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 13 

Abstract 14 

Eluding the involvement of solvents in organic synthesis and introducing environment friendly 15 

procedures can control environmental problems. A facile and an efficient solvent free 16 

mechanochemical method (grinding) is achieved to synthesize novel bis-biphenyl substituted 17 

thiazolidinones using non-toxic and cheap N-acetyl glycine (NAG). Organocatalytic 18 

condensation of a series of Schiff’s bases bearing different substituents with thioglycolic acid 19 

produces a variety of thiazolidinones derivatives in good to excellent yield. In vitro inhibition 20 

studies against mushroom tyrosinase of these thiazolidinone analogues revealed that many of 21 

them possessed good to excellent tyrosinase inhibition at low micro-molar concentrations. In 22 

particular, six compounds exhibited potent inhibitory potential with IC50 values ranging from 23 

0.61±0.31 to 21.61±0.11 µM as compared with that of standard kojic acid (IC50 6.04±0.11 µM). 24 

Further molecular docking studies revealed that the thiazolidinones moiety plays a key role in the 25 

inhibition mechanism by well fitting into the enzyme bounding pocket 26 

Keywords: N-acetyl glycine, Thiazolidinones, Tyrosinase Inhibition 27 
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Introduction 29 

Environmentally benign synthesis of chemicals and pharmaceutical agents remain a challenge 30 

from the very beginning. It has received great attention of scientists and technologists because of 31 

global ecosystem [1-3]. To solve this issue safe solvents, especially water and supercritical CO2 32 

or solvents with minimum vapour pressure (ionic liquids) are usually recommended. It has also 33 

been a good saying that “the best solvent is no solvent” [3]. The harmful effects of chemicals on 34 

the environment can be addressed by omitting solvents from synthetic cycle. Organic synthesis 35 

can be carried out in solvent free conditions [4] for example Mannich reactions [5], Mukaiyama-36 

Aldol condensation [6], Prins cyclization [7], Suzuki-Miyara coupling reaction [8] and Passerini 37 

reaction [9]. One of the most important approaches for solvent free synthesis is known as 38 

mechanochemistry and its significance has been recognized for long time [10, 11]. 39 

Mechanochemical methods have gained interest [12-16] and provide a way to perform reactions 40 

in a neat environment. It follows the twelve rules of green chemistry [17], reduces the E factor 41 

and increases the sustainability of the chemistry [18, 19]. 42 

Many reactions have been performed very efficiently and conveniently even with solid reactants 43 

in eco-friendly conditions, which also reduce the cost of solvent. In the present work we 44 

explored the solvent free synthesis of thiazolidinones, an essential pharmacophore by the 45 

constitution. We employed the mechanochemical method by simply using mortar and pestle. 46 

Tyrosinase (EC 1.14.18.1) is a multifunctional, glycosylated, copper-containing enzyme, and it is 47 

found exclusively in melanocytes. Tyrosinase is synthesized by melanosomal ribosomes found 48 

on the rough endoplasmic reticulum and catalyzes two distinct reactions both of which are 49 

essential for biosynthesis of melanin. This process proceeds via conversion of tyrosine to 3,4-50 

dihydroxy phenylalanine (DOPA), a process termed tyrosinase monophenolase activity. The next 51 

step is the oxidation of DOPA into DOPA quinone, a process called diphenolase activity. The 52 

reactive ortho quinone, DOPA quinone, spontaneously polymerizes to high molecular weight 53 

melanin nonenzymatically [20, 21]. This process is a determinant of mammalian skin color and 54 

is closely related to local hyperpigmentations such as melasma, ephelide and lentigo. Recently, it 55 

has also been suggested that tyrosinase contributes to the neurodegeneration associated with 56 

Parkinson’s disease [22]. Indeed, the unregulated action of tyrosinase can be a factor in a number 57 

of human disease etiologies. Thus, tyrosinase inhibition has been ardently explored as an avenue 58 

for therapies to these diseases. Over the last few decades, a large number of naturally occurring 59 

and synthetic compounds that can act as tyrosinase inhibitors have been reported, but only a few 60 
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of them are put into a practical use due to their weak activity or safety concerns. Tyrosinase 61 

inhibitors typically either render the copper within the active site inactive by chelation, obviating 62 

the substrate– enzyme interaction, or they inhibit oxidation via an electrochemical process [23]. 63 

We sought to evaluate thiazolidinone skeleton for their tyrosinase inhibition properties and to 64 

elucidate their inhibition mechanisms by molecular docking studies. 65 

Thiazolidinones have been under great intention due to their privileged status in pharmaceutical 66 

sciences. The wonder nucleus gives out different derivatives with all different types of biological 67 

activities [24]. They exhibit a range of pharmacological activities including anti-hyperglycemic 68 

[25], anti-cancer [26], antiarthritic [27, 28], anti-inflammatory [29], anti-microbial [30], anti-69 

convulsant [31], antidiarrheal [32], antihistaminic [33], anti-diabetic [34], cyclooxygenase 70 

(COX) inhibitory [35], antagonist [36], cardioprotective [37], necrosis factor-α antagonist [38], 71 

antitubercular [39] and as anti-HIV agents [40].  72 

The first ever pharmacological evaluation of thiazolidinone as anti-tuberculosis (TB) agent was 73 

reported by Italian scientist, Vistentini’ in 1954 [41] and then Marshall and Vallance reported the 74 

anti-convulsing activity in the same year [42]. In 1982, Sohda and co-workers evaluated 75 

thiazolidinones in hyperglycemia. Later in 1997, FDA (Food and Drug Administration) approved 76 

