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Site selective C–H functionalization of Mitragyna
alkaloids reveals a molecular switch for tuning
opioid receptor signaling efficacy
Srijita Bhowmik 1,12, Juraj Galeta 1,2,12, Václav Havel 1, Melissa Nelson 3,4, Abdelfattah Faouzi 5,6,

Benjamin Bechand1, Mike Ansonoff 7, Tomas Fiala 1,8, Amanda Hunkele5,9, Andrew C. Kruegel1,

John. E. Pintar 7, Susruta Majumdar 5, Jonathan A. Javitch 3,4 & Dalibor Sames 1,10,11✉

Mitragynine (MG) is the most abundant alkaloid component of the psychoactive plant material

“kratom”, which according to numerous anecdotal reports shows efficacy in self-medication

for pain syndromes, depression, anxiety, and substance use disorders. We have developed a

synthetic method for selective functionalization of the unexplored C11 position of the MG

scaffold (C6 position in indole numbering) via the use of an indole-ethylene glycol adduct and

subsequent iridium-catalyzed borylation. Through this work we discover that C11 represents a

key locant for fine-tuning opioid receptor signaling efficacy. 7-Hydroxymitragynine (7OH), the

parent compound with low efficacy on par with buprenorphine, is transformed to an even

lower efficacy agonist by introducing a fluorine substituent in this position (11-F-7OH), as

demonstrated in vitro at both mouse and human mu opioid receptors (mMOR/hMOR) and

in vivo in mouse analgesia tests. Low efficacy opioid agonists are of high interest as candidates

for generating safer opioid medications with mitigated adverse effects.
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In search of molecules with robust clinical effects in the area of
central nervous system (CNS) disorders and ability to repair
synaptic function in the brain, we have been led to atypical

modulators of endogenous opioid signaling1–4. In this context, we
became interested in the psychoactive plantMitragyna speciosa that
has been used for centuries in Southeast Asia for treatment of pain,
fatigue, opium dependence, and a number of other ailments. In the
US, the use of the dry leaf material, known as “kratom”, has been on
the rise in the last decade, along with the number of anecdotal
reports that point to the efficacy of kratom in a range of disorders
with limited therapeutic options, including opioid dependence,
treatment-resistant depression, anxiety, and pain syndromes5–12. A
number of alkaloids in this plant, including mitragynine (MG) and
its oxidation product 7-hydroxymitragynine (7OH, Fig. 1), have
been found to bind to opioid receptors and represent molecular
scaffolds for the development of opioid receptor modulators13,14.
MG, as an indole alkaloid, shows no structural resemblance to
traditional morphine-type compounds and represents an atypical
opioid ligand with distinct signaling properties and physiological
effects compared to clinically used opioid analgesics. For example,
we have shown that MG is a partial MOR agonist (mu-opioid
receptor agonist) with a potential bias for G protein signaling
(showing no β-arrestin-2 recruitment) in cell-based assays15,16.
Further, we have found that 7OH is a more potent and efficacious
partial MOR agonist compared to MG, and that it acts as a potent
analgesic in mice15,16. The relative activities of MG and 7OH are
highly relevant, as we recently reported that 7OH is formed in vivo
from MG and mediates MG’s analgesic effects in mice17. In addi-
tional preclinical studies, others have found that MG exhibits
antinociceptive effects in dogs comparable to those of codeine but
with less respiratory depression18, and that the compound is not
self-administered by rats, but instead, inhibits self-administration of
morphine and heroin19,20.

The study and development of safer opioids is a long-standing
scientific and societal goal, and a part of the scientific strategy
proposed by the National Institute of Health (NIH) initiative to
address the opioid crisis21,22. Further, there is a growing interest
in the use of opioid receptor modulators as medicaments
for depression and anxiety disorders (and other psychiatric

diseases)1,23. Therefore, safer opioid modulators represent pro-
mising treatments for disorders spanning a wide spectrum of
physical and emotional pain. Accordingly, further understanding
of kratom and its alkaloids has major implications for public
health.

Our previous report provided a basic structure–activity rela-
tionship (SAR) map of MG, in terms of in vitro opioid receptor
pharmacology, with respect to the substituents on the saturated
rings of MG. This work was enabled by the total enantioselective
synthesis of MG developed in our laboratories15. Several other
research teams have also reported total syntheses of MG and
related compounds24–28. These de novo synthetic approaches
offer nearly unlimited exploration of complex MG-related
molecules, but they are labor intensive due to the high number
of synthetic steps. Thus, the need to access many different deri-
vatives at multiple positions demands more efficient synthetic
strategies. MG can be extracted from kratom leaf matter in
multigram quantities (~1% of dry kratom mass14,15), and there-
fore, there is a strong incentive to develop synthetic methods for
direct functionalization of MG, for example, via late-stage C–H
functionalization, rather than laborious total synthesis.

With respect to derivatization of the indole nucleus, the
methoxy group at the C9 position is synthetically accessible by
selective demethylation and subsequent functionalization of the
free phenol16. For the adjacent C10 position, a small series of
compounds has been prepared14,29, while the C11 position
remained unexplored due to the lack of functionalization meth-
ods (see below). Our preliminary docking studies suggested that
relatively small substituents (e.g., F, Cl, and Me) would be tol-
erated at C11 (Fig. 1)15. However, it is presently difficult to
predict the effect of such substituents on opioid receptor activa-
tion potency, efficacy, or signaling bias, demonstrating the need
for C–H bond functionalization approaches compatible with the
structural complexity presented by Mitragyna alkaloids.

