

Si-H and Si-C Bond Cleavage Reactions of Silane and Phenylsilanes with Mo(PMe₃)₆: Silyl, Hypervalent Silyl, Silane, and Disilane Complexes

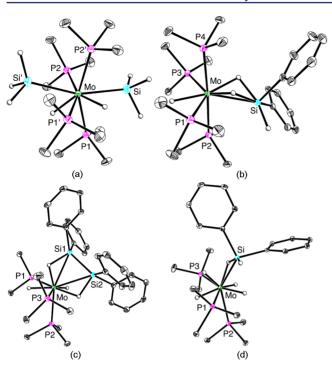
Ashley A. Zuzek and Gerard Parkin*

Department of Chemistry, Columbia University, New York, New York 10027, United States

Supporting Information

ABSTRACT: Mo(PMe₃)₆ cleaves the Si-H bonds of SiH₄, PhSiH₃, and Ph₂SiH₂ to afford a variety of novel silyl, hypervalent silyl, silane, and disilane complexes, as respectively illustrated by Mo(PMe₃)₄(SiH₃)₂H₂, Mo- $(PMe_3)_4(\kappa^2-H_2-H_2SiPh_2H)H$, $Mo(PMe_3)_3(\sigma-HSiHPh_2)$ - H_4 , and $Mo(PMe_3)_3(\kappa^2-H_2-H_2Si_2Ph_4)H_2$. $Mo(PMe_3)_4(\kappa^2-H_2-H_2Si_2Ph_4)H_3$. H_2 - H_2 SiPh₂H)H and Mo(PMe₃)₃(κ^2 - H_2 - H_2 Si₂Ph₄)H₂ are respectively the first examples of complexes that feature a hypervalent κ^2 - H_2 - H_2 SiPh₂H silyl ligand and a chelating disilane ligand, and both compounds convert to the diphenylsilane adduct, Mo(PMe₃)₃(σ -HSiHPh₂)H₄, in the presence of H₂. Mo(PMe₃)₄(SiH₃)₂H₂ undergoes isotope exchange with SiD₄, and NMR spectroscopic analysis of the SiH_xD_{4-x} isotopologues released indicates that the reaction does not occur via initial reductive elimination of SiH₄, but rather by a metathesis pathway.

The interaction of Si–H bonds with transition metal compounds is of fundamental interest, 1 not only because it is a key step in hydrosilylation, dehydrogenative Si–H/O–H coupling, and dehydrogenative polymerization of silanes, 2 but also because it provides a model for the corresponding interactions of C–H bonds with metal centers. 3,4 By comparison to substituted silanes, however, the reactivity of SiH₄ towards transition metal compounds has received relatively little attention. 3,4a,5 Therefore, we report here the first example of the oxidative addition of 2 equiv of SiH₄ to a molybdenum center and also describe the corresponding reactivity of the series of phenylsilanes, Ph_xSiH_{4-x} (x = 1-4), which affords silyl, hypervalent silyl, silane, and disilane complexes.


Previous studies have shown that zerovalent $Mo(PMe_3)_6$ is a highly reactive molecule that is subject to oxidative addition reactions with, for example, H–H, C–H, O–H, and C–S bonds.^{6,7} Significantly, we now demonstrate that $Mo(PMe_3)_6$ also cleaves the Si–H bond of SiH₄ at room temperature to give the bis(silyl) compound $Mo(PMe_3)_4(SiH_3)_2H_2$ (1) (Scheme 1). This transformation is of particular note because related zerovalent molybdenum complexes, namely $Mo(R_2PC_2H_4PR_2)_2(CO)$ ($R = Ph, Bu^i$), do not cleave the Si–H bond of SiH₄, but rather coordinate it to form σ -silane adducts, $Mo(R_2PC_2H_4PR_2)_2(CO)(\sigma$ -SiH₄).³ $Mo(Et_2PC_2H_4PEt_2)_2(CO)$ reacts similarly to $Mo(R_2PC_2H_4PR_2)_2(CO)$ ($R = Ph, Bu^i$), although the silane adduct was shown to exist in equilibrium with the silyl-hydride complex $Mo(Et_2PC_2H_4PEt_2)_2(CO)$

(SiH₃)H.³ In this regard, evidence that Mo(PMe₃)₄(SiH₃)₂H₂ is a silyl-hydride and not a silane complex is provided by the observation of distinct quintet signals in the ¹H NMR spectrum at δ –4.80 and 4.02 in a 1:3 ratio, of which the former has a value of ²J_{P-H} = 26 Hz and the latter ³J_{P-H} = 8 Hz. In accord with the silyl-hydride assignment, the signal attributable to the SiH₃ groups exhibits coupling to silicon (1 J_{Si-H} = 157 Hz), whereas no coupling is observed (i.e., 2 J_{Si-H} < 15 Hz) for the hydride signal.

