces a variety of thiazolidinones derivativeggood to excellent yieldn vitro inhibition
studies against mushroom tyrosinase of these tidazne analogues revealed that many of
them possessed good to excellent tyrosinase ifdnbét low micro-molar concentrations. In
particular, six compounds exhibited potent inhityitpotential with 1Gy values ranging from
0.61+£0.31 to 21.61+0.11 uM as compared with thagtahdard kojic acid (1§ 6.04+0.11 pM).
Further molecular docking studies revealed thatlfezolidinones moiety plays a key role in the
inhibition mechanism by well fitting into the enzgrbounding pocket

Keywords: N-acetyl glycine, Thiazolidinones, Tyrosinase Intidn
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Introduction

Environmentally benign synthesis of chemicals ahdrmaceutical agents remain a challenge
from the very beginning. It has received greatrdib® of scientists and technologists because of
global ecosystem [1-3]. To solve this issue safeests, especially water and supercritical O
or solvents with minimum vapour pressure (ioniaiis) are usually recommended. It has also
been a good saying that “the best solvent is neestl! [3]. The harmful effects of chemicals on
the environment can be addressed by omitting stdvieom synthetic cycle. Organic synthesis
can be carried out in solvent free conditions ft]éxample Mannich reactions [5], Mukaiyama-
Aldol condensation [6], Prins cyclization [7], SkeMiyara coupling reaction [8] and Passerini
reaction [9]. One of the most important approacfessolvent free synthesis is known as
mechanochemistry and its significance has been greoed for long time [10, 11].
Mechanochemical methods have gained interest [1241d provide a way to perform reactions
in a neat environment. It follows the twelve rutdsgreen chemistry [17], reduces the E factor
and increases the sustainability of the chemidi8y 19].

Many reactions have been performed very efficieatlg conveniently even with solid reactants
in eco-friendly conditions, which also reduce thestcof solvent. In the present work we
explored the solvent free synthesis of thiazolidesmy an essential pharmacophore by the
constitution. We employed the mechanochemical ntetlyosimply using mortar and pestle.
Tyrosinase (EC 1.14.18.1) is a multifunctional,cglyylated, copper-containing enzyme, and it is
found exclusively in melanocytes. Tyrosinase istlsgsized by melanosomal ribosomes found
on the rough endoplasmic reticulum and catalyzes digtinct reactions both of which are
essential for biosynthesis of melanin. This progasseeds/ia conversion of tyrosine to 3,4-
dihydroxy phenylalanine (DOPA), a process termedsiyase monophenolase activity. The next
step is the oxidation of DOPA into DOPA quinonepracess called diphenolase activity. The
reactive ortho quinone, DOPA quinone, spontaneopslymerizes to high molecular weight
melanin nonenzymatically [20, 21]. This procesa ideterminant of mammalian skin color and
is closely related to local hyperpigmentations sasimelasma, ephelide and lentigo. Recently, it
has also been suggested that tyrosinase contriboitdse neurodegeneration associated with
Parkinson’s disease [22]. Indeed, the unregulatédraof tyrosinase can be a factor in a number
of human disease etiologies. Thus, tyrosinase itntibhas been ardently explored as an avenue
for therapies to these diseases. Over the lastémades, a large number of naturally occurring

and synthetic compounds that can act as tyrosinaggtors have been reported, but only a few
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of them are put into a practical use due to theakvactivity or safety concerns. Tyrosinase
inhibitors typically either render the copper withhe active site inactive by chelation, obviating
the substrate— enzyme interaction, or they inlukitlationvia an electrochemical process [23].
We sought to evaluate thiazolidinone skeleton Fairttyrosinase inhibition properties and to
elucidate their inhibition mechanisms by moleculacking studies.

Thiazolidinones have been under great intentiontdueeir privileged status in pharmaceutical
sciences. The wonder nucleus gives out differenvatives with all different types of biological
activities [24]. They exhibit a range of pharmaapbtal activities including anti-hyperglycemic
[25], anti-cancer [26], antiarthritic [27, 28], &amflammatory [29], anti-microbial [30], anti-
convulsant [31], antidiarrheal [32], antihistaminj83], anti-diabetic [34], cyclooxygenase
(COX) inhibitory [35], antagonist [36], cardioprateve [37], necrosis factat-antagonist [38],
antitubercular [39] and as anti-HIV agents [40].

The first ever pharmacological evaluation of thiatinone as anti-tuberculos{3B) agent was
reported by Italian scientist, Vistentini’ in 19541] and then Marshall and Vallance reported the
anti-convulsing activity in the same year [42]. 1982, Sohda and co-workers evaluated
thiazolidinones in hyperglycemia. Later in 1997 AFo0d and Drug Administratio@pproved
“troglitazone” (TZD) in hyperglycemic conditions3444]. Thereafter, in 1999, two more TZD
derivatives, ‘rosiglitazone’ and ‘pioglitazone’ gad FDA (Food and Drug Administration)
approval [45]. Moreover, a vast of studies havenb@ene on the role of thiazolidinones and the
risk of incident congestive heart failure amosdgjgnts with type-2 diabetes mellitus [46-48]. In
2011, Wei and Wan studied the role of thiazolide®m bone remodeling [49, 50].