More than a decade ago, we formulated the general concept of
“C–H bonds as ubiquitous functionality” and demonstrated the
strategic impact of C–H functionalization in both the construc-
tion of molecular frameworks and modification of existing
complex cores30–33. For the latter, termed “complex core
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Fig. 1 The rationale for selective C–H bond functionalization of mitragynine (MG) and 7-hydroxymitragynine (7OH). a MG is readily obtained in
multigram quantities from kratom powder by extraction, hence there is an incentive to develop selective functionalization of MG and related scaffolds via
late-stage C–H bond functionalization. Specifically, the C11 position has not been explored in terms of mu-opioid receptor (MOR) signaling and other
biological effects, due to the lack of chemistries for functionalization of this position. b The top-right panel shows a docking pose of 7OH in human MOR
highlighting the aromatic ring and the proposed binding pocket in the receptor.
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diversification” or “late-stage functionalization”, the synthetic
power of this concept is readily apparent as the positional (as well
as stereoisomeric) analogs of complex starting materials are
accessed with high efficiency when compared to lengthy de novo
approaches30–36. Late-stage functionalization approaches have
since been widely adopted and become a common part of che-
mists’ armamentarium37–41. These concepts are being extended
beyond C–H bonds to include the possibilities of skeleton mod-
ification via C–C and other bond activation42–45.

In this paper, we describe application of these concepts to
Mitragyna alkaloids in the context of mapping their neuro-
pharmacology. We introduce a strategic temporary modification
of the MG alkaloid skeleton (“complex core restructuring”), to
create a distinct chemotype disposed toward the desired C–H
functionalization chemistry, namely C11 functionalization of
MG’s indole nucleus. In this manner, we offer a solution that
provides for rapid and selective functionalization of the aromatic
ring of MG at the C11 and C12 positions (C6 and C7 positions in
indole numbering). We subsequently found that these analogs
enable fine-tuning of opioid receptor signaling efficacy, which
represents one of the currently most promising strategies for
creating safer opioid therapeutics.

Results
C–H borylation of MG yields C12-substituted analogs. MG is a
complex natural product of a corynanthidine alkaloid type
decorated with a number of functional groups, including enol
ether, ester, tertiary amine, indole nitrogen, and aromatic methyl
ether, arranged in a specific constitutional and geometrical con-
figuration that underlies its opioid activity. It therefore poses an
exciting challenge for late-stage functionalization. In this study,
we focused on functionalization of the indole arene ring
(the rationale is discussed in “Introduction”). Iridium-catalyzed
arene C–H borylation was selected due to its wide substrate scope,
including basic heterocyclic compounds46,47.

After exploration and optimization of reaction conditions
(Supplementary Table 1), we found that borylation is compatible
with the MG chemotype. Using bis(pinacolato)diboron (B2Pin2)
under catalytic [Ir(COD)OMe]2 and 4,4′-di-tert-butyl-2,2′-dipyr-
idyl (dtbpy) as the ligand in absolute heptane at 80 °C for ≥17 h,
C12-boronate ester 1 was obtained as the single isomer (Fig. 2a).
This compound proved to be unstable and decomposed during
silica gel column chromatography, and we thus confirmed its
formation in the crude material via nuclear magnetic resonance
spectroscopy (NMR), thin-layer chromatography (TLC), and
mass spectroscopy (MS). The crude ester 1 was transformed to
several derivatives without further purification in good yields.
Namely, 12-Cl- (2) and 12-Br-MG (3) were prepared in two steps
in 70% and 65% yield, respectively (Fig. 2a)48. The observed
regioselectivity is consistent with the known directing effect of
the indole nitrogen and C7-borylation of 2,3-disubstituted
indoles49,50.

Known C6 indole derivatization methods do not produce C11
analogs of MG. After achieving C12 functionalization we turned
our attention to the C11 position in MG (C6 position in indole
numbering), which remained unexplored due to the limited
reaction repertoire available for C6 indole functionalization51. We
considered several known approaches for C6 indole functionali-
zation to gain access to these derivatives. Specifically, we exam-
ined the possibility of blocking the indole nitrogen’s directing
effect with a protecting group, along the path demonstrated in the
context of tryptophan substrates, where protection with a bulky
triisopropyl silane (TIPS) group led to C6-borylation under
optimized C–H borylation conditions (Fig. 2b)52. However, this

approach was not applicable to MG as the TIPS-protected MG
decomposed under the catalytic conditions. On the other hand,
p-methoxybenzyl (PMB)-MG was either unreactive or formed
undesired products under the reaction conditions. Tert-
butoxycarbonyl (Boc)-protected MG provided the C11-boronate
ester, but the subsequent functionalization reaction was ineffi-
cient (Supplementary Figs. 3 and 4). The latter approach was not
further optimized as an entirely different protection method was
found to be successful (see below).

Another avenue of enquiry was inspired by an intriguing thermal
rearrangement of 3-bromoindolenines to 6-bromoindoles53, which
had been successfully applied in complex substrates en route to
stephacidine A alkaloids42. However, this approach also failed in the
MG scaffold under similar reaction conditions (Fig. 2c); namely,
MG was unreactive in the presence of N-bromosuccinimide (NBS)
under neutral conditions, while under acidic conditions, 12-Br-MG
(3) was the major product (Fig. 2c). Apparently, the C9 methoxy
group exerts an activating and directing effect in the benzene ring of
the indole nucleus once the bromination reagent is sufficiently
activated54.

Finally, the methods relying on remote directing effect of
groups attached to the indole nitrogen, such as the copper-
catalyzed C6 functionalization of indoles using the phosphini-
mide directing group55, were not examined, as (1) the deprotec-
tion step involves harsh reduction conditions (e.g., LiAlH4)
incompatible with MG’s functionalities or (2) the C6 functiona-
lization is too restrictive in terms of the functionalization
chemistry or substrate requirements56,57.

Complex core restructuring: C–H borylation of mitragynine-
ethylene glycol adduct (MG-EG). Direct functionalization of MG
gave C12-halo or -boronate ester analogs, while re-routing this
regioselectivity was unsuccessful via either catalyst optimization
or indole nitrogen protection. The known methods for C6 indole
functionalization—that possess the required generality and scope
to pursue systematic SAR studies—failed to provide an efficient
synthetic route to C11-substituted MG analogs.