In addition to the bis(silyl) complex, the mono(silyl) counterpart, $Mo(PMe_3)_4(SiH_3)H_3$ (2), has been obtained by both (*i*) reaction of the dihydride $Mo(PMe_3)_5H_2$ with SiH_4 and (*ii*) addition of H_2 to $Mo(PMe_3)_4(SiH_3)_2H_2$ (Scheme 1). The latter reaction is reversible, such that treatment of the mono(silyl) complex with SiH_4 regenerates the bis(silyl) compound, $Mo(PMe_3)_4(SiH_3)_2H_2$ (Scheme 1). The molecular structures of $Mo(PMe_3)_4(SiH_3)_2H_2$ (Scheme 1). The molecular structures of $Mo(PMe_3)_4(SiH_3)_4H_3$ and $Mo(PMe_3)_4(SiH_3)_2H_2$ have been determined by X-ray diffraction, as illustrated for the latter in Figure 1a.

While a simple mechanism for formation of $Mo(PMe_3)_4$ - $(SiH_3)H_3$ upon treatment of $Mo(PMe_3)_4(SiH_3)_2H_2$ with H_2 could involve reductive elimination of SiH_4 followed by oxidative addition of H_2 , isotope labeling studies indicate that such a mechanism, which is commonly invoked for non- d^0

Received: April 4, 2014

Figure 1. Molecular structures of (a) Mo(PMe₃)₄(SiH₃)₂H₂, (b) Mo(PMe₃)₄(κ^2 -H₂-H₂SiPh₂H)H, (c) Mo(PMe₃)₃(κ^2 -H₂-H₂Si₂Ph₄)H₂, and (d) Mo(PMe₃)₃(σ -HSiHPh₂)H₄.

metal phosphine hydride compounds, does not operate. For example, treatment of $Mo(PMe_3)_4(SiH_3)_2H_2$ with D_2 results primarily in the formation of SiH_xD_{4-x} rather than SiH_4 . Furthermore, treatment of $Mo(PMe_3)_4(SiH_3)_2H_2$ with SiD_4 demonstrates that H/D exchange involving both the silyl and hydride ligands occurs without reductive elimination of SiH_4 (Scheme 2). Specifically, 1H NMR spectroscopic analysis reveals that $SiHD_3$, and not SiH_4 , is the initially formed isotopologue. SiH_2D_2 and SiH_3D are also observed as the exchange reaction progresses, but negligible quantities of SiH_4

Scheme 2

are formed during the course of the experiment. The absence of SiH₄ provides conclusive evidence that Mo(PMe₃)₄(SiH₃)₂H₂ does not undergo reductive elimination of the silyl and hydride ligands, and thus this transformation cannot be the first step in the reaction of Mo(PMe₃)₄(SiH₃)₂H₂ with H₂.⁹ A plausible mechanism for the exchange is, therefore, proposed to involve metathesis between the Mo–H and D–SiD₃ bonds (possibly accompanied by reversible dissociation of PMe₃), which would form initially Mo(PMe₃)₄(SiH₃)₂HD and SiHD₃ (Scheme 2).¹⁰ Subsequent incorporation of deuterium into the molybdenum silyl groups can be rationalized on the basis of Mo(PMe₃)₄ (SiH₃)₂HD accessing a fluxional silane adduct, Mo(PMe₃)₄ (SiH₃)(σ -SiH₃D)H, which would allow for scrambling (Scheme 2).¹¹

Further evidence that Si–H reductive elimination does not operate is provided by examination of the corresponding exchange reaction between Mo(PMe₃)₄(SiD₃)₂D₂ and SiH₄. Specifically, ¹H NMR spectroscopic analysis reveals the initial formation of Mo–SiHD₂ groups rather than Mo–SiH₃ groups, with the latter being generated as the reaction progresses. Furthermore, the silane isotopologue that is released is primarily SiH₃D, which is consistent with a mechanism that involves metathesis of the Mo–D bond with the H–SiH₃ bond.