“troglitazone” (TZD) in hyperglycemic conditions [43, 44]. Thereafter, in 1999, two more TZD 77 

derivatives, ‘rosiglitazone’ and ‘pioglitazone’ gained FDA (Food and Drug Administration) 78 

approval [45]. Moreover, a vast of studies have been done on the role of thiazolidinones and the 79 

risk of incident congestive heart failure   among patients with type-2 diabetes mellitus [46-48]. In 80 

2011, Wei and Wan studied the role of thiazolidinones in bone remodeling [49, 50]. 81 

In the recent decades, the synthesis of substituted thiazolidinones and related compounds has 82 

attracted considerable attention because these compounds constitute the structural frameworks of 83 

several naturally occurring alkaloids that show a wide range of pharmaceutical and industrial 84 

importance [51]. Subsequently, there have been uninterrupted curiosities in the improvement of 85 

new synthetic protocols for the construction of the 4-thiazolidinone scaffold [52-62]. 86 

Moisture and oxygen free, inexpensive and non-toxic organocatalysts are very effective for 87 

chemical conversions [4]. They are usually preferred over transition metal catalysts in 88 

pharmaceutical synthesis. Our group planned to seek potent and environment friendly 89 

organocatalyst for the synthesis of novel biologically potent pharmacophores [63-66] with better 90 

yield and easy purification workup [67]. Here, we propose a novel synthetic protocol for the 91 

synthesis of new benzidine based thiazolidinone analogues using NAG as an organocatalyst. 92 
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Keeping in view the synthetic chemistry of thiazolidinones in literature, it was thought that a 93 

catalyst is required, which can facilitate the removal of water during the cyclocondensation step 94 

of the synthesis as it seems the most critical step in obtaining the higher yields of 4-95 

thiazolidinones and it can be enhanced by the use of appropriate catalyst. Therefore, we decided 96 

to explore the catalytic potential of NAG as it activates the removal of water by protonation of in 97 

situ moieties (scheme 2). 98 

Results and Discussion 99 

Chemistry 100 

In general, our protocol comprises of synthesis of bis-biphenyl thiazolidinones in two steps. 101 

Firstly the selected diamines, benzidine (1) and o-toluidine (2) were refluxed with different 102 

aromatic aldehydes for 4-5 hrs by using ethyl alcohol as a solvent and glacial acetic (few drops) 103 

acid as a catalyst. Solid which appeared after cooling was filtered, washed with n-hexane and 104 

dried. In the second step the intermediates (1a-1f & 2a-2f) formed in the first step condensed 105 

with thioglycolic acid in different conditions and got 5- membered bis-biphenyl substituted 106 

thiazolidinones (3a-3f & 4a-4f) (scheme 1). We selected the reaction of Schiff base (1e) with 107 

thioglycolic acid to optimize the reaction conditions. We performed the reaction under different 108 

catalysts, solvents, and also optimized the temperature and finally summarized the result (table 109 

1). We started the optimization process in the absence of catalyst and using toluene as solvent 110 

where the product was obtained 52 % after 12 hr of reflux (table 1 entry 1).  We further tested 111 

reaction under different conditions (table 1, entry 2-6). The changes in the conditions led to 112 

different yields of the product (3e) ranging from 25 - 94 %. The minimum yield of the product 113 

was observed in the reaction having Et3N as catalyst (table 1, entry 3). The poor performance is 114 

presumably due to Et3N not promoting a clean cyclisation process in the conversion of Schiff 115 

base to thiazolidinone (3e). The yield of the product was improved by performing the reaction in 116 

the presence of NAG as catalyst and toluene as solvent resulting in the production of 88 % of 3e 117 

(table 1, entry 5). The catalytic action of NAG was also observed in the absence of solvent only 118 

providing mechanochemical conditions. After screening all the conditions, it was found that this 119 

mechanical energy has promotion effects on the reaction and this was emerged as the best choice 120 

among all provided conditions which yield the maximum % age (94 %) of the product (table 1, 121 

entry 6). 122 
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123 

 124 

 125 

Scheme 1: Synthesis of Schiff bases from 1 & 2  (1a-1f) and (2a-2f). Synthesis of bis-biphenyl 126 
substituted thiazolidinones (3a-3f & 4a-4f) from 1a-1f and 2a-2f. 127 

 128 

Subsequently, the amount of NAG required for this reaction in solvent-free and 129 

mechanochemical environment was also investigated (table 1, entry 1-4). The maximum amount 130 

of the product was calculated by using 2.0 equivalents of NAG as catalyst (table 1, entry 4) and it 131 

was observed that the amount of NAG is reciprocal to the product yield up to the maximum 132 

concentration of 2 equivalents. Decreasing amount of NAG decreased the amount of product 133 

(table 1, entry1-3) and vice versa. Thus, 2 equivalent of NAG as catalyst in solvent-free 134 

environment is the optimized condition for this reaction (graph 1). With the optimized conditions 135 

in hands, a series of Schiff bases were applied to establish the scope and generality of this 136 

protocol affording the respective thiazolidinone in  good to excellent (79-92 %) yields in 5-8 hrs 137 
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of reflux (figure 1). The final products were identified by FTIR, 1HNMR, 13CNMR and CHNS 138 

analysis (see SI). 139 

Table 1: Optimization of conditions for the synthesis of 3e 140 

Entry  Catalyst Solvent 
Temp 
(0C) 