We therefore resorted to changing the reactivity of the MG
core by “removing” the indole double bond (2,3-π bond in indole
numbering) by either reduction or oxidation, or oxidation
followed by rearrangement (Fig. 3). 7OH was examined as an
indolenine substrate in the Ir-catalyzed borylation reaction, but
there was no conversion to a borylated product. 7OH can be
readily rearranged to mitragynine pseudoindoxyl with zinc triflate
as reported by us previously16, however this pseudoindoxyl
system afforded C12 borylation (Fig. 3), while the corresponding
12-boronate ester (not shown) was unreactive in the subsequent
halogenation reaction. Next, we investigated the possibility of
using a reduced indole substrate, namely dihydromitragynine58.
With this compound, we observed a partial conversion of starting
material to the corresponding 11-boronate ester (50% conversion
as determined by 1H NMR). However, the following halogenation
reaction gave complex mixtures of MG and 2,3-dihydromitragy-
nine as the major products, and 11-Br-MG and 11-Br-2,3-
dihydromitragynine as the minor products (Fig. 3).

Lastly, we focused on oxidative attachment of ethylene glycol to
the indole nucleus, rendering a distinct chemotype: mitragynine-
ethylene glycol (MG-EG, Fig. 4a). This unusual compound was
first introduced by Takayama and co-authors to provide access to
the C10-substituted analogs via electrophilic aromatic substitu-
tion, and this scaffold showed potent activity at MOR14,59. Aside
from these studies, this indole-ethylene glycol adduct has not
been explored in the context of indole chemistry. We became
interested in this compound as the ethylene glycol group not only
masks the indole, which is particularly relevant in this study, but
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also dramatically alters the shape of the entire alkaloid scaffold.
We crystallized MG-EG from methanol and confirmed its 3D
structure (Fig. 4b, CCDC 1905559), which revealed the chair-like
conformation of the dioxane ring and the propeller-like
arrangement of the three rings converging on the C–C bond of
the former indole ring.

When we applied the catalytic borylation protocol (with the
dtbpy ligand) to MG-EG, a 1:1 ratio of C11 (4a) and C12 (4b)
products was observed (Fig. 4c), clearly confirming the different
reactivity property of this chemotype, and unlocking the
possibility of optimizing the reaction conditions to favor C11
functionalization.52,60,61 Indeed, ligand screening (Supplementary
Table 3) showed that 3,4,7,8-tetramethyl-1,10-phenanthroline
(Me4-phen) as the ligand, together with B2Pin2 and [Ir(COD)
OMe]2 in heptane at 65 °C, gave the 11-borylated product (4a) as
the major product with ratio >16:1 of C11 (4a): C12 (4b)
products (Fig. 4c, confirmed by the subsequent bromination).

We reasoned that by converting the indole nucleus to an unusual
aniline derivative, the directing effects of the nitrogen would be
diminished while its steric effects would gain importance, resulting
in functionalization of the unhindered C11 position (after
catalyst–ligand optimization). Boronates 4a and 4b were converted
to the bromo derivatives 5 and 6, respectively48, using copper(II)
bromide. Thus, this sequence provided two 11-substituted MG-EG
intermediates—boronate 4a and bromide 5—with versatile syn-
thetic potential.

Preparation of C11-substituted analogs of mitragynine and
related scaffolds. The 11-boronate ester (4a) was converted to the
compounds 11-Cl-MG-EG (13) and 11-OH-MG-EG (14) using
the appropriate substitution methods (Fig. 5a)48,62. For the pre-
paration of additional derivatives, the 11-Br-MG-EG (5) served as
the key intermediate enabling preparation of compounds 8–12 in
one synthetic step (Fig. 5a), where X= I (8)63, Me (9)64, Ph
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(10)65, CONH2 (11)66, and CN (12)67. Considering the com-
plexity of these compounds, the yields were satisfactory and more
than sufficient to produce practical amounts of the compounds
for preliminary pharmacological evaluation. However, the
synthesis of 11-F-MG-EG (7) proved more difficult compared to
its other halogen relatives. Relevant reported procedures were not
effective in this context; for example, direct fluorination of 11-
boronate ester 4a using copper-mediated fluorination with
(tBuCN)2CuOTf or Cu(OTf)2py4 failed68,69, so did an indirect
sequence of stannylation–fluorination70. Deoxyfluorination of the
corresponding phenol 14 using Phenofluor™ Mix was also
unsuccessful71. Eventually, 11-F-MG-EG (7) was synthesized
from bromide 5 via the sequence of stannylation and fluorination
(Fig. 5b)72. The triflate 14a represents an alternative intermediate
(to the corresponding bromide 5) for further functionalization;
for example, (1) 11-F-MG-EG (7) was also synthesized from
triflate through a series of stannylation and fluorination (Fig. 5c)
and (2) carboxamide 11 was prepared in 57% yield (versus 35%
via the bromide, Supplementary information).

The ethylene glycol moiety can be readily removed under mild
reductive condition in one step to yield 11-substituted MG
analogs (15–21, Fig. 5d) in moderate-to-good yields. Our strategy
enables functionalization of the C11 position with a wide range of
substituents starting directly from the MG natural product, thus
permitting systematic exploration of SAR at this position.

To convert the MG analogs to the corresponding 7OH series,
we optimized a set of conditions using OXONE® in acetone
(Fig. 5d)73,74. This procedure was successfully applied to the
11-substituted MG analogs, as demonstrated by preparation of
the 11-halo derivatives’ 22–24 analogs in yields around 50%. This
oxidation protocol is superior to the previously reported
approaches, namely PIFA gives complex mixtures of products
and a lower yield of 7OH, while lead tetraacetate involves a toxic
heavy metal and requires a second hydrolysis step75.

In summary, we developed access to 11-substituted analogs in
three MG-related molecular series, compounds previously
inaccessible via electrophilic substitution or other approaches,
providing the means for a systematic SAR exploration of this
position in multiple MG-type scaffolds.

Neuropharmacology: in vitro modulation of opioid receptors
by the 11-substituted 7OH analogs. With efficient access to the
C11 analogs, we examined the effect of C11 substitution on the
opioid receptor pharmacology of MG analogs. We focused the
initial set of biological assays on the 7OH series, as 7OH is an
active metabolite of MG and exhibits an order of magnitude
greater potency compared to MG as an MOR agonist17. First, we
examined the 11-halo analogs of 7OH in radioligand binding
studies to assess the affinity for the opioid receptors (Table 1). We
found that the C11 halogen modulated affinity across all three
opioid receptors: the 11-F compound 22 exhibited greater affinity
compared to the parent 7OH, but this gain in binding was
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Fig. 4 C11-selective C–H borylation via conversion of MG to mitragynine-ethylene glycol adduct (MG-EG). a One-step synthesis of MG-EG, a stable
derivative of MG. b The 3D structure of MG-EG was confirmed by X-ray crystallography. ORTEP representation of MG-EG structure is shown without
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Table 1 Binding affinities of 7OH analogs at the mouse
opioid receptors.