In the recent decades, the synthesis of substitili@dolidinones and related compounds has
attracted considerable attention because thesearordp constitute the structural frameworks of
several naturally occurring alkaloids that show idemange of pharmaceutical and industrial
importance [51]. Subsequently, there have beentemupted curiosities in the improvement of
new synthetic protocols for the construction of 4kthiazolidinone scaffold [52-62].

Moisture and oxygen free, inexpensive and non-tatiganocatalysts are very effective for
chemical conversions [4]. They are usually prefér@ver transition metal catalysts in
pharmaceutical synthesis. Our group planned to geefent and environment friendly
organocatalyst for the synthesis of novel bioloycpotent pharmacophores [63-66] with better
yield and easy purification workup [67]. Here, wemose a novel synthetic protocol for the

synthesis of new benzidine based thiazolidinondogoas using NAG as an organocatalyst.
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Keeping in view the synthetic chemistry of thiadotones in literature, it was thought that a
catalyst is required, which can facilitate the realmf water during the cyclocondensation step
of the synthesis as it seems the most critical stembtaining the higher yields of 4-

thiazolidinones and it can be enhanced by the tispmropriate catalyst. Therefore, we decided
to explore the catalytic potential of NAG as itiaates the removal of water by protonation of in

situ moieties (scheme 2).

Results and Discussion

Chemistry

In general, our protocol comprises of synthesisiigfbiphenyl thiazolidinones in two steps.
Firstly the selected diamines, benzidirdlg énd o-toluidine @) were refluxed with different
aromatic aldehydes for 4-5 hrs by using ethyl abt@s-a solvent and glacial acetic (few drops)
acid as-a catalyst. Solid which appeared afterimgaklas filtered, washed with-hexane and
dried. In the second step the intermediafies If & 2a-2f) formed in the first step condensed
with thioglycolic acid in different conditions angbt 5- memberedis-biphenyl substituted
thiazolidinones 3a-3f & 4a-4f) (scheme 1)We selected the reaction of Schiff base) (with
thioglycolic acid to optimize the reaction condit® We performed the reaction under different
catalysts, solvents, and also optimized the tenperand finally summarized the result (table
1). We started the optimization process in the atsef catalyst and using toluene as solvent
where the product was obtained 52 % after 12 hefbiix (table 1 entry 1). We further tested
reaction under different conditions (table 1, er?rg). The changes in the conditions led to
different yields of the producBé ranging from 25 - 94 %. The minimum yield of theduct
was observed in the reaction havingNEas catalyst (table 1, entry 3). The poor perforoeais
presumably due to Bl not promoting a clean cyclisation process in ¢baversion of Schiff
base to thiazolidinone3¢). The yield of the product was improved by perforgnithe reaction in
the presence of NAG as catalyst and toluene agsbiesulting in the production of 88 % 3
(table 1, entry 5). The catalytic action of NAG wadso observed in the absence of solvent only
providing mechanochemical conditions. After scragrall the conditions, it was found that this
mechanical energy has promotion effects on theticeaand this was emerged as the best choice
among all provided conditions which yield the maxim% age (94 %) of the product (table 1,

entry 6).
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126 Scheme 1:Synthesis of Schiff bases from 1 & 2 (la-1f) a@@d-2f). Synthesis obis-biphenyl
127  substituted thiazolidinones (3a-3f & 4a-4f) fromIfeand 2a-2f.

128

129 Subsequently, the amount of NAG required for thisaction in solvent-free and

130 mechanochemical environment was also investigasdde( 1, entry 1-4). The maximum amount
131 of the product was calculated by using 2.0 equintalef NAG as catalyst (table 1, entry 4) and it
132 was observed that the amount of NAG is reciprooahe product yield up to the maximum
133 concentration of 2 equivalents. Decreasing amofiMiAG decreased the amount of product
134 (table 1, entryl-3) and vice versa. Thus, 2 eqaalof NAG as catalyst in solvent-free

135 environment is the optimized condition for thisagan (graph 1). With the optimized conditions
136 in hands, a series of Schiff bases were appliedstablish the scope and generality of this
137 protocol affording the respective thiazolidinone good to excellent (79-92 %) yields in 5-8 hrs
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140 Table 1: Optimization of conditions for the synthesis3gf

of reflux (figure 1). The final products were ididied by FTIR, '"HNMR
analysis g¢ee S).