Time 
(hr) 

Yield (%)  

1 None toluene reflux 12 52 
2 Et3N Et3N r.t 24 25 
3 Pyridine toluene reflux 11 46 
4 Hunig Base toluene reflux 10 85 
5 NAG toluene reflux 7 88 
6 NAG None 80 0C 5 94 
7 NAG None 100 0C 7 89 

 141 

 142 
Scheme 2: Synthetic protocol for model substrate (3e) under different conditions described in table 1. 143 

 144 
Graph 1: Optimization of concentration of NAG in solvent-free environment. 145 

 146 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 
 

Scheme 3: Proposed mechanism of thiazolidinone synthesis via NAG. 147 

 148 

 149 

Figure 1: Structures of bis-biphenyl thiazolidinones (3a-3f & 4a-4f) synthesized via the solvent free 150 
protocol using NAG as the catalyst. 151 

 152 

The plausible catalytic mechanism of our reaction is illustrated in scheme 3. The first step of the 153 

mechanism involves in the protonation of thioglycolic acid from NAG followed by the 154 

nucleophilic attack of lone pairs of –N of Schiff base at the nucleophilic carbon center producing 155 

an intermediate having germinal diol. Geminal diol is an unstable moiety which is readily 156 

converted to ketonic group by removing the water molecule. In the next step, deprotonation of 157 

this intermediate is facilitated by the attack of N-acetyl ethanoate on the –H of the thio group 158 

followed by the cyclization of the intermediate. 159 

Inhibition against tyrosinase 160 

The six compounds of this  novel series of thiazolidinones showed potent inhibitory potentials 161 

against mushroom tyrosinase which is a key enzyme for melanin biosynthesis (both in plants and 162 

animals) [68]. The inhibitory potential depends upon the size, shape and the interactive forces 163 

between the inhibitor and the enzyme. In order to explore the structure activity relationship, the 164 

two parent molecules, benzidine (1) and 3,3’-dimethylbihenyl-4,4’-diamine (2) and twelve 165 
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thiazolidinones derivatives (3a-3f & 4a-4f) were subjected to  in vitro tyrosinase inhibition assay 166 

using kojic acid (IC50 6.04±0.11 µM) as the standard. Kojic acid is the famous whitening agent 167 

and widely used in cosmetics, but due to its cytotoxicity level, there is a need to search for better 168 

tyrosinase inhibitors with no or less toxic. The parent molecules have shown negligible activity 169 

(only 20-23 % inhibition for both for both 1 and 2). But the bis-biphenyl substituted 170 

thiazolidinones showed significant potential than the parent molecules and even some of them 171 

show inhibition efficiency better than the standard and their lowest IC50 values reaches 172 

0.61±0.31µM. The bis-biphenyl substituted thiazolidinones contain the electron donating groups 173 

such as hydroxyl, methoxy, dimethyl amino and electron withdrawing groups such as phenyl 174 

ring. The inhibition potential against tyrosinase by six best thiazolidinones derivatives 175 

synthesized decreased as: 3c > 3d > 4d > 3e > 4a > 3a. Among them, 3c was the most potent 176 

with an IC50 value of 0.61±0.31µM. The compound 3c possessed the hydroxyl group along with 177 

thiazolidinone group which might be responsible for its inhibitory potential.  178 

Both compounds 3d (IC50 = 2.41±0.32) and 4d (IC50 = 2.81±0.06) also exhibited potent 179 

inhibition than the standard. Methyl substitutions on the biphenyl ring of 4d seem to have a trifle 180 

effect on its inhibition ability towards the tyrosinase. The analogue 3e (IC50 = 4.41±0.10) also 181 

showed the potent inhibition having methoxy group along with thiazolidinone ring. The 182 

compound 4a having IC50 = 7.71±0.21 also showed good inhibition against the enzyme wherein 183 

thiazolidinone ring is effectively taking part in the inhibition of tyrosinase, though hydroxyl and 184 

methoxy groups enhanced their inhibitory potential. 3a also showed inhibitory potential (IC50 = 185 

21.61±0.11) but three-fold less than 4a having the same skeleton instead of methyl groups at 186 

biphenyl ring. 187 

On the other hand, analogues 3b and 4b did not show any remarkable inhibition against 188 

tyrosinase, which might be due to bulky substituents of these analogues. Compounds 3f, 4c and 189 

4f also did not show any notable inhibition either, suggesting that the positions of substituents 190 

are very crucial. Thus, para- hydoxyl substituted analogues were inactive while ortho substituted 191 

showed inhibition potential. However, in the case of 4c, which is a combination of 3c and 4a, 192 

methyl groups at biphenyl ring render it inactive. These comparisons suggest that thiazolidinone 193 

moiety is necessary but not sufficient to achieve higher inhibition potency. 194 

Table 2: In vitro tyrosinase inhibitory activity of compounds (1 & 2) and (3a-3f & 4a-4f) 195 