Compound Ki ± SEM (nM)a

mMOR mKOR mDOR

7OH 21.5 ± 0.8 119.0 ± 2.1 88.5 ± 9.9
11-F-7OH (22) 13.7 ± 1.0 21.0 ± 3.2 35.8 ± 2.0
11-Cl-7OH (23) 27.1 ± 1.1 30.7 ± 11.4 47.2 ± 2.4
11-Br-7OH (24) 32.4 ± 1.4 81.1 ± 7.1 57.7 ± 6.7

aAll data points represent mean ± SEM (nM) of n= 3. [125I]BNtxA was used as the standard
radiolabeled ligand98.
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progressively lost as the halogen became larger (compounds 23
and 24, Table 1). This effect was most pronounced at kappa-
opioid receptor (KOR), where the affinity of 22 was six times
greater than that of the parent compound 7OH. The compound
22 also had more than 2-fold greater affinity for delta-opioid
receptor (DOR) compared to 7OH. The effect of the C11 halogen
on MOR binding was subtle across the halogen series. Since the
parent compound 7OH acts as a potent agonist, we examined the
functional modulation of mouse MOR (mMOR) activation in
living cells. Specifically, we examined the signaling consequences
of G protein activation via detection of the downstream signaling
molecule cyclic adenosine monophosphate (cAMP). cAMP is
formed from adenosine triphosphate (ATP) by adenylyl cyclase
(AC), which is inhibited by activation of the MOR and its asso-
ciated G proteins. Changes in the level of cAMP were measured
using a bioluminescence resonance energy transfer (BRET)
functional assay. The BRET signal increases in response to

decreasing amounts of cAMP as a result of conformational
changes in the sensor. cAMP levels were raised prior to the assay
by addition of forskolin as described previously (Fig. 6a, illus-
tration created by the authors)1,76.

In the cAMP assay, 7OH was a potent agonist with relatively
high efficacy (Emax= 70%, compared to DAMGO ([D-Ala2, N-
Me-Phe4, Gly5-ol]-enkephalin), EC50= 48 nM, Fig. 6b, d).
Introduction of the 11-fluoro substitution in compound 22
dramatically reduced the efficacy, rendering a low-efficacy agonist
(Emax ~ 21%) (Fig. 6b, d). For the 23 and 24 derivatives, the
agonist activity at mMOR was nearly abolished (Emax= 13% for
23 and Emax < 10% for 24). Accordingly, 11-halo substituents in
the 7OH scaffold do not interfere with binding of these
compounds to mMOR, but profoundly modulate the signaling
efficacy at this receptor.

To determine if the efficacy modulation trend holds at
the human receptor, we examined the 11-X-7OH series in
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Fig. 5 The MG-EG scaffold is compatible with a wide array of functionalization chemistries. a, b, c Synthesis of C11-substituted analogs of MG-EG. (a)
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hMOR-CAMYEL assay (Fig. 6c) using the same experimental
setup as illustrated above (Fig. 6a). The parent compound 7OH
was potent and highly efficacious (Emax= 96%, compared to the
reference ligand DAMGO, EC50= 16.4 nM, Fig. 6c, e), whereas
11-F-7OH (22) was a partial agonist with markedly reduced
efficacy (Emax= 57%, EC50= 29.4 nM, Fig. 6c, e). The 23 and
24 derivatives showed very low efficacy (Emax= 23% for 23 and
Emax= 14% for 24). Hence, we can conclude that the trend in
efficacy signaling modulation in the halogen 7OH series is
comparable between human and mouse MOR.

The measured efficacy of receptor agonists depends greatly on
the receptor reserve pools and the extent of downstream signaling
amplification of each functional readout. Under the conditions
typically used in in vitro cell-based assays, such as the cAMP BRET
assay discussed above, the efficacy of partial agonists appear
exaggerated owing to large receptor pools produced by receptor

overexpression and downstream signaling amplification77. To
examine this effect for 7OH and its analogs, we adopted an assay
that detects an active conformation of MOR, using the Nb33
nanobody sensor, and thus limits the signaling-related amplification
(Nb33 BRET assay using a luciferase-tagged MOR and Venus-
tagged Nb33, see Supplementary information)78. This assay was
initially described by Stoeber et al.79 and has recently been
rigorously validated by Gillis et al.78 via comparison to a number of
independent signaling assays, and calibrated by direct comparison
of several opioid drugs including well-established partial agonists
(buprenorphine and morphine) and experimental opioids. Using
mMOR and hMOR Nb33-BRET assays, we found that morphine
and buprenorphine act as partial agonists, in comparison to
DAMGO, with markedly different signaling efficacies (Fig. 7).
While morphine appears as a partial agonist with relatively
high efficacy (Emax ~ 67% (mMOR) and 72% (hMOR), Fig. 7),

