Tetrahedron Letters 52 (2011) 4824-4826

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

An efficient synthesis of 4-chromanones

Yong-Li Zhong*, David T. Boruta[†], Donald R. Gauthier Jr., David Askin[‡]

Department of Process Research, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA

ARTICLE INFO

ABSTRACT

Article history: Received 9 June 2011 Accepted 5 July 2011 Available online 8 August 2011

Keywords: Chromanones 3-Aryloxypropanenitriles Michael addition Friedel-Crafts reaction Synthesis

A two step efficient and practical synthesis of a variety of 4-chromanones is described. Phenols undergo a Michael addition to acrylonitriles in the presence of catalytic amounts of potassium carbonate and tertbutanol to generate the corresponding 3-aryloxypropanenitriles in 50-93% yields. Treatment of the resulting aryloxypropionitriles with 1.5 equiv of TfOH and 5 equiv of TFA, followed by an aqueous work up afforded 4-chromanones in moderate to excellent yields.

© 2011 Elsevier Ltd. All rights reserved.

The synthesis of chromanones is of great interest in the field of organic chemistry because they exhibit a wide variety of welldocumented biological activity,¹ including antiviral,² antimicrobial,³ antiarrhythmic,⁴ and antidiabetic.⁵ The preparation of chromanone was conventionally carried out by intramolecular acylation of β -phenoxyproprionic acids in the presence of strong Brønsted acids⁶ or by a Fries rearrangement followed by intramolecular cyclization.⁷ Methods reported in the literature for the preparation of chromanones involve Friedel-Crafts acylation followed by intramolecular cyclization using base⁸; Friedel–Crafts acylation involving an enone and phenol followed by a cesium fluoride catalyzed Michael addition⁹; Friedel-Crafts acylation of 3-aryloxypranoic esters in the presence of strong Brønsted acids¹⁰; condensation of phenol with a Meldrum's acid derivative in the presence of Yb(OTf)₃.¹¹ These methods, however, only give moderate yield of 4-chromanones, and hence a more general and efficient method for preparing 4-chromanones in high yield needs to be developed.

In 2001, Colquhoun¹² reported a two-step synthesis of dixanthones by cyclization of 2-aryloxybenzonitriles via intramolecular superacid-promoted Houben-Hoesch reaction.¹³ This two step sequence required a large amount of expensive trifluoromethanesulfonic acid (40 equiv) and prolonged reaction time (5 days) to afford xanthone-iminium triflates in about 81% yield. The resulting iminium triflates were hydrolyzed in 75% sulfonic acid under reflux

The synthetic sequence starts from the Michael addition of phenols 1 to acrylonitrile. Oxa-Michael addition reactions of 1 to acrylonitrile have been widely reported for decades. The reaction was generally promoted by sodium,¹⁴ sodium methoxide, and sodium tert-butoxide,¹⁵ potassium hydride,¹⁶ potassium tert-butoxide,¹⁷ Triton B or benzyltrimethylammonium hydroxide,¹⁸ potassium hydroxide,¹⁹ and trialkylphospine.²⁰ However, these conditions have their limitations such as low to moderate yields, incompatibility with some functional groups, restrictions in some Michael acceptors, and requirement of chromatographic purification. After screening conditions for the Michael addition, we found that conducting the addition in acrylonitrile under reflux in the presence of potassium carbonate and tert-butanol gave the best results in terms of conversion, purification/isolation, and yield.

^{*} Corresponding author. Tel.: +1 732 594 8372; fax: +1 732 594 5170. E-mail address: yongli_zhong@merck.com (Y.-L. Zhong).

Present address: Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19803, USA,

[‡] Present address: Department of Process Chemistry, Genentech MS 432a, 1 DNA Way, South San Francisco, CA 94080-4990, USA.

^{0040-4039/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.07.018

Further optimization of the reaction defined the optimal conditions: treatment of 1 equiv of the phenols **1a–1j** with 10 equiv of acrylonitrile in the presence of 10 mol % of potassium carbonate and 10 mol % of *tert*-butanol under reflux for 24–36 h.