 $Mo(PMe_3)_6$ also undergoes facile oxidative addition of Si–H bonds of PhSiH₃ at room temperature to give the bis-(phenylsilyl) compound, $Mo(PMe_3)_4(SiH_2Ph)_2H_2$ (3), which can be isolated if the reaction mixture is immediately cooled to -15 °C (Scheme 3). However, $Mo(PMe_3)_4(SiH_2Ph)_2H_2$

Scheme 3

exhibits limited stability at room temperature and undergoes a series of transformations in the presence of excess $PhSiH_3$ to form the silyl (SiH $_3$) compounds $Mo(PMe_3)_4(SiH_2Ph)(SiH_3)-H_2$ (4), $Mo(PMe_3)_4(SiH_3)_2H_2$, and $Mo(PMe_3)_4(SiH_3)H_3$, of which the lattermost ultimately dominates (Scheme 3). The generation of these $Mo-SiH_3$ compounds upon treatment with $PhSiH_3$ is of significance not only because it requires the cleavage of Si–C bonds, but also because there is no precedent for the isolation of a metal complex with a terminal SiH $_3$ ligand from the reactions of $PhSiH_3$.

Although the mechanistic details are unknown, formation of $Mo(PMe_3)_4(SiH_2Ph)(SiH_3)H_2$ from $Mo(PMe_3)_4(SiH_2Ph)_2H_2$ can be conceptually rationalized by an overall metathesis of $Mo-SiH_2Ph$ and $Ph-SiH_3$ bonds. In support of this suggestion, Ph_2SiH_2 is also formed during the course of the reaction. Furthermore, SiH_4 is observed, thereby making it evident that the system is capable of effecting the redistribution of $PhSiH_3$ into Ph_2SiH_2 and SiH_4 . In this regard, the catalytic redistribution of $PhSiH_3$ is well-known, although it is typically

observed for d^0 transition metals¹⁶ and lanthanides, ^{12a,b,17} for which σ -bond metathesis mechanisms are generally invoked.

Interestingly, the reactivity of Ph_2SiH_2 towards $Mo(PMe_3)_6$ is quite distinct from that of either $PhSiH_3$ or SiH_4 . Therefore, rather than simply cleaving the Si-H bond, the reaction of $Mo(PMe_3)_6$ with Ph_2SiH_2 results in the formation of, *inter alia*, $Mo(PMe_3)_4(\kappa^2-H_2-H_2SiPh_2H)H$ (5) and $Mo(PMe_3)_3(\kappa^2-H_2-H_2Si_2Ph_4)H_2$ (6) (Scheme 4).¹⁸ The formation of the Si-Si

Scheme 4

bond to yield the latter compound is, however, reversible, such that the disilane complex reacts rapidly with H_2 to give the monosilane adduct, $Mo(PMe_3)_3(\sigma\text{-HSiHPh}_2)H_4$ (7) (Scheme 4). Furthermore, the latter compound is also formed upon treatment of $Mo(PMe_3)_4(\kappa^2\text{-}H_2\text{-H}_2\text{SiPh}_2\text{H})H$ with H_2 (Scheme 4). ¹⁹

The molecular structures of Mo(PMe₃)₄(κ^2 - H_2 -H₂SiPh₂H)H, Mo(PMe₃)₃(κ^2 - H_2 -H₂Si₂Ph₄)H₂, and Mo(PMe₃)₃(σ -HSiHPh₂)H₄ have been determined by X-ray diffraction, as illustrated in Figure 1b–d. The three-membered [Mo,H,Si] moiety of Mo(PMe₃)₃(σ -HSiHPh₂)H₄ is characterized by Mo–Si [2.500(1) Å], Mo–H [1.64(5) Å], and Si–H [1.74(4) Å] bond lengths that are in accord with its formulation as a silane adduct. For example, the Si–H bond length associated with the bridging hydrogen is within the range accepted for σ -complexes (1.7–1.8 Å). Ia

 $Mo(PMe_3)_3(\kappa^2-H_2-H_2Si_2Ph_4)H_2$ is of particular note because it represents the first example of a structurally characterized metal disilane complex. Furthermore, the disilane chelates to the metal center, albeit in an asymmetric manner, with Mo–Si distances of 2.5322(8) and 2.7140(8) Å.