Fig. 6 Activity of 7-hydroxymitragynine (7OH) analogs at the mu-opioid receptor (MOR). a Conceptual representation of the MOR CAMYEL BRET
assay. To measure G protein activation, MOR (light green) was coexpressed with G protein subunits GαoB, β1, γ2, and the BRET CAMYEL sensor. Forskolin
activates adenylyl cyclase (AC), which converts ATP to cyclic adenosine monophosphate (cAMP). On activation of mMOR by ligand, α subunit inhibits AC,
resulting in a decrease of cAMP accumulation. The CAMYEL sensor is comprised of citrine (mustard yellow) and Renilla luciferase (light blue) with human
Epac1 (blue linker) interspaced between them. b Agonist activity of 7OH at mMOR, presented as a percentage of cAMP inhibition produced by the positive
control DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin); c Agonist activity of 7OH analogs at hMOR; curves represent the average of n= 3,
independent experiments with error bars representing ±SEM. d Functional activity of 7OH analogs at mMOR as determined in CAMYEL BRET assays.
e Functional activity of 7OH analogs at hMOR as determined in CAMYEL BRET assays [aAgonist activity indicated by EC50 values, maximal efficacy
is expressed as maximal inhibitory effect on cAMP levels relative to DAMGO (Emax= 100% – cAMP(min)%). bAll data points represent −logEC50 ± SE
(EC50 nM) for n= 3 repetitions].
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Fig. 7 Receptor activation by 7OH series in comparison to known opioids in BRET-based Nb33 recruitment assay at mMOR and hMOR. Intrinsic
receptor activation efficacy was determined by the extent of recruitment of the conformationally selective nanobody Nb33 to hMOR or mMOR fused as
its C terminus to NanoLuc, as measured by BRET. Positive controls used are: DAMGO, buprenorphine, morphine, and parent 7OH. a Agonist activity of
11-F-7OH (22) as compared to positive controls at mMOR. b Agonist activity of 11-F-7OH (22) as compared to positive controls at hMOR. Curves
represent the average of n= 3, independent experiments with error bars representing ±SEM. c Functional activity of 11-F-7OH (22) and positive controls at
mMOR and hMOR in Nb33 BRET Assay [aAgonist activity indicated by EC50 values, maximal efficacy is expressed relative to DAMGO (Emax). bAll data
points represent −logEC50 ± SE (EC50 µM) for n= 3 repetitions].

Fig. 8 Antagonist activity of 7OH analogs at mMOR and hMOR. To assay G protein activation, mMOR and hMOR was coexpressed with G protein
subunits GαoB, β1, γ2, and the BRET CAMYEL sensor. Antagonism was measured by the inhibition of DAMGO’s effect on cAMP. a Competitive antagonist
activity of 7OH analogs at mMOR; positive control= naloxone. b Competitive antagonist activity of 7OH analogs at hMOR; positive control= naloxone.
Curves represent the average of n= 3, independent experiments with error bars representing ±SEM. c Functional antagonist activity of 7OH analogs at
mMOR as determined in CAMYEL BRET assays. d Functional antagonist activity of 7OH analogs at hMOR as determined in CAMYEL BRET assays
[cAntagonist activity indicated by IC50 values for inhibition of a reference agonist (DAMGO), all data points represent −logIC50 ± SE (IC50 µM) for n= 3
repetitions].
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buprenorphine shows much lower efficacy (Emax ~16% (mMOR)
and 21% (hMOR)), results consistent with the previous report78.
Remarkably, we found that 7OH exhibits low “intrinsic” efficacy
(Emax ~14% (mMOR) and 22% (hMOR), Fig. 7) comparable to that
of buprenorphine. In direct comparison, the efficacy of 22 is further
reduced to near the detection limit of the assay using both mMOR
and hMOR (Fig. 7).

The two assays employed provide complementary windows
into MOR signaling efficacy measurements. The Nb33 BRET
assay, with limited signaling amplification, positioned 7OH close
to buprenorphine in terms of the broad range of signaling
efficacies of different opioids. Despite the narrow dynamic range
of this assay for low-efficacy compounds, it showed that
fluorination of the 11-position further impaired the signaling

0 30 60 90 120 150

0

20

40

60

80

100

Time (min)

A
nt

in
oc

ic
ep

tio
n 

(%
 M

PE
)

c/  

11-Cl-7OH (23) 
(5 mg/kg)

11-Cl-7OH (23)
 (25mg/kg)

d/ 

B
as

al 0.1 1 10

0

50

100

Log [drug] (M)

A
nt

in
oc

ic
ep

tio
n 

(%
 M

PE
)

30 60 90 120

0

20

40

60

80

100

Time (min)

A
nt

in
oc

ic
ep

tio
n 

(%
 M

PE
)

a/

11-F-7OH (22) (5mg/kg)
Vehicle 

Veh
icl

e

11
-F-7O

H, 5
 m

g/kg
, s

c

11
-F-7O

H, 1
0 m

g/kg
, s

c

11
-F-7O

H, 2
5 m

g/kg
, s

c

7O
H, 2

 m
g.kg

, s
c.

Morp
hine 1

0 m
g.kg

, s
c.

0

20

40

60

80

100

A
nt

in
oc

ic
ep

tio
n 

(%
 M

PE
)

b/

B
as

al 0.1 1 10

0

50

100

Log [drug] (M)

A
nt

in
oc

ic
ep

tio
n 

(%
 M

PE
)

Wild Type *
MOR KO ns

e/

Fig. 9 Antinociceptive effects of 7OH analogs in tail-flick assay in mice. a Time course of the antinociceptive effect of 22 (5mg/kg. s.c., n= 11 CD1 mice)
and vehicle (n= 6 CD1 mice) in the tail-flick assay. Each point represents mean ± SEM. % MPE, a percentage of the maximum possible effect as set in this
assay (see Supplementary information). b Tail-flick dose–response for the high-dose range (5, 10, and 25mg/kg, s.c.; n= 8 CD1 mice each group) of 22, in
direct comparison to controls 7OH and morphine. CD1 mice (n= 10), at peak analgesic time point. (Vehicle (−5.4, 7.8, 4.0), 11-F-7OH 5mg/kg (17.3, 22.4,
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tail-flick assay for the parent 7OH (s.c.) and 22 (s.c.), 15 min time point, C57BL/6 mice (n= 10). Each point represents mean ± SEM. e Antinociceptive
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C57 mice (n= 8) and MOR KO mice (n= 5). Each point represents mean ± SEM. One-way RM ANOVA shows statistically significant result for WT* mice
with *p= 0.006 and statistically non-significant result (MOR KOns) with p= 0.832 for MOR KO mice.
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efficacy of 7OH to near the limit of detection. In the amplified
cAMP CAMYEL BRET assay, with a greater dynamic range in the
low end of efficacy readout, 22 exhibits greatly diminished but
readily detectable agonist signaling as compared to 7OH, whereas
the efficacy was essentially lost for the much less efficacious
compounds 23 and 24.