(inhibition percentage and IC50 values are means given with SEM). 196 

 197 
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 198 

 199 

Sample Codes Inhibition (%) at 0.5 mM  IC50 µM  

1 23.35±0.17 - 

2 20.25±0.15 - 

3a 94.85±0.18 21.61±0.11 

3b 20.96±0.19 - 

3c 99.08±0.16 0.61±0.05 

3d 96.32±0.48 2.41±0.32 

3e 98.91±0.19 4.41±0.11 

3f 78.03±0.21 342.52±0.17 

4a 99.63±0.16 7.71±0.12 

4b 51.63±0.14 <500 

4c 22.79±0.15 - 

4d 98.43±0.12 2.81±0.06 

4e 49.36±0.47 - 

4f 39.41±0.61 - 

Kojic Acid 93.51±0.91 6.04±0.11 

 200 
 201 

Order of inhibition of Tyrosinase 202 
3c > 3d > 4d > 3e > 4a > 3a > 3f 203 

Molecular Docking Studies 204 

Molecular dockings were carried out for the inhibitors 3a, 3c, 4a and 4d in order to further 205 

investigate the binding mechanism. Apparently, their large sizes prevent them from entering the 206 

narrow binuclear copper-binding site, however, they are well accommodated and bound at the 207 

surface of the enzyme binding pocket. Thus, the binuclear copper-binding site at the bottom of 208 

the enzyme binding pocket is efficiently blocked so that small ligand such as tropolone is 209 

competitively excluded (see Sec. 3 of the Supporting Information). In general, the two central 210 

benzene rings of the inhibitors are in parallel with the enzyme surface, while one of the two end 211 

benzene substituted TZD moieties fits into the residue pocket formed by Asn81, Cys83, His85, 212 

Glu322, and Thr324. As shown in Fig. 2 (a), both hydroxyl groups at the ortho-position of 3c 213 

form H bonds with the oxygen atoms of two residues, i.e., Gly281 and Glu322, with bond 214 

lengths of 1.77 Å and 2.05 Å respectively. However, no H bond is observed between 4d, whose 215 

hydroxyl groups are at the para- positions, and enzyme. Thus, the interaction between the 216 

inhibitor 3c and enzyme is enhanced by the H bonding interactions, which can lead to high 217 

binding affinity. The similar binding poses of 3c and 4d are compared in fig. 2 (e). For 3a and 218 
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4a, their end benzene rings contain no substitutions. We expect their binding by the enzyme less 219 

strong, but more flexible. The methyl groups in the biphenyl ring alter the orientation of the end 220 

benzene groups, which leads to more favorable interactions between the inhibitor and the 221 

enzyme. As compared in fig. 2 (f), the end moieties of 4a orient toward the enzyme binding 222 

pockets better than that of 3a despite the high resemblance of their binding poses. This results in 223 

better shape fitness of the former with the host and thus its higher activity toward the tyrosinase. 224 

The structure of agaricus bisporus mushroom tyrosinase was obtained from the protein data 225 

bank (PDB code: 2Y9X) [69]. The structures of inhibitors were optimized at B3LYP/6-31G (d) 226 

level using Gaussian03 [70]. Docking studies were performed for four inhibitors using Autodock 227 

package [71]. Residues within 5 Å of the inhibitors were identified using VMD program [72]. 228 

The distance cut off and angle threshold were set to 3 Å and 150 Å, respectively, in order to 229 

identify the H bonds between the inhibitor and the enzyme. 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

Figure 2: Illustrations of close contacts between the residues and inhibitors: (a) 3c, (b) 4d, (c) 4a, (d) 3a. 247 
Cu2+ ions are displayed in green spheres. Two H bonds are represented with black dash lines in (a). 248 
Binding modes of 3c (red sticks)and 4d (blue sticks) are compared in (e) and those of 4a (grey stick) and 249 
3a (pink stick) are compared in (f). Surface representations are employed for the enzyme.  250 
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 251 

Conclusions 252 

In summary, we have developed an efficient process for the synthesis of thiazolidinones, in 253 

which the use of NAG as a catalyst along with mechanical energy leads to better yields than 254 

other solvents and catalysts. A mechanistic insight reveals that the catalytic protonation and 255 

subsequent removal of water molecule during the cyclo-condensation of thiazolidinone is the key 256 

step of the reaction. This new catalytic method provides distinct advantages, including: (i) mild 257 

conditions, (ii) high yields, (iii) free of organic solvents with economic and environmental-258 

friendly perspective (iv), easy to prepare the catalyst and (v) simple work-up procedures, making 259 

it more environmentally friendly and suitable for large scale operations. The new bioactive 260 

compounds were also shown good to excellent inhibition against tyrosinase. 261 

 262 
Experimental Section 263 

General Method 264 

Reagents were purchased from common commercial suppliers and were used without further 265 

purification. Solvents were purified and dried by standard procedures, when necessary. TLC was 266 

performed on silica coated aluminum plates (6F254, 0.2 mm). 1H and 13CNMR were recorded at 267 

400 and 175 MHz, respectively, and DMSO was used as internal standard. IR spectra were 268 

recorded on a Jasco A-302 IR spectrophotometer. 269 

General procedure for the synthesis of Schiff bases (Intermediate) 270 

Schiff bases of selected diamines were synthesized by reported method with slight modification 271 