. ®*CNMR and CHNS

Temp | Time (o
Entry | Catalyst | Solvent °C) (hr) Yield (%)
1 None toluene reflux 12 52
2 EtN EtN r.t 24 25
3 Pyridine toluene reflux 11 46
4 |Hunig Basg toluene reflux 10 85
5 NAG toluene reflux 7 88
6 NAG None 80C 5 94
7 NAG None | 1006C| 7 89
141
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143 Scheme 2Synthetic protocol for model substra8s)l under different conditions described in table 1.
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Scheme 3Proposed mechanism of thiazolidinone synthé@sifAG.
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Figure 1. Structures ofhis-biphenyl thiazolidinones3@-3f & 4a-4f) synthesizediia the solvent free
protocol using NAG as the catalyst.

The plausible catalytic mechanism of our react®ilustrated in scheme 3. The first step of the
mechanism involves—in the protonation of thioglycohcid from NAG followed by the
nucleophilic attack of lone pairs oN-of Schiff base at the nucleophilic carbon centedpcing
an intermediate having germinal diol. Geminal d®lan unstable moiety which is readily
converted to ketonic group by removing the watetemude. In the next step, deprotonation of
this intermediate is facilitated by the attackNsfcetyl ethanoate on the —H of the thio group

followed by the cyclization of the intermediate.

Inhibition against tyrosinase

The six compounds of this novel series of thialiobnes showed potent inhibitory potentials
against mushroom tyrosinase which is a key enzymeélanin biosynthesis (both in plants and
animals)[68]. The inhibitory potential depends upon the sitape and the interactive forces
between the inhibitor and the enzyme. In ordendq@are the structure activity relationship, the

two parent molecules, benzidind) (and 3,3’-dimethylbihenyl-4,4’-diamine2) and twelve
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thiazolidinones derivative8é-3f & 4a-4f) were subjected ton vitro tyrosinase inhibition assay
using kojic acid (IGy 6.04+0.11 uM) as the standard. Kojic acid is twadus whitening agent
and widely used in cosmetics, but due to its cydeity level, there is a need to search for better
tyrosinase inhibitors with no or less toxic. Thega molecules have shown negligible activity
(only 20-23 % inhibition for both for botlil and 2). But the bis-biphenyl substituted
thiazolidinones showed significant potential thae parent molecules and even some of them
show inhibition efficiency better than the standadd their lowest 1§ values reaches
0.61+0.31pM. Thévis-biphenyl substituted thiazolidinones contain tlee®on donating groups
such as hydroxyl, methoxy, dimethyl amino and etectwithdrawing groups such as phenyl
ring. The inhibition potential against tyrosinasg bix best thiazolidinones derivatives
synthesized decreased 8s:> 3d > 4d > 3e > 4a > 3Among them3c was the most potent
with an G value of 0.61+0.31uM. The compouBld possessed the hydroxyl group along with
thiazolidinone group which might be responsibleitsinhibitory potential.

Both compounds3d (ICsp = 2.41+0.32) anddd (ICso = 2.81+0.06) also exhibited potent
inhibition than the standard. Methyl substitutiamsthe biphenyl ring od4d seem to have a trifle
effect on its inhibition ability towards the tyrosise. The analoguge (ICso = 4.41+0.10) also
showed the potent inhibition having methoxy grodpng with thiazolidinone ring. The
compound4a having 1Gy= 7.71+£0.21 also showed good inhibition againsteaheyme wherein
thiazolidinone ring is effectively taking part ing inhibition of tyrosinase, though hydroxyl and
methoxy groups enhanced their inhibitory potenalalso showed inhibitory potential 36&=
21.61+0.11) but three-fold less thda having the same skeleton instead of methyl graips
biphenyl ring.

On the other hand, analogu8® and 4b did not show any remarkable inhibition against
tyrosinase, which might be due to bulky substitaeftthese analogues. Compouifis4c and

4f also did not show any notable inhibition eitherggesting that the positions of substituents
are very crucial. Thugara- hydoxyl substituted analogues were inactive wbitbo substituted
showed inhibition potential. However, in the ca$elq which is a combination dc and4a,
methyl groups at biphenyl ring render it inactitéese comparisons suggest that thiazolidinone
moiety is necessary but not sufficient to achieigdér inhibition potency.

Table 2: In vitro tyrosinase inhibitory activity of compound$ & 2) and (3a-3f & 4a-4f)

(inhibition percentage and $gvalues are means given with SEM).
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Sample Codedhibition{(%)at0:5/mm ICs0 UM
1 23.35%0.17
2 20.25+0.15
3a 94.85+0.18 21.61+0.11
3b 20.96+0.19
3c 99.08+0.16 0.61+0.05
3d 96.32+0.48 2.4140.32
3e 98.91+0.19 4.41+0.11
3f 78.03+0.21 342.52+0.17
4a 99.63+0.16 7.71£0.12
4b 51.63+0.14 <500
4c 22.79+0.15
4d 98.43+0.12 2.81+0.06
4e 49.36+0.47
4f 39.410.61