Mo(PMe₃)₄(κ^2 - H_2 -H₂SiPh₂H)H is the first example of a structurally characterized complex with a κ^2 - H_2 -H₂SiPh₂H ligand.²² Complexes with related motifs, such as [H₂SiPh₃],²³ [H₂SiPhH₂],^{24a} and [H₂SiCl₃],²⁴ have also been reported,^{25,26} and the bonding in these compounds has been discussed in terms of a variety of models, which include (i) silyl-dihydride, (ii) σ -silane-hydride, and (iii) symmetric hypervalent [H₂SiR₃] formalisms.^{20,25} In this regard, the Si-H [1.69(3) and 1.74(3) Å] and Mo-H [1.62(3) and 1.88(3) Å] bond lengths indicate that Mo(PMe₃)₄(κ^2 - H_2 -H₂SiPh₂H)H is better described as a

hypervalent $\left[H_2SiPh_2H\right]$ silyl derivative than as a silyl-hydride complex. ²⁷

Finally, in contrast to the reactions of Mo(PMe₃)₆ with SiH₄, PhSiH₃, and Ph₂SiH₂, each of which involves Si–H bond cleavage, the corresponding reaction of Ph₃SiH results in the formation of the η^6 -arene complex (η^6 -C₆H₅SiPh₂H)Mo-(PMe₃)₃ (8).²⁸ Complexes that feature Ph₃SiH as an η^6 -arene ligand are rare, with there being only one other structurally characterized example, namely (η^6 -C₆H₅SiPh₂H)W(CO)₃,²⁹ listed in the Cambridge Structural Database.

In summary, Mo(PMe₃)₆ exhibits diverse reactivity towards SiH₄, PhSiH₃, and Ph₂SiH₂ to afford a variety of novel silyl, hypervalent silyl, silane, and disilane complexes, whereas Ph₃SiH simply forms the η^6 -arene complex (η^6 -C₆H₅SiPh₂H)-Mo(PMe₃)₃. While the reactions of non-d⁰ metal phosphine hydride compounds are often interpreted in terms of sequences that involve oxidative addition and reductive elimination, NMR spectroscopic analysis of the isotope exchange reaction between Mo(PMe₃)₄(SiH₃)₂H₂ and SiD₄ indicates that the reaction does not occur via initial reductive elimination of SiH₄, but rather by a metathesis pathway.

ASSOCIATED CONTENT

Supporting Information

Experimental details, crystallographic data for compounds 1–8 (CIFs), and Cartesian coordinates for geometry optimized structures. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

parkin@columbia.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the U.S. Department of Energy, Office of Basic Energy Sciences (DE-FG02-93ER14339) for support of this research. Aaron Sattler and Kaylyn Shen are thanked for helpful contributions.

■ REFERENCES

- (1) (a) Corey, J. Y. Chem. Rev. **2011**, 111, 863–1071. (b) Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. **1999**, 99, 175–292.
- (2) (a) Kim, B.-H.; Woo, H.-G. Adv. Organomet. Chem. 2005, 52, 143–174. (b) Roy, A. K. Adv. Organomet. Chem. 2008, 55, 1–59. (c) Troegel, D.; Stohrer, J. Coord. Chem. Rev. 2011, 255, 1440–1459. (d) Corey, J. Y. Adv. Organomet. Chem. 2004, 51, 1–52. (e) Waterman, R. Chem. Soc. Rev. 2013, 42, 5629–5641.
- (3) Luo, X.-L.; Kubas, G. J.; Burns, C. J.; Bryan, J. C.; Unkefer, C. J. J. Am. Chem. Soc. 1995, 117, 1159–1160.
- (4) (a) Vincent, J. L.; Luo, S.; Scott, B. L.; Butcher, R.; Unkefer, C. J.; Burns, C. J.; Kubas, G. J.; Lledós, A.; Maseras, F.; Tomàs, J. Organometallics 2003, 22, 5307–5323. (b) Luo, X.-L.; Kubas, G. J.; Bryan, J. C.; Burns, C. J.; Unkefer, C. J. J. Am. Chem. Soc. 1994, 116, 10312–10313.
- (5) (a) Parkin, G.; Bunel, E.; Burger, B. J.; Trimmer, M. S.; van Asselt, A.; Bercaw, J. E. J. Mol. Catal. 1987, 41, 21–39. (b) Green, M. L. H.; Parkin, G.; Chen, M.; Prout, K. J. Chem. Soc., Dalton Trans. 1986, 2227–2236. (c) Jiang, Q.; Carroll, P. J.; Berry, D. H. Organometallics 1991, 10, 3648–3655. (d) Hao, L.; Lebuis, A.-M.; Harrod, J. F. Chem. Commun. 1998, 1089–1090. (e) Ebsworth, E. A. V.; Fraser, T. E.; Henderson, S. G.; Leitch, D. M.; Rankin, D. W. H. J. Chem. Soc., Dalton Trans. 1981, 1010–1018.