To correlate the very low agonist efficacy with antagonism, we
next determined the antagonist activity of the 11-X-7OH series in
a CAMYEL antagonism assay at mMOR (Fig. 8a, c) and hMOR
(Fig. 8b, d) compared to the positive control naloxone. As
expected, the compounds were able to inhibit the response
elicited by the standard full agonist DAMGO at hMOR and
mMOR down to the levels predicted based on their agonist
efficacy as determined above.

To complete the examination of this series at the opioid
receptors, we performed the analogous cAMP BRET assays with
mDOR and hDOR, and rat KOR (rKOR) and hKOR. The parent
7OH was found to act as a partial agonist at both mDOR (Emax=
72%, EC50= 71.4 nM) and hDOR (Emax= 45%, EC50= 99.9 nM,
Supplementary Fig. 7)80. Again, 22 showed considerable reduc-
tion in signaling efficacy at the receptors of both species, when
compared to 7OH, without a major shift in potency (Emax= 41%,
EC50= 102.1 nM at mDOR; Emax= 26%, EC50= 150.8 nM at
hDOR,). The 23 and 24 compounds had very low efficacy at
mDOR and hDOR (Supplementary Fig. 7). Thus, the C11
halogen trend described for MORs was also observed at DORs. In
contrast, this compound series showed no agonist activity at the
KOR receptors (Supplementary Fig. 8). Finally, we selected one
representative compound of this series, 11-Br-7OH (24), and
tested it for antagonism at the KOR and DOR (Supplementary
Figs. 9 and 10) revealing full inhibition of reference agonists
DPDPE ([D-Pen2,5]-enkephalin) for DOR and U50,488 for KOR.

In summary, these pharmacological studies indicate an
important role for the C11 substitution in selective and profound
modulation of the signaling efficacy at MORs and DORs of the
MG-related scaffolds and provide a strong rationale for examin-
ing this effect in vivo.

11-Fluoro-7-hydroxymitragynine (22) is a low-efficacy partial
agonist in vivo in mouse analgesia tests. We set out to examine
how the gradual signaling efficacy modulation found in vitro,
within the 7OH series, would translate to in vivo effects in living
rodents. There is a strong rationale for pursuing such studies, as
partial MOR agonists may provide a path to safer opioid ther-
apeutics (see “Discussion” below for more details). We recently
reported that 7OH was a potent and efficacious analgesic in mice
using a tail-flick assay (thermal nociception assay)16,17, consistent
with a previous report by others81,82. On the basis of the pre-
viously determined ED50 value for 7OH in mouse tail-flick assay
(ED50= 0.57 (0.19–1.7) mg/kg, 95% CI)17, and similar in vitro
binding and signaling potencies of 7OH and 22 at MOR, we
selected a relatively high dose of 22 (5 mg/kg, subcutaneous (s.c.)
administration) for the initial time course profiling of the
analgesic effect in CD1 mice (Fig. 9a). The analgesic effect peaked
at 15 min post injection, indicating rapid bioavailability in vivo
comparable to the parent 7OH, followed by a decay to a residual
analgesic effect that lasted for at least 120 min. Noteworthy is the
partial analgesic efficacy of <40% MPE (maximum possible effect)
in the tail-flick assay. To confirm that the maximum effect was
reached, we examined even higher doses at a 15 min time point,
namely 10 and 25 mg/kg (s.c.), which showed that indeed the
maximal analgesic effect was reached already at the 5 mg/kg dose
(Fig. 9b). The control compounds, 7OH and morphine, elicited a
greater analgesic effect in the same mouse strain. In contrast, 23
showed no analgesic effect at 5 or 25 mg/kg dose (Fig. 9c).

Thus, the in vitro MOR pharmacological profile of the 7OH
analogs translates well to the in vivo tail-flick test, an established
physiological readout for MOR agonists that measures anti-
nociceptive effects of drugs to painful thermal stimuli. We next
set out to rigorously confirm these results by: (1) using a different
and widely used mouse strain, C57BL/6J mice; (2) performing the
experiments in a different location and research group; and (3)
determining a full dose-curve for both the control (7OH) and the
compound 22 (Fig. 9d). 7OH showed a potent and high-efficacy
analgesic effect (ED50= 0.25 (0.20–0.31) mg/kg, 95% CI,
analgesic efficacy normalized to 100%, comparable to morphine),
consistent with previous results17, while 22 also elicited a potent
analgesic effect (ED50= 0.18 (0.04–0.78) mg/kg, 95% CI), but
with dramatically attenuated analgesic efficacy (Emax= 21%,
Fig. 9d). Thus, 22 is equipotent to 7OH but exhibits low efficacy
in antinociceptive effects, whereas 7OH is comparable to
morphine in efficacy.

To confirm that the low-efficacy analgesia is driven by MOR,
and no other targets or mechanisms (e.g., other opioid receptors
or non-opioid off-targets), we performed the mouse tail-flick
assay in wild-type (WT), and MOR knockout (MOR KO) mice
with the same genetic background (Fig. 9e). Despite the low range
of the efficacy readout afforded by 22, we were able to show that
the dose-dependent effect of 22 was statistically significant in WT
mice, but not in MOR KO animals.

These results support an explanatory model where the
analgesic effect of 11-F-7OH is largely driven by MOR, and the
reduced analgesic efficacy is a consequence of low-efficacy MOR
activation/signaling induced by this compound. Thus, 7OH and
11-F-7OH provide an excellent probe pair for examining the
effects of relative signaling efficacy on therapeutic (desired) and
adverse effects, and the resulting preclinical measure of a
therapeutic window.

Discussion
Most recent estimates of kratom use, based on the tonnage
of imported kratom and survey reports of dosing ranges,
suggest 10–16 million users in the US alone83. Numerous
anecdotal reports, including those collected by the United
States Drug Enforcement Administration (>23,000 publicly
available reports)8, point to remarkable medicinal effects of
kratom in self-medication for chronic pain, depression, anxiety,
substance use disorders, and other ailments. Inspired by these
clinical indicators, our laboratories have been studying the
chemistry and biology of kratom alkaloids with the long-term
goal of developing drug leads based on these compounds. In
this context, the aromatic ring SAR of MG has not been
mapped systematically, as only limited series of analogs have
been synthesized and studied (e.g., C10 analogs)14,16, and the
C11 position has not been examined at all. To address this task,
and to complement our total synthesis efforts15, we set out to
examine the late stage functionalization of MG, in this study
focusing on the C11 position of the indole nucleus.