Kojic Acid 93.51+0.91 6.04+0.11

Order of inhibition of Tyrosinase
3c>3d>4d>3e>4a>3a>3f

Molecular Docking Studies

Molecular dockings were carried out for the inlobst3a, 3c, 4aand 4d in order to further
investigate the binding mechanism. Apparently,rtfeige sizes prevent them from entering the
narrow binuclear copper-binding site, however, they well accommodated and bound at the
surface of the enzyme binding pocket. Thus, theidiear copper-binding site at the bottom of
the enzyme binding pocket is efficiently blocked tbat small ligand such as tropolone is
competitively excluded (see Sec. 3 of the Suppgrtiformation).In general, the two central
benzene rings of the inhibitors are in parallehvilie enzyme surface, while one of the two end
benzene substituted TZD moieties fits into thedwsipocket formed by Asn81, Cys83, His85,
Glu322, and Thr324. As shown in Fig. 2 (a), botldroxyl groups at the ortho-position 8t
form H bonds with the oxygen atoms of two residues, Gly281 and Glu322, with bond
lengths of 1.77 A and 2.05 A respectively. Howewer,H bond is observed betweéd, whose
hydroxyl groups are at the para- positions, andymez Thus, the interaction between the
inhibitor 3c and enzyme is enhanced by the H bonding interastiorhich can lead to high

binding affinity. The similar binding poses 8t and4d are compared in fig. 2 (e). F8a and
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43, their end benzene rings contain no substitutigves.expect their binding by the enzyme less
strong, but more flexible. The methyl groups in thghenyl ring alter the orientation of the end
benzene groups, which leads to more favorable aotens between the inhibitor and the
enzyme. As compared in fig. 2 (f), the end moietéga orient toward the enzyme binding
pockets better than that 8& despite the high resemblance of their binding po$his results in
better shape fitness of the former with the hosttans its higher activity toward the tyrosinase.
The structure ofgaricus bisporus mushroom tyrosinase was obtained from the prodeita
bank (PDB code: 2Y9X) [69]. The structures of intabs were optimized at B3LYP/6-31G (d)
level using Gaussian03 [70]. Docking studies wendgomed for four inhibitors using Autodock
package [71]. Residues within 5 A of the inhibitavere identified using VMD program [72].
The distance cut off and angle threshold were a& A and 150 A, respectively, in order to

identify the H bonds between the inhibitor ande¢heyme.

Figure 2: lllustrations of close contacts between the ressdand inhibitors: (83c, (b) 4d, (c)4a, (d) 3a
Cu”" ions are displayed in green spheres. Two H bonedsepresented with black dash lines in (a).
Binding modes o8c (red sticks)andd (blue sticks) are compared in (e) and thoséadfgrey stick) and
3a (pink stick) are compared in (f). Surface représgons are employed for the enzyme.
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Conclusions

In summary, we have developed an efficient prodesshe synthesis of thiazolidinones, in

which the use of NAG as a catalyst along with mad@a energy leads to better yields than
other solvents and catalysts. A mechanistic insighals that the catalytic protonation and
subsequent removal of water molecule during théoegandensation of thiazolidinone is the key
step of the reaction. This new catalytic methodvigles distinct advantages, including: (i) mild

conditions, (ii) high vyields, (iii) free of organisolvents with economic and environmental-
friendly perspective (iv), easy to prepare thelgataand (v) simple work-up procedures, making
it more environmentally friendly and suitable f@arde scale operations. The new bioactive

compounds were also shown good to excellent inbibagainst tyrosinase.

Experimental Section

General Method

Reagents were purchased from common commerciallistgpand were used without further
purification. Solvents were purified and dried bgrelard procedures, when necessary. TLC was
performed on silica coated aluminum plates,£§/.2 mm).*H and**CNMR were recorded at
400 and 175 MHz, respectively, and DMSO was usetht@snal standard. IR spectra were

recorded on a Jasco A-302 IR spectrophotometer.

General procedure for the synthesis of Schiff basdttermediate)

Schiff bases of selected diamines were synthesiga@gported method with slight modification
[73].To a solution of benzidine (1) or 3, 3'-dimglhiphenyl-4,4’-diamine (2) (0.01 mol or 1 eq)
in absolute ethanol (8-10 ml) added few drops etiacacid . Then respective aldehyde (0.022
mol or 2 eq) was added into the solution and méxtwas refluxed at 88C for 5-8 hrs. The
reaction was monitored by TLC. After the completainreaction, kept the reaction mixture in
refrigerator for overnight. The solid was obtaingitered and washed with water followed by

hexane and recrystallized with suitable solvent.

11



278 General procedure for the synthesis of thiazolidinnes derivatives (3a-3f & 4a-4f) without
279 any catalyst or reagent

280 In the reaction flask (50ml) added Schiff base fhot) and marcaptoacetic acid (2.05 mmol) in
281 the presence of toluene (10 ml) and refluxed fdr28ours at 88C. After completion of the
282 reaction, as confirmed by TLC the reaction mixtuvas cooled to RT. The solvent was
283 evaporated under reduced pressure and solid prodast washed with aqueous NaH{CO
284 solution to remove excess of marcaptoacetic aclie $olid product was then dried and

285 percentage yield was calculated.