- (6) (a) Murphy, V. J.; Parkin, G. J. Am. Chem. Soc. 1995, 117, 3522—3528. (b) Brookhart, M.; Cox, K.; Cloke, F. G. N.; Green, J. C.; Green, M. L. H.; Hare, P. M.; Bashkin, J.; Derome, A. E.; Grebenik, P. D. J. Chem. Soc., Dalton Trans. 1985, 423—433.
- (7) (a) Sattler, A.; Janak, K. E.; Parkin, G. *Inorg. Chim. Acta* **2011**, 369, 197–202. (b) Hascall, T.; Murphy, V. J.; Janak, K. E.; Parkin, G. *J. Organomet. Chem.* **2002**, 652, 37–49.
- (8) The equilibrium constant for the reaction of $Mo(PMe_3)_{4^-}$ (SiH₃)₂H₂ with H₂ is 1.0(1) at room temperature, from which it may be estimated that the Mo–H BDE is *ca.* 7 kcal mol⁻¹ greater than that for the Mo–SiH₃ bond.
- (9) A mechanism that involves PMe₃ loss and α -H elimination to form a silylene species, $H_3[Mo](SiH_2)(SiH_3)$, that adds SiD_4 to form $H_3[Mo](SiH_2D)(SiH_3)(SiD_3)$, would result in a mixture of isotopologues, namely SiH_4 , SiH_3D , and $SiHD_3$. However, since SiH_4 is not observed, this is not considered to be a likely mechanism.
- (10) We note that the transition state for the metathesis reaction may be viewed as a hypervalent silyl derivative. Such derivatives are precedented, as illustrated by $Mo(PMe_3)_4(\kappa^2-H_2-H_2SiPh_2H)H$, described herein.
- (11) A mechanism that involves α -H elimination can also be invoked to account for H/D exchange,^a but we favor a σ -complex intermediate on the basis that it does not require a vacant coordination site and that the interconversion of silyl-hydride and σ -complexes is precedented.^b Furthermore, H/D exchange between methyl and hydride sites has also been invoked to occur via σ -complex intermediates.^{c,d} (a) Minato, M.; Zhou, D.-Y.; Zhang, L.-B.; Hirabayashi, R.; Kakeya, M.; Matsumoto, T.; Harakawa, A.; Kikutsuji, G.; Ito, T. *Organometallics* **2005**, 24, 3434–3441. (b) References 3 and 4. (c) Parkin, G. *Acc. Chem. Res.* **2009**, 42, 315–325. (d) Hall, C.; Perutz, R. N. *Chem. Rev.* **1996**, 96, 3125–3146.
- (12) There are, however, a few examples of the formation of bridging μ -SiH₃ compounds from PhSiH₃ for the f-block metals. See, for example: (a) Castillo, I.; Tilley, T. D. *Organometallics* **2000**, *19*, 4733–4739. (b) Radu, N. S.; Hollander, F. J.; Tilley, T. D.; Rheingold, A. L. *Chem. Commun.* **1996**, 2459–2460. (c) Korobkov, I.; Gambarotta, S. *Organometallics* **2009**, *28*, 5560–5567.
- (13) Terminal silyl (SiH₃) compounds have also been isolated by redistribution of other silanes. See, for example: (a) Woo, H.-G.; Heyn, R. H.; Tilley, T. D. *J. Am. Chem. Soc.* **1992**, *114*, 5698–5707. (b) Li, Y.-H.; Huang, Z.-F.; Li, X.-A.; Lai, W.-Y.; Wang, L.-H.; Ye, S.-H.; Cui, L.-F.; Wang, S. *J. Organomet. Chem.* **2014**, 749, 246–250.
- (14) Perutz, R. N.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2007, 46, 2578–2592.
- (15) Castillo, I.; Tilley, T. D. J. Am. Chem. Soc. 2001, 123, 10526-10534.
- (16) See, for example: (a) Sadow, A. D.; Tilley, T. D. Organometallics **2001**, 20, 4457–4459. (b) Sadow, A. D.; Tilley, T. D. Organometallics **2003**, 22, 3577–3585.
- (17) Perrin, L.; Maron, L.; Eisenstein, O.; Tilley, T. D. Organometallics 2009, 28, 3767–3775.
- (18) The κ^x notation refers to the number of Si–H hydrogen atoms attached to the metal. See: Green, J. C.; Green, M. L. H.; Parkin, G. *Chem. Commun.* **2012**, *48*, 11481–11503.
- (19) Mo(PMe₃)₄H₄ and Ph₂SiH₂ are also formed.
- (20) (a) Lin, Z. Chem. Soc. Rev. **2002**, 31, 239–245. (b) Nikonov, G. I. Adv. Organomet. Chem. **2005**, 53, 217–309. (c) Lachaize, S.; Sabo-Etienne, S. Eur. J. Inorg. Chem. **2006**, 2115–2127.
- (21) While the solid state structure of Mo(PMe₃)₃(σ -HSiHPh₂)H₄ is best described as a σ -complex, the observation of two quartets in the ¹H NMR spectrum at δ 6.48 ($^{3}J_{P-H} = 8$ Hz) and -4.21 ($^{2}J_{P-H} = 30$ Hz), attributable to a terminal silicon hydride and five hydrogen atoms attached to molybdenum, suggests that the molecule is either fluxional or exists as the silyl tautomer, Mo(PMe₃)₃(SiHPh₂)H₅, in solution.
- (22) For comparison, there is only one other related compound listed in the Cambridge Structural Database that contains the [H₂SiPh₂H] moiety, namely Cp*W(CO)₂(SiHPh₂)H₂, but the much longer Si···H distances [1.92 Å and 2.00 Å] indicate that it is better