Isolation of the Michael adducts and recovery of the excess acrylonitrile was fairly straightforward. The reaction mixture was cooled to room temperature and quenched with 0.08 equiv of phosphoric acid and concentrated to recover the excess acrylonitrile. It is worthwhile to note that without quenching the potassium carbonate, adducts 2a-2j generally reversed back to phenols 1a-1j and acrylonitrile during concentration. The resulting crude 3-aryloxypropanenitriles 2a-2j were diluted with toluene, which was washed with 1 N NaOH (aq)/DMSO (4:1, $2\times$) and 10 wt % of phosphoric acid $(1 \times)$. The organic layer was concentrated to give analytically pure 3-aryloxypropanenitriles 2. As shown in Table 1, a variety of phenols **1a–j**, including those with a simple phenyl ring (entry 6), electron rich substituted phenols (entries 1-2, 4 and 8), halogen-substituted phenols (entries 3, 5, and 9), electron deficient phenol (entry 7), and a naphthalenol (entry 10) reacted with acrylonitrile smoothly to provide 3-aryloxypropanenitriles **2a–j** in good to excellent yields (Table 1).²¹

Table 1

Preparation of 3-aryloxy propanenitriles 2a-2j

		CN , K ₂ CO ₃ /t-BuOH 50-93% R ^{II}	CN
Entry	1a-j Substrate	2a-j Michael addition product	Isolated vield (%)
1	PhO 1a	PhO 2a	83
2	PhO OH	PhO CN	81
3	Br OH 1c	Br CN	70
4	H Id	2d CN	93
5	Br OH 1e	Br CN 2e	50
6	If OH	CN 2f	87
7	NO ₂ 1g OH	NO ₂ CN 2g	53
8	Me 1hOH	CN 2h	89
9	Me OH Cl 1i		52
10	ОН	CN 2j	92

With the desired 3-aryloxypropanenitriles 2a-j in hand, a onepot protocol for the synthesis of 4-chromanones was investigated. Our initial studies involved the treatment of 1 equiv of 3-(3-phenoxyphenoxy)propanenitrile 2a with 1.5 equiv of trifluoromethanesulfonic acid in a variety of solvents (Table 2) at room temperature for 24 h followed by hydrolysis of the resulting iminium triflates by the addition of 10 equiv of water at room temperature. Without solvent, the reaction gave 86% conversion and 74% yield of the desired chromanone **3a** (entry 1). In organic solvents typical for the Friedel–Crafts reaction, for example, dichloromethane (entry 2), toluene (entry 3), chlorobenzene (entry 4) and 1,2-dichloroethane (entry 5), 72–90% of **2a** was consumed and provided 60–79% of the desired product **3a**. The cyclization didn't occur in 85% phosphoric acid while the starting material **2a** was fully recovered (entry 8). Substrate 2a completely decomposed in 96% sulfonic acid (entry 7). To our delight, the cyclization gave full conversion in either trifluoroacetic acid or methanesulfonic acid with the desired product **3a** obtained in 97% and 90% yield, respectively (entries 6 and 9).

The scope of this new protocol was investigated and all substrates shown in Table 1 were converted to 4-chromanones **3a–3j** in 11–98% yield (Table 3). In the optimized conditions, substrates were dissolved in 5 equiv of trifluoroacetic acid, and then, 1.5 equiv of TfOH was added dropwise at 0–5 °C. The cyclization of 3-aryloxy-propanenitriles **2a–2j** to iminium triflate intermediates was typically completed after stirring at 0–5 °C and at room temperature for 16–24 h, and the subsequent hydrolysis of imini um triflates to 4-chromanones **3a–3j** was achieved at room temperature in one-pot protocol via the addition of 2 equiv of water.²²

Employing the above protocol, a variety of 3-aryloxypropanenitriles **2a–2j** was converted to 4-chromanones **3a–3j**. Functional groups such as bromo, chloro, phenoxy, and alkyl were well tolerated under the reaction conditions. Interestingly, an electrondonating group at the meta-position (entry 1) gave high selectivity and excellent yield of product **3a**. However, a bromo substituted group at the meta-position (entry 5) gave ~1:1 mixture of chromanoes **3e–4e**. As expected, substitution at the aromatic ring with strong electron-withdrawing group (entry 7) afforded low yield of product **3g**. 3-(Naphthalen-1-yloxy)propanenitrile **2j** was also efficiently converted to 4-chromanones **3j** in good yield.

In summary, we have developed a practical, efficient, and scalable one-pot synthesis of a variety of 4-chromanones by cyclization of 3-aryloxypropanenitriles via intramolecular superacidpromoted Houben–Hoesch reaction. The reaction proceeds under mild conditions and produces 4-chromanones in excellent purity with yields ranging from 11% to 98%. Additionally, we developed a practical protocol for the preparation of 3-aryloxy-propanenitriles via the Oxa-Michael addition reactions of phenols to

 Table 2
 Solvent effect for the TfOH-mediated Friedel-Crafts reaction

The assay yield was measured by HPLC against to standard.