286 General procedure for the synthesis of thiazolidinoes in different solvents by using
287 catalyst

288  Schiff base3e (1 mmol) and thioglycolic acid (2.05 mmol) werdluged together in a round
289 bottom flask (50ml) in the presence of 10 ml ofes&#d solvents and appropriate catalyst and
290 refluxed for 8-12 hours at 8. At the end of the reaction, after confirmatibrough TLC, the
291 solvent was evaporated and solid product was wash#tdaq. NaHCQ solution to remove
292 excess of thioglycolic acid. The solid product wien dried and percentage yield was
293 calculated.

294  General procedure for the synthesis of thiazolidinoes in the absence of solvent by using
295 NAG as catalyst

296 A mixture of Schiff base (1 mmol), thioglycolic dc{2.05 mmol) and NAG (2.0 mmol) were
297 finely ground in a mortar and pestle. Then finelgunded mixture was transferred to the Pyrex
298 glass round bottom flask which was stirred for Bdurs at 100C. After the completion of
299 reaction (TLC analysis), the solid was washed Wit solution of NaHC@to remove excess of
300 thioglycolic acid. Product was isolated with solvertraction in ethyl acetate, crystallized, dried
301 and % age yield was also calculated.

302 Spectral Data
303
304 3,3'-(biphenyl-4,4'-diyl)bis(2-phenylthiazolidin-4-one) (3a)

305  Brown solid; mp = 235-23%C; IR (KBr)v__:1340 (C-N), 1712 (C=0), 3014 (Ar-CH-NMR:

306 (500 MHz, DMSO): 7.63-7.58 (4H, m, ArH), 7.42 (48,J = 7.05 Hz, ArH), 7.36-7.29 (10H, m,
307 ArH), 5.37 (2H, s, CH), 3.52 (2H, d, GH3.43(2H, d, CH). °C-NMR: (175 MHz, DMSO);
308 170.8 (C=0, 2C), 139.7 (2C), 139.1 (2C), 128.7 (22B.2 (2C), 127.5 (2C), 127.5 (2C). 126.9

12
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(2C), 126.6 (2C), 125.7 (4C), 119.9 (2C), 119.5)(B2.9, 52.7, 34.2, 34.3; CHNS; Calculated:
C, 70.84; H, 4.76; N, 5.51; O, 6.29; S, 12.61. kbu®, 70.75; H, 4.66; N, 5.56; S, 12.62.

3,3'-(biphenyl-4,4'-diyl)bis(2-(4-(dimethylamino)phenyl)thiazolidin-4-one) (3b)
Light Brown solid; mp = 238-24(C; IR (KBr) v__:1348(C-N). 1693 (C=0), 3310 (Ar-CH-

NMR: (500 MHz, DMSO): 7.64-7.59 (4H, m, ArH), 7.18H, d,J = 8.8 Hz, ArH), 7.11 (4H, d,

J = 8.4 Hz, ArH), 6.68-6.61 (4H, m, ArH), 5.16 (2H,GH), 3.92 (2H, d, Ch), 3.75 (2H, d,
CH,), 3.06 (12H, s, N-CHJ; *C-NMR: (150 MHz, DMSO): 170.3 (C=QC), 150.0 (2C), 137.9
(2C), 134.7 (2C), 129.6 (2C), 128.3 (2C), 126.5)(222.6 (4C), 119.6 (4C), 112.7 (2C), 111.9
(2C), 52.5 (2C), 42.9 (4C, G} 33.9 (2C); CHNS: Calculated: C, 68.66; H, 5.K6:9.42; O,
5.38; S, 10.78. Found: C, 68.61; H, 5.75; N, 9%,768.60.

3,3'-(biphenyl-4,4'-diyl)bis(2-(2-hydroxyphenyl)thiazolidin-4-one): (3c)

Yellow solid; m.p.: 232-234C; IR (KBr) v 1330(C-N), 1713 (C=0), 3340 (Ar-OHH-

NMR: (500 MHz, DMSO): 7.58 (4H, dl = 9.5 Hz, ArH), 7.35 (4H, d] = 7.06 Hz, ArH), 7.09-
7.06 (4H, m, ArH), 6.81-6.72 (4H, m, ArH), 5.56 (28] CH,), 5.02 (2H, s, OH), 3.61 (2H, d,
CH,), 3.55 (2H, d, Ch); *C-NMR: (175 MHz, DMSO0): 167.0 (C=QC), 154.6 (2C), 139.1
(20), 138.5 (20C), 128.2 (2C), 127.5 (2C), 127.1)(426.5 (2C), 119.7 (2C), 119.4 (2C), 118.9
(20), 114.4 (2C), 52.9 (2C), 35.6 (2C); CHNS: CHted C, 66.65; H, 4.47; N, 5.18; O, 11.84;
S, 11.86. Found: C, 66.60; H, 4.45; N, 5.20; S831.