[73].To a solution of benzidine (1) or 3, 3’-dimethylbiphenyl-4,4’-diamine (2) (0.01 mol or 1 eq) 272 

in absolute ethanol (8-10 ml) added few drops of acetic acid . Then respective aldehyde (0.022 273 

mol or 2 eq) was added into the solution and mixture was refluxed at 80 0C for 5-8 hrs. The 274 

reaction was monitored by TLC. After the completion of reaction, kept the reaction mixture in 275 

refrigerator for overnight. The solid was obtained, filtered and washed with water followed by n-276 

hexane and recrystallized with suitable solvent. 277 
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General procedure for the synthesis of thiazolidinones derivatives (3a-3f & 4a-4f) without 278 

any catalyst or reagent 279 

In the reaction flask (50ml) added Schiff base (1 mmol) and marcaptoacetic acid (2.05 mmol) in 280 

the presence of toluene (10 ml) and refluxed for 8-12 hours at 80 0C. After completion of the 281 

reaction, as confirmed by TLC the reaction mixture was cooled to RT. The solvent was 282 

evaporated under reduced pressure and solid product was washed with aqueous NaHCO3 283 

solution to remove excess of marcaptoacetic acid. The solid product was then dried and 284 

percentage yield was calculated. 285 

General procedure for the synthesis of thiazolidinones in different solvents by using 286 

catalyst 287 

Schiff base 3e (1 mmol) and thioglycolic acid (2.05 mmol) were refluxed together in a round 288 

bottom flask (50ml) in the presence of 10 ml of selected solvents and appropriate catalyst and 289 

refluxed for 8-12 hours at 80 0C. At the end of the reaction, after confirmation through TLC, the 290 

solvent was evaporated and solid product was washed with aq. NaHCO3 solution to remove 291 

excess of thioglycolic acid. The solid product was then dried and percentage yield was 292 

calculated. 293 

General procedure for the synthesis of thiazolidinones in the absence of solvent by using 294 

NAG as catalyst 295 

A mixture of Schiff base (1 mmol), thioglycolic acid (2.05 mmol) and NAG (2.0 mmol) were 296 

finely ground in a mortar and pestle. Then finely grounded mixture was transferred to the Pyrex 297 

glass round bottom flask which was stirred for 3-5 hours at 100 0C. After the completion of 298 

reaction (TLC analysis), the solid was washed with 5 % solution of NaHCO3 to remove excess of 299 

thioglycolic acid. Product was isolated with solvent extraction in ethyl acetate, crystallized, dried 300 

and % age yield was also calculated. 301 

Spectral Data 302 
 303 
3,3'-(biphenyl-4,4'-diyl)bis(2-phenylthiazolidin-4-one) (3a) 304 

Brown solid; mp = 235-237 °C; IR (KBr) ν
max

: 1340 (C-N), 1712 (C=O), 3014 (Ar-C); 1H-NMR: 305 

(500 MHz, DMSO): 7.63-7.58 (4H, m, ArH), 7.42 (4H, d, J = 7.05 Hz, ArH), 7.36-7.29 (10H, m, 306 
ArH), 5.37 (2H, s, CH), 3.52 (2H, d, CH2), 3.43 (2H, d, CH2); 

13C-NMR: (175 MHz, DMSO); 307 
170.8 (C=O, 2C), 139.7 (2C), 139.1 (2C), 128.7 (2C), 128.2 (2C), 127.5 (2C), 127.5 (2C). 126.9 308 
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(2C), 126.6 (2C), 125.7 (4C), 119.9 (2C), 119.5 (2C), 52.9, 52.7, 34.2, 34.3; CHNS; Calculated: 309 
C, 70.84; H, 4.76; N, 5.51; O, 6.29; S, 12.61. Found: C, 70.75; H, 4.66; N, 5.56; S, 12.62. 310 
 311 
3,3'-(biphenyl-4,4'-diyl)bis(2-(4-(dimethylamino)phenyl)thiazolidin-4-one) (3b) 312 
Light Brown solid; mp = 238-240 °C; IR (KBr) ν

max
: 1348(C-N). 1693 (C=O), 3310 (Ar-C); 1H-313 

NMR: (500 MHz, DMSO): 7.64-7.59 (4H, m, ArH), 7.19 (4H, d, J = 8.8 Hz, ArH), 7.11 (4H, d, 314 
J = 8.4 Hz, ArH), 6.68-6.61 (4H, m, ArH), 5.16 (2H, s, CH), 3.92 (2H, d, CH2), 3.75 (2H, d, 315 
CH2), 3.06 (12H, s, N-CH3);

 13C-NMR: (150 MHz, DMSO): 170.3 (C=O, 2C), 150.0 (2C), 137.9 316 
(2C), 134.7 (2C), 129.6 (2C), 128.3 (2C), 126.5 (2C), 122.6 (4C), 119.6 (4C), 112.7 (2C), 111.9 317 
(2C), 52.5 (2C), 42.9 (4C, CH3), 33.9 (2C); CHNS: Calculated: C, 68.66; H, 5.76; N, 9.42; O, 318 
5.38; S, 10.78. Found: C, 68.61; H, 5.75; N, 9.47; S, 68.60. 319 
 320 
3,3'-(biphenyl-4,4'-diyl)bis(2-(2-hydroxyphenyl)thiazolidin-4-one): (3c)  321 
 322 
Yellow solid; m.p.: 232-234 °C; IR (KBr) ν

max
: 1330(C-N), 1713 (C=O), 3340 (Ar-OH); 1H-323 

NMR: (500 MHz, DMSO): 7.58 (4H, d, J = 9.5 Hz, ArH), 7.35 (4H, d, J = 7.06 Hz, ArH), 7.09-324 
7.06 (4H, m, ArH), 6.81-6.72 (4H, m, ArH), 5.56 (2H, s, CH,), 5.02 (2H, s, OH), 3.61 (2H, d, 325 
CH2), 3.55 (2H, d, CH2); 

