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ABSTRACT: An efficient intramolecular Pd-catalyzed N-arylation of o-iodo-amidosugars for the synthesis of N-glycosylated
oxindoles has been reported. The coupling reaction takes place in toluene and involves Pd(OAc)2/RuPhos catalytic systems in the
presence of K2CO3. This versatile approach was extended successfully to the synthesis of other N-glycosylated heterocycles.

The 2-oxindole scaffold has attracted considerable
attention due to its widespread application in organic

synthesis and in the design of pharmaceuticals.1 This common
motif was found in many biologically active compounds with
applications in various therapeutic areas.2 Of the many drugs
developed so far containing a 2-oxindole core, four marketed
molecules have emerged (Figure 1A). Sunitinib is used to treat
renal cell carcinoma, gastrointestinal stromal, and pancreatic
neuroendocrine tumors. Ropinirol is recommended in
Parkinson’s disease; nintedanib is a medication delivered
against idiopathic pulmonary fibrosis, and ziprasidone is used
to treat schizophrenia and bipolar disorder. Other 2-oxindole
derivatives are also under clinical trials against various
diseases.3

The incorporation of a sugar moiety in bioactive molecules
may have several benefits such has enhancing their
bioavailability,4 their solubility,5 or their biological activity by
targeting, for example, selectively cancer tissues through the
Warburg effect.6 Such a transformation was achieved in the 2-
oxindole series, by chemical synthesis,7 and recently by
biotransformation using Streptomyces sp. SANK 60895,8

delivering N-glycosylated oxindoles that displayed interesting
biological activities. Interestingly, these latter structures were
also found in living systems (Figure 1B) as illustrated by
compound A, extracted from the seeds of Ziziphus jujuba var.
spinosa,9 and compound B, found in the stems of Brucea
mollis.10
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Figure 1. Example of biologically active oxindoles.

Letterpubs.acs.org/OrgLett

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acs.orglett.0c01262
Org. Lett. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

U
PP

SA
L

A
 U

N
IV

 o
n 

M
ay

 1
3,

 2
02

0 
at

 2
3:

03
:4

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Boris+Letribot"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wafa+Redjdal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Belkacem+Benmerad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Franck+Le+Bideau"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Moua%CC%82d+Alami"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samir+Messaoudi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samir+Messaoudi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.0c01262&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?fig=fig1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.0c01262?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf


Despite the high level of importance of N-glycosyl-2-
oxindoles, direct methods for their synthesis are scarce. To
the best of our knowledge, only two methods based on a
multistep sequence synthesis are reported. The best known
one7d relies on a four-step synthesis (Scheme 1, a) starting

from aniline and glucose, to produce N-glycosyl isatines. The
extra C3 carbonyl group was used for further functionalization.
This method, however, suffers from drawbacks such as low
overall yields and difficulties of purification linked to the β/α
anomeric composition of the starting materials (≤2:1).
Another approach to N-glycosyl-2-oxindoles involves a six-
steps procedur, including N-glycosylation of indoline,
oxidation, protection, functionalization, and deprotection.
Only one unsubstituted oxindole was reported to be produced
via this procedure in 26% overall yield (Scheme 1, b).11

As part of our continuing effort to functionalize sugars under
transition metal catalysis,12 we became interested in developing
an efficient and convergent approach to the synthesis of
substituted N-glycosyl oxindoles. We postulated that these
glycosides may be obtained simply through an intramolecular
N-arylation of 1-amidosugar using a catalytic amount of
palladium (Scheme 1, c). Herein, we report our success in the
development of such a protocol.
To determine optimal conditions for the selective intra-

molecular arylation of 1-amidosugars, (2-iodophenyl)-
acetamidoglucopyranose [3a (Table 1)] was initially selected