3,3'-(biphenyl-4,4'-diyl)bis(2-(4-hydroxy-3-methoxyphenyl)thiazolidin-4-one): (3d)

Yellowish-Brown solid; m.p.: 237-23€; IR (KBr) v 1712 (C=0), 1546 (C=C), 1340 (C-N);

'H-NMR: (500 MHz, DMSO): 7.63 (4H, dl = 8.25 Hz, ArH), 7.42 (2H, s, ArH), 7.09-6.91 (6H,
m, ArH), 6.77 (2H, dJ = 9.75 Hz, ArH), 5.57 (2H, s, CH), 5.17 (2H, s, @irH), 3.85 (2H, d,
CH,), 3.73 (2H, d, CH), 3.65 (6H, s, OCH); “*C-NMR: (175 MHz, DMSO): 170.6 (C=0, 2C),
147.5 (2C), 146.5 (2C), 132.8, 132.8, 139.1 (2G¥.€ (2C), 126.8 (2C), 126.6 (2C), 120.3
(2C), 120.0 (2C), 119.7, 119.5, 115.5, 115.3, 11(26), 55.7 (2C), 55.6 (2C), 34.2, 34.9;
CHNS: Calculated C, 63.98; H, 4.70; N, 4.66; 0,985.S, 10.68. Found: 63.94; H, 4.70; N,
4.68; S, 10.66.

3,3'-(biphenyl-4,4'-diyl)bis(2-(4-methoxyphenyl)thazolidin-4-one) (3e)

Dark Brown solid; m.p.: 246-24€; IR (KBr) v 1715 (C=0), 1546 (C=C), 1340 (C-N}-

NMR: (500 MHz, DMSO): 7.66-7.58 (8H, m, ArH), 7.34H, d,J = 8.5 Hz, ArH), 6.76-6.74
(4H, d,J = 9.5 Hz, ArH), 5.56 (2H, s, CH), 3.73 (2H, d, §H3.66 (2H, d, Ch), 3.33 (6H, s,
OCHs); BC-NMR: (175 MHz, DMSO): 170.8 (C=0, 2C), 159.2 (2@p9.3 (2C), 137.9 (2C),
134.8 (2C), 130.6 (4C), 128.7 (4C), 126.4 (4C),.Q1RC), 55.1 (2C), 52.2 (2C), 36.5 (2C);
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CHNS: Calculated C, 67.58; H, 4.96; N, 4.93; O251S, 11.28. Found: C, 67.66; H, 4.97; N,
4.89; S, 11.29.

3,3'-(biphenyl-4,4'-diyl)bis(2-(4-hydroxyphenyl)thiazolidin-4-one) (3f)

Yellow Solid; M.P.: 239-241C; IR (KBr)v__: 1712 (C=0), 1546 (C=C), 3340 (OH}-NMR:

(500 MHz, DMSO): 7.63-7.59 (8H, m, ArH), 7.42 (2&,J =7.6 Hz, ArH), 7.33 (4H, dJ = 9.5
Hz, ArH), 5.62 (2H, s, CH), 5.57 (2H, s, OH-ArH)52 (2H, d, CH), 3.39(2H, d, Ch); *°C-
NMR: (175 MHz, DMSO): 170.8 (2C), 156.9 (2C), 1342C), 138.5 (2C), 133.5 (2C), 131.5
(2C), 128.5 (2C), 127.1 (2C), 126.5 (2C), 119.7)(2019.4 (2C), 115.1 (2C), 111.4 (2C), 55.1
(2C), 36.5, 34.0 CHNS: Calculated: C, 66.65; H74M, 5.18; O, 11.84; S, 11.86.

Found: C, 66.59; H, 4.57; N, 5.20; S, 11.79.

3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-phenylthiazolidin-4-one) (4a)

Coffee-Brown solid; M.P.: 245-24%C; IR (KBr) v 1735 (C=0), 1546 (C=C), 2340 (C-C);

'H-NMR: (500 MHz, DMSO): 7.52 (2H, s, ArH), 7.46 (28, J = 8.5 Hz, ArH), 6.88-6.84 (2H,
m, ArH), 6.76-6.74 (2H, m, ArH), 5.62 (2H, s, CK)35 (2H, d, CH), 3.27 (2H, d, Ch), 2.48
(6H, s, CH): ®C-NMR: (175 MHz, DMSO): 170.8(2C), 139.3 (2C), 1372C), 136.4 (2C),
135.6, 135.7, 135.1, 133.6, 131.7, 129.1, 128.8,612128.2, 128.1, 127.6, 127.5, 125.0, 124.2,
124.0 (2C), 52.9 (2C), 34.2, 34.0, 18.2, 17.9. CHNSlculated: C, 71.61; H, 5.26; N, 5.22; O,
5.96; S, 11.95. Found: C, 71.64; H, 5.36: N, 52811.97.