13C-NMR: (175 MHz, DMSO): 167.0 (C=O, 2C), 154.6 (2C), 139.1 326 
(2C), 138.5 (2C), 128.2 (2C), 127.5 (2C), 127.1 (4C), 126.5 (2C), 119.7 (2C), 119.4 (2C), 118.9 327 
(2C), 114.4 (2C), 52.9 (2C), 35.6 (2C); CHNS: Calculated C, 66.65; H, 4.47; N, 5.18; O, 11.84; 328 
S, 11.86. Found: C, 66.60; H, 4.45; N, 5.20; S, 11.85. 329 
 330 
3,3'-(biphenyl-4,4'-diyl)bis(2-(4-hydroxy-3-methoxyphenyl)thiazolidin-4-one): (3d)  331 
 332 
Yellowish-Brown solid; m.p.: 237-239 °C; IR (KBr) ν

max
: 1712 (C=O), 1546 (C=C), 1340 (C-N); 333 

1H-NMR: (500 MHz, DMSO): 7.63 (4H, d, J = 8.25 Hz, ArH), 7.42 (2H, s, ArH), 7.09-6.91 (6H, 334 
m, ArH), 6.77 (2H, d, J = 9.75 Hz, ArH), 5.57 (2H, s, CH), 5.17 (2H, s, OH-ArH), 3.85 (2H, d, 335 
CH2), 3.73 (2H, d, CH2), 3.65 (6H, s, OCH3); 

13C-NMR: (175 MHz, DMSO): 170.6 (C=O, 2C), 336 
147.5 (2C), 146.5 (2C), 132.8, 132.8, 139.1 (2C), 134.6 (2C), 126.8 (2C), 126.6 (2C), 120.3 337 
(2C), 120.0 (2C), 119.7, 119.5, 115.5, 115.3, 111.5 (2C), 55.7 (2C), 55.6 (2C), 34.2, 34.9; 338 
CHNS: Calculated C, 63.98; H, 4.70; N, 4.66; O, 15.98; S, 10.68. Found: 63.94; H, 4.70; N, 339 
4.68; S, 10.66. 340 
 341 
3,3'-(biphenyl-4,4'-diyl)bis(2-(4-methoxyphenyl)thiazolidin-4-one) (3e)  342 
 343 
Dark Brown solid; m.p.: 246-248 °C; IR (KBr) ν

max
: 1715 (C=O), 1546 (C=C), 1340 (C-N); 1H-344 

NMR: (500 MHz, DMSO): 7.66-7.58 (8H, m, ArH), 7.34 (4H, d, J = 8.5 Hz, ArH), 6.76-6.74 345 
(4H, d, J = 9.5 Hz, ArH), 5.56 (2H, s, CH), 3.73 (2H, d, CH2), 3.66 (2H, d, CH2), 3.33 (6H, s, 346 
OCH3);

 13C-NMR: (175 MHz, DMSO): 170.8 (C=O, 2C), 159.2 (2C), 139.3 (2C), 137.9 (2C), 347 
134.8 (2C), 130.6 (4C), 128.7 (4C), 126.4 (4C), 114.0 (2C), 55.1 (2C), 52.2 (2C), 36.5 (2C); 348 
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CHNS: Calculated C, 67.58; H, 4.96; N, 4.93; O, 11.25; S, 11.28. Found: C, 67.66; H, 4.97; N, 349 
4.89; S, 11.29. 350 
 351 
3,3'-(biphenyl-4,4'-diyl)bis(2-(4-hydroxyphenyl)thiazolidin-4-one) (3f)  352 
 353 
Yellow Solid; M.P.: 239-241 0C; IR (KBr) ν

max
: 1712 (C=O), 1546 (C=C), 3340 (OH); 1H-NMR: 354 

(500 MHz, DMSO): 7.63-7.59 (8H, m, ArH), 7.42 (2H, d, J =7.6 Hz, ArH), 7.33 (4H, d, J = 9.5 355 
Hz, ArH), 5.62 (2H, s, CH), 5.57 (2H, s, OH-ArH), 3.52 (2H, d, CH2), 3.39(2H, d, CH2); 

13C-356 
NMR: (175 MHz, DMSO): 170.8 (2C), 156.9 (2C), 139.1 (2C), 138.5 (2C), 133.5 (2C), 131.5 357 
(2C), 128.5 (2C), 127.1 (2C), 126.5 (2C), 119.7 (2C), 119.4 (2C), 115.1 (2C), 111.4 (2C), 55.1 358 
(2C), 36.5, 34.0 CHNS: Calculated: C, 66.65; H, 4.47; N, 5.18; O, 11.84; S, 11.86.  359 
Found: C, 66.59; H, 4.57; N, 5.20; S, 11.79. 360 
 361 
3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-phenylthiazolidin-4-one) (4a)  362 
 363 
Coffee-Brown solid; M.P.: 245-247 0C; IR (KBr) ν

max
: 1735 (C=O), 1546 (C=C), 2340 (C-C); 364 

1H-NMR: (500 MHz, DMSO): 7.52 (2H, s, ArH), 7.46 (2H, d, J = 8.5 Hz, ArH), 6.88-6.84 (2H, 365 
m, ArH), 6.76-6.74 (2H, m, ArH), 5.62 (2H, s, CH), 3.35 (2H, d, CH2), 3.27 (2H, d, CH2), 2.48 366 
(6H, s, CH3); 