Years ago, we formulated the ideas of C–H bond functio-
nalization and late-stage functionalization as general concepts
with transformational potential for the thought and practice of
chemical synthesis of carbon-based substances30–36. These
concepts have since been widely adopted in both academia and
industry and the C–H functionalization mindset, as well as
corresponding methods, are indispensable components of
today’s synthetic repertoire37–40. Our team has been developing
methods for systematic and programmable functionalization of
heteroarenes, which are essential building blocks in medicinal
chemistry, including indoles, pyrroles, pyrazoles, imidazoles,
pyridines, and others30–36. In the present study, we focused on
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the benzene ring of highly complex indoles, in the context of
specific neuropharmacological goals.

Our approach provided a practical route to C11-analogs of
MG, 7OH, and MG-EG, from the natural product, and systematic
SAR exploration of the C11 position. The results indicate that
substitution of this position plays an important role with respect
to MOR signaling, specifically in modulating the efficacy of
receptor-triggered signaling events. Designing the receptor sig-
naling parameters of GPCR ligands a priori remains an unfulfilled
potential of computational methods, and thus, a systematic
examination of functional characteristics of receptor ligands and
probes still relies largely on chemical synthesis. The chemical
approach described here provides a means to advance our
examination and understanding of how molecular interactions of
MG-type scaffolds with the opioid receptors underlie functional
outcomes such as G protein signaling and maximal signaling
efficacy.

There has been considerable excitement and hope for gen-
erating MOR agonists that bias its signaling toward G protein-
initiated pathways as a means for rational design of improved
safety and therapeutic index of opioid analgesics (“G protein bias
hypothesis” of opioids)84. It was suggested that some of the
typical adverse effects of opioids such as respiratory depression or
reinforcing effects are linked to arrestin signaling. According to
this approach, biasing the MOR-triggered signaling toward the G
protein and away from arrestin would result in attenuation of the
adverse effects, relative to the desired analgesic activity84. How-
ever, this hypothesis has been seriously challenged using both
genetic and pharmacological tools78,85–90. An emerging alter-
native hypothesis is that partial agonism of MOR can lead to
reduced side effects while preserving therapeutic effects (“sig-
naling efficacy hypothesis”)78,91. An example is the superior
safety profile of buprenorphine (a partial agonist in vitro) com-
pared to the standard prescription opioids92. Buprenorphine is as
efficacious as full agonists in treating pain but has substantially
reduced ability to produce respiratory depression and thus
reduced risk of opioid overdose death92. Such low-efficacy com-
pounds may have been incorrectly identified as G protein biased
due both to receptor reserve and to the much greater amplifica-
tion of the G protein signaling arm as compared to the much less
sensitive arrestin pathway assays78. Lower efficacy opioids are
also of great interest for the treatment of opioid use disorder
(OUD) where such compounds may provide efficacious opioid
maintenance while having a reduced abuse potential. Therefore,
close structural derivatives with a varying degree of G protein
signaling efficacy are needed for direct and rigorous probing of
this hypothesis.

In this context the 11-halo series of 7OH provide valuable
pharmacological tools. We demonstrated that 7OH is a potent
low-efficacy agonist at mMOR and hMOR in the efficacy range
comparable to buprenorphine (Emax ~ 20% versus DAMGO), in a
cell-based assay without signaling amplification (Nb33 BRET
assay). Comparatively, 11-F-7OH showed only minimal receptor
activation in this assay. In the amplified system (cAMP BRET
assay) with a greater dynamic range on the low end of efficacy
spectrum, the enhancement in apparent efficacy of 7OH was
much smaller for 22. Thus, using two assays with complementary
dynamic ranges of efficacy readouts, we showed that fluorination
in the 11-position markedly reduces MOR signaling efficacy of an
already low-efficacy agonist, the parent 7OH.

Interestingly, the correlation between the cAMP signaling
efficacy obtained in vitro in cultured cells and the in vivo
analgesic efficacy determined in living animals, for the 11-X-7OH
series, suggests that the in vitro amplified system may mimic the
receptor reserve and/or receptor-effector situation in the neurons
of relevant pain circuitry, and thus provides a useful model

system. Considering the recent surveys that document much
improved safety of kratom compared to the prescription or illicit
opioids83,93,94, a further decrease of MOR’s G protein signaling
efficacy of the key mediator of kratom’s opioid-like effects,
7OH17, may lead to even safer compounds, and illustrates the
potential importance of the present work. Further, a recent report
showed that 7OH attenuated alcohol intake in drinking mice and
that this effect was mediated by DOR activation, while 7OH
exhibited rewarding effects on its own80. Thus, the attenuated
MOR signaling efficacy of 22, while maintaining sufficient DOR
signaling, may provide a therapeutic lead for OUD and other
substance use disorders with no or much diminished abuse
potential. That we see only partial analgesia for 22 and effective
analgesia with 7OH suggests that the ideal efficacy may be
somewhere between that of these two analogs, which can guide
subsequent synthetic efforts in search of the ideal balance between
therapeutic effects and side effects.

In summary, we describe a systematic examination of late-stage
functionalization of kratom alkaloids, which provided efficient
access to MG analogs and identified 11-F-7OH (22) as an
important lead compound for further investigations.

Methods
General procedure for synthesis of 11-boronate ester MG-EG (4a). Starting
material MG-EG (4) (50 mg, 0.11 mmol), [Ir(COD)OMe]2 (3.6 mg, 5.5 µmol, 5 mol
%), 3,4,7,8-tetramethyl-1,10-phenanthroline (3.9 mg, 16 µmol, 15 mol%) and
B2Pin2 (111 mg, 0.44 mmol, 4 equiv.) were balanced into an oven dried vial. The
vial was purged with argon, dry heptane (2.5 mL) was added under argon, and the
vial was sealed with a Teflon-lined screw cap and heated to 65 °C. The RM became
a dark red-brown solution after 5–15 min of heating. After 17–24 h, when LR-MS
indicated complete consumption of SM, the RM was concentrated to give the crude
boronate ester. This intermediate was immediately used to prepare the 5, 13, and
14 derivatives without further purification. Compound 7 was synthesized either
from 14 through a sequence of triflation, stannylation and fluorination or from 5
through a sequence of stannylation and fluorination.