3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis (2-(4-(dimethylamino) phenyl) thiazolidin-4-one)
(4b)

Dark Brown Solid; M.P.: 250-25%; IR (KBr) v 1732 (C=0), 1546 (C=C), 1340 (C-NH-

NMR (500 MHz, DMSO): 7.50-7.44 (4H, m, ArH), 7.32H, d,J = 8.05 Hz, ArH), 7.21 (4H, d,
J = 8.55 Hz, ArH), 6.67-6.63 (4H, m, ArH), 5.50 (28, CH), 3.81 (2H, d, C#}, 3.69 (2H, d,
CH,), 3.06 (12H, s, N-CH), 2.48 (6H, s, Ch): *C-NMR (175 MHz, DMSO): 167.0 (2C), 149.5
(2C), 135.27 (2C), 131.64 (2C), 129.86 (2C), 129B6), 128.89 (2C), 128.29 (2C), 124.79
(2C), 124.0 (4C), 112.7 (2C), 112.3 (2C), 52.7 (2@).1 (2C), 40.0 (2C), 38.9 (2C), 17.9 (2C);
CHNS: Calculated C, 69.42; H, 6.15; N, 9.00; 045.%, 10.30. Found: C, 69.48; H, 6.17 N,
9.09; S, 10.31.

3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(2-hydroxyphenyl)thiazolidin-4-one) (4c)

Light Brown Solid; M.P.: 247-248C; IR (KBr)v__: 17132 (C=0), 1546 (C=C), 1340 (C-N);

'H-NMR: (500 MHz, DMSO): 7.53 (2H, m, ArH), 7.44 (2id,J = 9.5 Hz, ArH), 7.32 (2H, dJ
= 7.5 Hz, ArH), 6.73 (4H, m, ArH), 6.67-6.61 (4H, ArH), 5.56 (2H, s, CH), 5.20 (2H, s, OH-
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389 ArH), 4.15 (2H, d ,CH), 4.00 (2H, d ,Ch), 2.28 (6H, s, Ch); *C-NMR: (175 MHz, DMSO):
390 167.4 (2C), 159.1 (2C), 137.9 (2C), 134.8 (2C),.232C), 128.0 (2C), 126.5 (2C), 125.1 (2C),
391 122.1 (2C), 125.1 (2C), 119.7 (2C), 118.9 (2C),.61R2C), 52.9 (2C), 36.6 (2C), 17.8 (2C);
392 CHNS: Calculated C, 67.58; H, 4.96; N, 4.93; O25b1.S, 11.28. Found: C, 67.58; H, 4.97; N,
393 4.95; S, 11.31.

394

395 3,3'-(3,3-dimethylbiphenyl-4,4'-diyl)bis(2-(4-hydroxy-3-methoxyphenyl)thiazolidin-4-one)
396 (4d)

397

398 Light Brown Solid; M.P.: 257-258C; IR (KBr) v 1735 (C=0), 1526 (C=C), 3340 (OH}-

399 NMR: (500 MHz, DMSO); 7.63 (2H, s, ArH), 7.60 (2, J = 8.25, ArH), 7.42 (2H, s, ArH),
400 7.32(2H,dJ=7.5, ArH), 7.09 (2H, m, ArH), 6.77 (2H, d= 9.5, ArH), 5.57 (2H, s, CH), 5.05
401 (2H, s, OH, ArH), 3.85 (2H, d, GHl 3.75 (2H, d, Ch), 3.36 (6H, s, OC}j, 2.48 (6H, s, Ch);
402 *C-NMR: (175 MHz, DMSO); 170.9, 170.6, 147.5 (2C%615 (2C), 137.5 (2C), 137.2 (2C),
403 134.6 (2C), 130.0 (2C), 126.8 (2C), 126.6 (2C),.322C), 119.7 (2C), 119.5 (2C), 115.5,
404 115.3, 55.7, 55.6, 40.7, 40.1, 34.2, 34.1, 17.9),(BHNS: Calculated C, 64.95; H, 5.13; N,
405 4.46; O, 15.27; S, 10.20. Found: C, 64.94; 5.124 M1; S, 10.22.

406

407  3,3'-(3,3-dimethylbiphenyl-4,4'-diyl)bis(2-(4-methoxyphenyl)thiazolidin-4-one) (4e)

408

409 Dark Brown Solid; M.P.: 256-25&: IR (KBr) v 1732 (C=0), 1549 (C=C), 1333(C-N}H-

410 NMR (500 MHz, DMSO): 7.66-7.58 (8H, m, ArH), 6.94H, d,J = 7.0 Hz, ArH), 6.76-6.74
411 (2H, m, ArH), 5.23 (2H, s, CH), 3.84 (2H, d, @H3.74 (2H, d, CH), 3.49 (6H,s,0CH), 3.19
412 (6H, s, CH); *C-NMR (175 MHz, DMSO): 170.8 (2C), 159.1 (2C), 1392C), 137.9 (2C),
413 136.4 (2C), 135.6, 135.3, 135.0, 133.6, 131.7,1,2828.7, 128.6, 128.3, 128.1, 127.6, 127.5,
414 125.0, 124.2, 124.0 (2C), 52.9, 52.7, 34.2, 3482,117.9; CHNS: Calculated: C, 71.61; H,
415 5.26; N, 5.22; O, 5.96; S, 11.95. Found: C, 71t645.26; N, 5.21; S, 11.91.