13C-NMR: (175 MHz, DMSO): 170.8(2C), 139.3 (2C), 137.9 (2C), 136.4 (2C), 367 
135.6, 135.7, 135.1, 133.6, 131.7, 129.1, 128.6, 128.6, 128.2, 128.1, 127.6, 127.5, 125.0, 124.2, 368 
124.0 (2C), 52.9 (2C), 34.2, 34.0, 18.2, 17.9. CHNS: Calculated: C, 71.61; H, 5.26; N, 5.22; O, 369 
5.96; S, 11.95. Found: C, 71.64; H, 5.36; N, 5.28; S, 11.97. 370 
 371 
3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis (2-(4-(dimethylamino) phenyl) thiazolidin-4-one) 372 
(4b)  373 
 374 
Dark Brown Solid; M.P.: 250-252 0C; IR (KBr) ν

max
: 1732 (C=O), 1546 (C=C), 1340 (C-N); 1H-375 

NMR (500 MHz, DMSO): 7.50-7.44 (4H, m, ArH), 7.32 (2H, d, J = 8.05 Hz, ArH), 7.21 (4H, d, 376 
J = 8.55 Hz, ArH), 6.67-6.63 (4H, m, ArH), 5.50 (2H, s, CH), 3.81 (2H, d, CH2), 3.69 (2H, d, 377 
CH2), 3.06 (12H, s, N-CH3), 2.48 (6H, s, CH3); 

13C-NMR (175 MHz, DMSO): 167.0 (2C), 149.5 378 
(2C), 135.27 (2C), 131.64 (2C), 129.86 (2C), 129.66 (2C), 128.89 (2C), 128.29 (2C), 124.79 379 
(2C), 124.0 (4C), 112.7 (2C), 112.3 (2C), 52.7 (2C), 40.1 (2C), 40.0 (2C), 38.9 (2C), 17.9 (2C); 380 
CHNS: Calculated C, 69.42; H, 6.15; N, 9.00; O, 5.14; S, 10.30. Found: C, 69.48; H, 6.17 N, 381 
9.09; S, 10.31. 382 
 383 
3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(2-hydroxyphenyl)thiazolidin-4-one) (4c)  384 
 385 
Light Brown Solid; M.P.: 247-249 0C; IR (KBr) ν

max
: 17132 (C=O), 1546 (C=C), 1340 (C-N); 386 

1H-NMR: (500 MHz, DMSO): 7.53 (2H, m, ArH), 7.44 (2H, d, J = 9.5 Hz, ArH), 7.32 (2H, d, J 387 
= 7.5 Hz, ArH), 6.73 (4H, m, ArH), 6.67-6.61 (4H, m, ArH), 5.56 (2H, s, CH), 5.20 (2H, s, OH-388 
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ArH), 4.15 (2H, d ,CH2), 4.00 (2H, d ,CH2), 2.28 (6H, s, CH3); 
13C-NMR: (175 MHz, DMSO): 389 

167.4 (2C), 159.1 (2C), 137.9 (2C), 134.8 (2C), 129.5 (2C), 128.0 (2C), 126.5 (2C), 125.1 (2C), 390 
122.1 (2C), 125.1 (2C), 119.7 (2C), 118.9 (2C), 113.6 (2C), 52.9 (2C), 36.6 (2C), 17.8 (2C); 391 
CHNS: Calculated C, 67.58; H, 4.96; N, 4.93; O, 11.25; S, 11.28. Found: C, 67.58; H, 4.97; N, 392 
4.95; S, 11.31. 393 
 394 
3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(4-hydroxy-3- methoxyphenyl)thiazolidin-4-one) 395 
(4d)  396 
 397 
Light Brown Solid; M.P.: 257-259 0C; IR (KBr) ν

max
: 1735 (C=O), 1526 (C=C), 3340 (OH); 1H-398 

NMR: (500 MHz, DMSO); 7.63 (2H, s, ArH), 7.60 (2H, d, J = 8.25, ArH), 7.42 (2H, s, ArH), 399 
7.32 (2H, d, J = 7.5, ArH), 7.09 (2H, m, ArH), 6.77 (2H, d, J = 9.5, ArH), 5.57 (2H, s, CH), 5.05 400 
(2H, s, OH, ArH), 3.85 (2H, d, CH2), 3.75 (2H, d, CH2), 3.36 (6H, s, OCH3), 2.48 (6H, s, CH3); 401 
13C-NMR: (175 MHz, DMSO); 170.9, 170.6, 147.5 (2C), 146.5 (2C), 137.5 (2C), 137.2 (2C), 402 
134.6 (2C), 130.0 (2C), 126.8 (2C), 126.6 (2C), 120.3 (2C), 119.7 (2C), 119.5 (2C), 115.5, 403 
115.3, 55.7, 55.6, 40.7, 40.1, 34.2, 34.1, 17.9 (2C); CHNS: Calculated C, 64.95; H, 5.13; N, 404 
4.46; O, 15.27; S, 10.20. Found: C, 64.94; 5.12; N, 4.41; S, 10.22. 405 
 406 
3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(4-methoxyphenyl)thiazolidin-4-one) (4e) 407 
 408 
Dark Brown Solid; M.P.: 256-258 0C; IR (KBr) ν

max
: 1732 (C=O), 1549 (C=C), 1333(C-N); 1H-409 

NMR (500 MHz, DMSO): 7.66-7.58 (8H, m, ArH), 6.91 (4H, d, J = 7.0 Hz, ArH), 6.76-6.74 410 
(2H, m, ArH), 5.23 (2H, s, CH), 3.84 (2H, d, CH2), 3.74 (2H, d, CH2), 3.49 (6H,s,OCH3), 3.19 411 
(6H, s, CH3); 