Table 3

Entry	Substrate	Chromanone	Isolated yield
1	PhO 2a	PhO 3a	95
2	PhO 2b	PhO 3b	90
3	Br CN		58
4	Zd CN	3d O	85
5	Br CN 2e	$\begin{array}{c} X_{1} & 0 \\ \\ X_{2} & 0 \\ \end{array}$ $\begin{array}{c} 3e: X_{1} = H, X_{2} = Br (47\%) \\ 4e: X_{1} = Br, X_{2} = H (53\%) \end{array}$	73
6	CN 2f	O 3f	85
7	NO ₂ CN 2g	O ₂ N O 3g	11
8	2h Me CN	3h Me	98
9	Me CN Cl 2i		98
10	CN 2j		60

acrylonitrile. We believe that the facile methodology will find applications in the fields of organic and medicinal chemistry.

Acknowledgment

The authors thank Dr. Chengyi Chen for proof reading of the manuscript.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2011.07.018.

References and notes

- (a) Zheng, X.; Hu, Y.; Liu, J.; Ouyang, K. Bioorg. Med. Chem. Lett. 2005, 15, 4531– 4535; (b) Toker, G.; Kuepeli, E.; Memisoglu, M.; Yesilada, E. J. Ethnopharmacol. 2004, 95, 393–397; (c) Costa, S. S.; Jossang, A.; Bodo, B.; Souza, M. I. M.; Moraes, V. L. G. J. Nat. Prod. 1994, 57, 1503–1510; Ellis, G. P.; Lockhart, I. M. Chromans and Tocopherols; Wiley: New York, 1981; Harborne, J. B.; Marby, H. J.; Marby, H. The Flavonoids; Academic Press: New York, 1975.
- Flavin, M. T.; Rizzo, J. D.; Khilevich, A.; Kucherenko, A.; Sheinkman, A. K.; Vilaychack, V.; Lin, L.; Chen, W.; Greenwood, E. M.; Pengsuparp, T.; Pezzuto, J. M.; Hughes, S. H.; Flavin, T. M.; Cibulski, M.; Boulanger, W. A.; Shone, R. L.; Xu, Z. J. Med. Chem. 1996, 39, 1303–1313.
- Tasdemir, D.; Kaiser, M.; Brun, R.; Yardley, V.; Schmidt, T. J.; Tosun, F.; Ruedi, P. Antimicrob. Agents Chemother. 2006, 50, 1352–1364.
- 4. Mestre, R.; Escande, D.; Cavero, I. Eur. J. Pharmacol. 1990, 183, 1239.
- (a) Matsuda, H.; Morikawa, T.; Yoshikawa, M. Pure Appl. Chem. 2002, 74, 1301– 1308; (b) Jorge, A. P.; Horst, H.; de Sousa, E.; Pizzolatti, M. G.; Silva, F. R. M. B. Chem.-Biol. Interact. 2004, 149, 89–96.
- (a) Camps, F.; Coll, J.; Messeguer, A.; Pericas, M. A.; Ricart, S.; Bowers, W. S.; Soderlund, D. M. Synthesis 1980, 725; (b) Huckle, D.; Lockhart, I. M.; Wright, M. J. Med. Chem. 1969, 12, 277–279.
- 7. Sato, K.; Lin, Y.; Amakasu, T. Bull. Chem. Soc. Jpn. 1969, 42, 2600-2604.
- 8. Koch, K.; Biggers, M. S. J. Org. Chem. 1994, 59, 1216-1218.
- 9. Ishikawa, T.; Oku, Y.; Kotake, K.; Ishii, H. J. Org. Chem. 1996, 61, 6484-6485.
- Roy, O.; Loiseau, F.; Riahi, A.; Hénin, F.; Muzart, J. Tetrahedron 2003, 59, 9641– 9648.
- 11. Fillioin, E.; Dumas, A. M.; Kuropatwa, B. A.; Malhotra, N. R.; Silter, T. C. J. Org. Chem. 2006, 71, 409–412.
- 12. Colquhoun, H. M.; Lewis, D. F.; Williams, D. J. Org. Lett. 2001, 3, 2337-2340.
- 13. Booth, B. L.; Noori, G. F. M. J. Chem. Soc., Perkin Trans. I 1980, 2894–2900.
- (a) Cook, A. H.; Reed, K. J. J. Chem. Soc. 1945, 920–921; (b) Colonge, J.; Guyot, A. Bull. Soc. Chim. Fr. 1957, 1228; (c) Červená, I.; Holubek, J.; Svátek, E.; Metyš, J.; Protiva, M. Coll. Czech. Chem. Commun. 1989, 54, 1966–1978.
- (a) Huang, H.; Zhang, Z. Jilin Daxue Ziran Kexue Xuebao 1983, 83–86; (b) Zhao,
 H.; Yu, B.; Qin, X. K.; Wang, A. G.; Song, S. Z. Yejing Yu Xianshi 2003, 18, 134– 137; (c) Titova, T. F.; Krysin, A. P.; Shakirov, M. M.; Mamatyuk, V. I. J. Org. Chem. USSR Engl. Tansl. 1984, 20, 294.