416

417  3,3'-(3,3-dimethylbiphenyl-4,4'-diyl)bis(2-(4-hydroxyphenyl)thiazolidin-4-one): (4f)

418

419 Yellow Solid; M.P.: 240-243C; IR (KBr) v 1730 (C=0), 1596 (C=C) ,1342 (C-NH-NMR

420 (500 MHz, DMSO): 7.82 (4H, dl = 9.5 Hz, ArH), 7.78 (4H, d] = 7.6 Hz, ArH), 7.47 (4H, d]
421 =8.2 Hz, ArH), 7.39 (2H, dJ = 9.5 Hz, ArH), 7.35 (2H, dJ = 7.6 Hz, ArH), 7.12 (4H, d) =
422 7.9 Hz, ArH), 5.56 (2H, s, CH), 5.20 (2H, s, OH-Ark8.89 (2H, d, Ch), 3.83 (2H, d, CH),
423  2.49 (6H, s, Ch); **C-NMR (175MHz, DMSO): 170.8 (2C), 159.1 (2C), 13%C), 138.5 (4C),
424 131.8 (2C), 132.0 (2C), 130.2 (2C), 125.5 (2C),.142C), 119.42 (2C), 118.9 (2C), 114.4 (2C),
425 55.12 (2C), 34.00 (2C);17.91 (2C) CHNS: Calculaéds7.58; H, 4.96; N, 4.93; O, 11.25; S,
426 11.2. Found: C, 67.62; H, 5.06; N, 5.03; S, 11.1.

427

428 Tyrosinase Inhibition Assay

15



429
430
431
432
433
434
435
436

437
438
439
440

441

442

443
444

445
446
447
448
449
450
451
452
453
454
455

456
457
458
459
460

The method of Kim et al was employed for enzymeawp$g4]. Total volume of 10QL reaction
mixture consisted of 6QuL 100 mM phosphate buffer having pH 6.8, 10 mushroom
tyrosinase enzyme (5 units, Cat. No. T3824-50Kgnti Inc. USA) and 1@L 0.5 mM test
compound mixed in 96-well plate. Pre-incubatiorcofitents was carried out for 5 minute at 37
°C. 20pL of 10 mM L-dopamine was added as a substrate iaftebation. Contents were mixed
well and again incubated for about 30 min. At 480 absorbance was taken. All reactions were
carried out thrice to attain accuracy. The positwel negative controls were included in the

assay. The enzyme inhibition (%) was calculatethkeyformula.

Inhibition (%) = Control — Test x 100
Control
ICso values (concentration at which there is 50% inkdhitin enzyme activity) of active

compounds were calculated using EZ-Fit Enzyme késeSoftware (Perrella Scientific Inc.

Ambherst, USA) after suitable dilutions of the testnpounds.
Molecular Docking

Docking studies are performed for the four inhitstaising Autodock packagfl]. The
structure ofagaricus bisporus mushroom tyrosinase was obtained from the pradeia bank
(PDB code: 2Y9X)[69]. Before docking, the structures of the inhibitevere optimized at
B3LYP/6-31G(d) level using Gaussian 09 [75]. Thest8mer charges were adopted as the
partial charge model. The number of grid pointshiree dimentions was set to 50 * 50 * 50 so
that the grid box fully covered the potential bimglizone of the binuclear copper site. The
Lamarckian Genetic Algorithm was employed in confation search. After docking
calculations, cluster analysis was perfomed to tiflethe most stable docking conformation.
The analysis of close contacts and hydrogen bonbletgeen the enzyme and inhibitors was
conducted with UCSF Chimera program [76], which wais® employed to render Fig. 2 and Fig.
S1.
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Supplementary dataHNMR and**CNMR spectra of all Compounds, comparison of tmelinig
modes of tropolone and a representative grapheoéttect of incubation time on the tyrosinase
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Highlights:

Usingbis-biphenyl as a starting compound, a library of, dethiazolidinone
derivatives were designed and synthesized

New green method has been reported for their sgigthyy using NAG as
organocatalyst

All compounds were evaluated for thairvitro tyrosinase inhibitory activity.

Six compounds potently inhibit tyrosinasegd@alues ranging from 0.61+0.31 to
21.61+0.11 pM

The most potent compoun8t;, inhibited tyrosinase activity with an 4¢value of
0.61+0.31 pM

SAR is established by molecular modeling studies