13C-NMR (175 MHz, DMSO): 170.8 (2C), 159.1 (2C), 139.3 (2C), 137.9 (2C), 412 
136.4 (2C), 135.6, 135.3, 135.0, 133.6, 131.7, 129.1, 128.7, 128.6, 128.3, 128.1, 127.6, 127.5, 413 
125.0, 124.2, 124.0 (2C), 52.9, 52.7, 34.2, 34.0, 18.2, 17.9; CHNS: Calculated: C, 71.61; H, 414 
5.26; N, 5.22; O, 5.96; S, 11.95. Found: C, 71.64; H, 5.26; N, 5.21; S, 11.91. 415 
 416 
3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(4-hydroxyphenyl)thiazolidin-4-one): (4f) 417 
 418 
Yellow Solid; M.P.: 240-242 0C; IR (KBr) ν

max
: 1730 (C=O), 1596 (C=C) ,1342 (C-N); 1H-NMR 419 

(500 MHz, DMSO): 7.82 (4H, d, J = 9.5 Hz, ArH), 7.78 (4H, d, J = 7.6 Hz, ArH), 7.47 (4H, d, J 420 
= 8.2 Hz, ArH), 7.39 (2H, d, J = 9.5 Hz, ArH), 7.35 (2H, d, J = 7.6 Hz, ArH), 7.12 (4H, d, J = 421 
7.9 Hz, ArH), 5.56 (2H, s, CH), 5.20 (2H, s, OH-ArH), 3.89 (2H, d, CH2), 3.83 (2H, d, CH2), 422 
2.49 (6H, s, CH3); 

13C-NMR (175MHz, DMSO): 170.8 (2C), 159.1 (2C), 139.1 (2C), 138.5 (4C), 423 
131.8 (2C), 132.0 (2C), 130.2 (2C), 125.5 (2C), 119.7 (2C), 119.42 (2C), 118.9 (2C), 114.4 (2C), 424 
55.12 (2C), 34.00 (2C);17.91 (2C) CHNS: Calculated: C, 67.58; H, 4.96; N, 4.93; O, 11.25; S, 425 
11.2. Found: C, 67.62; H, 5.06; N, 5.03; S, 11.1. 426 
 427 

Tyrosinase Inhibition Assay 428 
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The method of Kim et al was employed for enzyme assay [74]. Total volume of 100 µL reaction 429 

mixture consisted of 60 µL 100 mM phosphate buffer having pH 6.8, 10 µL mushroom 430 

tyrosinase enzyme (5 units, Cat. No. T3824-50KU, Sigma Inc. USA) and 10 µL 0.5 mM test 431 

compound mixed in 96-well plate. Pre-incubation of contents was carried out for 5 minute at 37 432 
oC. 20 µL of 10 mM L-dopamine was added as a substrate after incubation. Contents were mixed 433 

well and again incubated for about 30 min.  At 490 nm absorbance was taken. All reactions were 434 

carried out thrice to attain accuracy. The positive and negative controls were included in the 435 

assay. The enzyme inhibition (%) was calculated by the formula. 436 

  437 
Inhibition (%) =  Control – Test × 100 438 

    Control 439 
IC50 values (concentration at which there is 50% inhibition in enzyme activity) of active 440 

compounds were calculated using EZ-Fit Enzyme Kinetics Software (Perrella Scientific Inc. 441 

Amherst, USA) after suitable dilutions of the test compounds. 442 

Molecular Docking  443 
 444 
Docking studies are performed for the four inhibitors using Autodock package [71]. The 445 

structure of agaricus bisporus mushroom tyrosinase was obtained from the protein data bank 446 

(PDB code: 2Y9X) [69]. Before docking, the structures of the inhibitors were optimized at 447 

B3LYP/6-31G(d) level using Gaussian 09 [75]. The Gasteiger charges were adopted as the 448 

partial charge model. The number of grid points in three dimentions was set to 50 * 50 * 50 so 449 

that the grid box fully covered the potential binding zone of the binuclear copper site. The 450 

Lamarckian Genetic Algorithm was employed in conformation search. After docking 451 

calculations, cluster analysis was perfomed to identify the most stable docking conformation. 452 

The analysis of close contacts and hydrogen bonding between the enzyme and inhibitors was 453 

conducted with UCSF Chimera program [76], which was also employed to render Fig. 2 and Fig. 454 

S1. 455 
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Supplementary Data 461 

Supplementary data (1HNMR and 13CNMR spectra of all Compounds, comparison of the binding 462 

modes of tropolone and a representative graph of the effect of incubation time on the tyrosinase 463 

enzyme activity) related to this article can be found in supporting file. 464 
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Highlights: 

• Using bis-biphenyl as a starting compound, a library of, new 4-thiazolidinone 
derivatives were designed and synthesized 

• New green method has been reported for their synthesis by using NAG as 
organocatalyst 

• All compounds were evaluated for their in vitro tyrosinase inhibitory activity. 
• Six compounds potently inhibit tyrosinase; IC50 values ranging from 0.61±0.31 to 

21.61±0.11 µM 
• The most potent compound, 3c, inhibited tyrosinase activity with an IC50 value of 

0.61±0.31 µM  
• SAR is established by molecular modeling studies 