- classified as a silyl-dihydride. See: Sakaba, H.; Hirata, T.; Kabuto, C.; Kabuto, K. *Organometallics* **2006**, 25, 5145–5150.
- (23) (a) Luo, X.-L.; Baudry, D.; Boydell, P.; Charpin, P.; Nierlich, M.; Ephritikhine, M.; Crabtree, R. H. Inorg. Chem. 1990, 29, 1511–1517. (b) Mautz, J.; Heinze, K.; Wadepohl, H.; Huttner, G. Eur. J. Inorg. Chem. 2008, 1413–1422. (c) Hussein, K.; Marsden, C. J.; Barthelat, J.-C.; Rodriguez, V.; Conejero, S.; Sabo-Etienne, S.; Donnadieu, B.; Chaudret, B. Chem. Commun. 1999, 1315–1316. (d) Lee, T. Y.; Dang, L.; Zhou, Z.; Yeung, C. H.; Lin, Z.; Lau, C. P. Eur. J. Inorg. Chem. 2010, 5675–5684.
- (24) (a) Gutsulyak, D. V.; Kuzmina, L. G.; Howard, J. A. K.; Vyboishchikov, S. F.; Nikonov, G. I. *J. Am. Chem. Soc.* **2008**, *130*, 3732–3733. (b) Jagirdar, B. R.; Palmer, R.; Klabunde, K. J.; Radonovich, L. J. *Inorg. Chem.* **1995**, *34*, 278–283.
- (25) Nikonov, G. I. J. Organomet. Chem. 2001, 635, 24-36.
- (26) (a) Ray, M.; Nakao, Y.; Sato, H.; Sakaki, S.; Watanabe, T.; Hashimoto, H.; Tobita, H. *Organometallics* **2010**, *29*, 6267–6281. (b) Lachaize, S.; Sabo-Etienne, S.; Donnadieu, B.; Chaudret, B. *Chem. Commun.* **2003**, 214–215.
- (27) It is also pertinent to note that, as observed for Mo(PMe₃)₃(σ -HSiHPh₂)H₄ [2.500(1) Å], the Mo–Si distance in Mo(PMe₃)₄(κ^2 -H₂-H₂SiPh₂H)H [2.5408(7) Å] is slightly shorter than that in the silyl derivatives (2.56–2.58 Å), which indicates that a M–Si bond length does not necessarily correlate with the degree of activation of a Si–H bond.
- (28) Ph_4Si does not, however, react with $Mo(PMe_3)_6$ under similar conditions.
- (29) Gadek, A.; Kochel, A.; Szymańska-Buzar, T. J. Organomet. Chem. 2005, 690, 685–690.