General procedure for synthesis of 11-X-MG derivatives (15–17). Starting
material (5, 7, or 13, 0.11 mmol) was dissolved in AcOH (2.0 mL) under argon and
NaBH3CN (13.7 mg, 0.22 mmol, 2 equiv.) was added to the solution. After stirring
at RT for 15 min, another portion of NaBH3CN (13.7 mg, 0.22 mmol, 2 equiv.) was
added and stirring was continued for 1 h. After this time, MeOH (81 µL) was added
and the RM was heated to 90 °C for 1 h (for 15) and 14 h (for 16 and 17). The
reaction mixture was added into a cold concentrated NH4OH solution and
extracted with DCM. After drying over Na2SO4, the DCM extract was evaporated.
Product was purified by preparative TLC using an appropriate solvent mixture.

General procedure for synthesis of 11-X-7OH derivatives (22–24). Starting
material (15, 16, or 17; 73 µmol) was dissolved in acetone (2.2 mL), sat. aq.
NaHCO3 (1.5 mL) was added, and the stirred suspension was cooled in an ice bath
(0 °C). OXONE® (1.4–1.5 equiv.) in H2O (0.7 mL) was added dropwise over 20 min
with vigorous stirring (care should be taken that the RM does not form lumps and
should be stirred thoroughly). The reaction was monitored during the addition of
OXONE® by TLC. After 25 min from the first addition, the reaction mixture was
diluted with H2O (10 mL) and extracted with EtOAc (3 × 10 mL). The combined
extracts were washed with brine (10 mL), dried over Na2SO4, and concentrated.
Product was purified by preparative TLC using an appropriate solvent mixture to
synthesize compounds 22, 23, and 24.

Tail-flick mice assay
Mice. For analgesic dose–response experiments, male CD1 mice (20–32 g),
6–8 weeks were obtained from Charles River Laboratories and male C57BL/6 mice
(22–30 g), 8–15 weeks were obtained from Jackson Lab (Bar Harbor, ME) and
housed 5 mice per cage in a vivarium following an IACUC-approved protocol. For
male C57BL/6 mice temperature was kept constant at 22 ± 2 °C, and relative
humidity was maintained at 50 ± 5%. For male CD1 mice (20–32 g) the tem-
perature was in the range of 20–26 °C and relative humidity maintained within the
range of 30–70%. Mice were given access to food and tap water ad libitum. All mice
used throughout the manuscript were opioid naïve. All mice were maintained on a
12 h light/dark cycle with Purina rodent chow and water available ad libitum and
housed in groups of five until testing.

For analgesic testing in KO animals, wild-type, male C57BL/6 mice (22–33 g),
10–12 weeks were purchased from the Jackson Lab (Bar Harbor, ME). These mice
were kept at a constant temperature of 22 ± 2 °C, and relative humidity was
maintained at 40–50%. Exon-1/Exon-11 MOR-1 KO mice on a C57 background
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were bred in the Pintar laboratory at Rutgers University. All mice were maintained
on a 12-hour light/dark cycle with food and water available ad libitum, and housed
in groups of five until testing. All testing was done in the light cycle.

All animal studies were preapproved by the Institutional Animal Care and Use
Committees of Washington University School of Medicine and Columbia
University, in accordance with the 2002 National Institutes of Health Guide for the
Care and Use of Laboratory Animals.

Tail flick (dose–response). Tail-flick antinociception was determined using the
radiant heat tail-flick technique using an Ugo Basile model 37360 instrument as
previously described95,96. The intensity was set to achieve a baseline between 2 and
3 s. Baseline latencies were determined before experimental treatments for all mice.
Tail-flick antinociception was assessed as an increase in baseline latency, with a
maximal 15 s latency to minimize damage to the tail. Data were analyzed as percent
maximal effect, % MPE, and was calculated according to the formula: % MPE=
[(observed latency – baseline latency)/(maximal latency – baseline latency)] × 100.
Compounds were injected s.c. and antinociception was assessed at the peak effect.
Mice were tested for analgesia with cumulative subcutaneous doses of the drug
until the mouse can withstand the maximal latency. Once the mouse reached the
maximal latency, the mouse was no longer given higher doses. The analgesia
experiments were performed by blinding the experimenter to the identity of 7OH
versus 11-F-7OH. In vivo experiments were evaluated using GraphPad Prism 8,
San Diego, CA as described above.

Tail flick (MOR KO animals). Analgesia was tested in wild-type and MOR KO
animals by the radiant heat tail-flick technique using an IITC Model 33 Tail Flick
Analgesia Meter as previously described97. The intensity was set to achieve a
baseline between 2 and 3 s. Tail-flick antinociception was assessed as an increase in
baseline latency, with a maximal 10 s latency to minimize damage to the tail. Data
were analyzed as percent maximal effect, % MPE, which was calculated according
to the formula: % MPE [(observed latency− baseline latency)/(maximal latency−
baseline latency)] × 100. Compounds were administered s.c. as indicated in the
figures, and analgesia was assessed at the peak effect (15 min). Mice were tested for
analgesia with cumulative subcutaneous doses of the drug until the mouse can
withstand the maximal latency. Once the mouse reached the maximal latency, the
mouse was no longer given higher doses. In vivo experiments were evaluated using
GraphPad Prism 8, San Diego, CA as described above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all the data supporting the findings of this study are available
within the article and Supplementary Information files which contains synthetic
procedures and NMR spectra for the featured compounds, additional functional data at
rodent and human receptors, biological protocols for receptor binding, activity and
antinociception assays. The X-ray crystallographic coordinates for structure 4 reported in
this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC),
under deposition numbers 1905559. This data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. A
preprint version of this work has been deposited in the public depository ChemRxiv
platform https://doi.org/10.26434/chemrxiv.12799787. Source data are provided with
this paper.
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