- 16. Duffy, J. L.; Kurth, J. A.; Kurth, M. J. Tetrahedron Lett. 1993, 34, 1259-1260.
- 17. Dumez, Z.; Rodriguez, J.; Dulcere, J.-P. J. Chem. Soc., Chem. Commun. 1997, 1831.
- (a) Firth, J. W.; Livingstone, R. J. Chem. Res., Synop. 2000, 308–309; (b) DeWald, H. A.; Heffner, T. G.; Jaen, J. C.; Lustgarten, D. M.; McPhail, A. T.; Meltzer, L. T.; Pugsley, T. A.; Wise, L. D. J. Med. Chem. 1990, 33, 445–450.
- Kawakami, H.; Ohmi, N.; Nagata, H. Bioorg. Med. Chem. Lett. 1995, 5, 887–892.
- (a) Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 8696– 8697; for review, see: (b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035–1050.
- 21. General procedure for the preparation of 3-aryloxypropanenitriles 2a-2j: To a 250 mL 3-necked round-bottomed flask, equipped with an overhead stirrer, thermocouple, water-cooled condenser, and nitrogen inlet, was charged aryl phenol (8.90 mmol) and acrylonitrile (58.6 mL, 890 mmol), 5 mol % potassium carbonate (0.62 g, 4.45 mmol), and 10 mol % of tert-butanol (0.66 g, 8.90 mmol). The resulting slurry was refluxed for 8 h. The remaining 5 mol % of potassium carbonate(0.62 g, 4.45 mmol) was added to the reaction mixture. After being stirred in reflux for 36 h, the reaction mixture was cooled to rt, and 8 mol % of 85% phosphorous acid (0.82 g,7.12 mmol) was added, and stirred for 0.5 h. The excess acrylonitrile was distilled off under atmospheric pressure. The resulting oily crude product was diluted with toluene (75 mL). The solution was washed with 1 N NaOH (aq)/DMSO (4:1,80 mL \times 1). After phase separation, the aqueous layer was extracted with toluene (25 mL). The combined organic layers were washed with 1 N NaOH (aq)/DMSO (4:1, 20 mL \times 2),and 10 wt % phosphorous acid (10 mL \times 1). The organic layer was concentrated and dried under vacuum to give desired 3-aryloxypropanenitriles 2a-2j in 50-93% yield (typical \geq 95% purity).
- 22. General procedure for the preparation of 4-chromanones 3a-3j: To a 25 mL 2necked round-bottomed flask, equipped with thermocouple and nitrogen inlet, was charged 3-aryloxypropanenitriles 2a-2j (12.6 mmol) in 5 equiv of TFA(4.86 mL, 63.0 mmol) solution. To the resulting solution was slowly added 1.5 equiv of TfOH (1.67 mL, 17.7 mmol) at 0-5 °C. The resulting solution was stirred at 0 °C for 5 h, and then at ambient temperature for 16-24 h until the conversion of the reaction was >99%. The reaction mixture was cooled to 0 °C. Then, 2 equiv of water (0.41 mL, 25.2 mmol) was added dropwise at 0-10 °C. The resulting solution was stirred at room temperature for 1-5 h. The reaction mixture was transferred to a separation funnel and diluted with toluene (20 mL) and water (10 mL). After phase separation, the aqueous layer was extracted with toluene (6 mL \times 1). The combined organic layers were washed with water $(9 \text{ mL} \times 1)$ and concentrated. The pure 4chromanones 3a, 3b, 3d, 3f, 3h, and 3i obtained by crystallization of their corresponding crude products in isopropanol (IPA) and the pure chromanones 3c, 3-4e, 3g and 3j were obtained by Biotage chromatographic purification (EtOAc/hexanes from 10% to 80%).