as a model substrate. This compound was prepared by reacting
2-iodophenylacetic acid (1a) with tetraacetylated 1-amino-β-
glucopyranose (2a) in the presence of hydroxybenzotriazole
(HOBt) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride (EDC·HCl). Under these coupling conditions,
compound 3a was obtained in 67% yield as a β/α mixture in a
20:1 ratio [determined by 1H NMR, comparing integrations of
the two anomeric protons (see the Supporting Information)].
With a subsequent amount of 3a in hand, we turned our
attention to examine the intramolecular N-arylation of this
substrate. The first tentative compound was produced by using
our previously reported Pd-catalyzed conditions13 for the
synthesis of N-glycosyl quinolin-2-ones [Pd(OAc)2 (5 mol %),
n-Bu4NOAc (1.5 equiv), dioxane, 100 °C, 1 h]. However,
under these conditions, even traces of 4a were not identified by
LC-MS analysis.
Therefore, we turned our attention toward a systematic

screening of literature reaction conditions14 that have proven
their efficiency in accomplishing the intramolecular N-arylation
of secondary amines or amides (Table 1 and the Supporting
Information). Among this series, only conditions using
Pd(dba)2/DavePhos

14e (entry 1) provided traces (by LC-
MS) of the desired cyclized product, thus establishing the
starting point of our optimization process. We next evaluated
monophosphine SPhos (entry 2) and the bidentate phosphine
ligand [XantPhos (see the Supporting Information)] usually
involved in such a pallado-catalyzed coupling reaction to find

Scheme 1. Strategies for the Synthesis of N-Glycosyl
Oxindoles

Table 1. Optimization of the Coupling Reaction of
Tetraacetylated β-Amidoglucose 3aa

entry Pd catalyst ligand solvent
t

(h)
yield
(%)b

1 Pd(dba)2
(10 mol %)

DavePhos
(10 mol %)

toluene/
MeCN (3:1)

24 trace

2 Pd(dba)2
(5 mol %)

SPhos
(5 mol %)

toluene/
MeCN (3:1)

12 15

3 Pd(dba)2
(10 mol %)

SPhos
(10 mol %)

toluene/
MeCN (3:1)

12 20

4 Pd(dba)2
(10 mol %)

SPhos
(10 mol %)

toluene 3 55

5 Pd(dba)2
(10 mol %)

SPhos
(20 mol %)

toluene 3 72

6 Pd(dba)2
(10 mol %)

RuPhos
(20 mol %)

toluene 3 78

7 Pd(OAc)2
(10 mol %)

RuPhos
(20 mol %)

toluene 3 82

8 Pd(OAc)2
(10 mol %)

RuPhos
(40 mol %)

toluene 3 90

aA sealable tube was charged with 1-amidoglucose 3a (1 equiv, 0.2
mmol), a Pd precatalyst (n mol %), a ligand (x mol %), and K2CO3 (2
equiv) in solvent (1.0 mL, 0.015 M). bYield of the isolated product.
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that only SPhos (entry 2) could, in toluene and acetonitrile
solvents, to afford desired glycoside oxindole 4a in 15% yield as
a β/α mixture (20:1 ratio). Doubling the catalyst ratio to 10
mol % (entry 3) allowed a small improvement in the yield
(20%), and gratefully, after the polar aprotic acetonitrile
solvent had been removed, the yield of the reaction increased
to 55% in only 3 h (entry 4). An increase in the Pd:L ratio
from 1:1 to 1:2 leads to an improved yield (entry 4, 55% yield,
vs entry 5, 72% yield). Shifting from SPhos to a more hindered
ligand RuPhos allowed a slight improvement in the yield (entry
6, 78% yield). In addition, performing the reaction with a
Pd(OAc)2 precatalyst instead of Pd(dba)2 led to 4a in 82%
yield (entry 7). We next succeeded in reaching an excellent
yield (90%) by combining 10 mol % Pd(OAc)2 and 40 mol %
RuPhos (entry 8). It can be noted that 4a was isolated in all
cases as a mixture of β and α anomers in a 20:1 ratio,
indicating that no anomerization occurred during the process.
This was confirmed by conducting the intramolecular coupling

reaction from a pure β anomer 3a that led to β-glycosylated
oxindole 4a without traces of the α anomer.
With optimal conditions in hand, the scalability and

robustness of this methodology were demonstrated on a 1
mmol scale. As shown in Scheme 2, 4a was obtained in 83%
yield when the N-arylation reaction of 3a was conducted on a
1 mmol scale. The scope and limitations of the reaction were
then examined with a diversity of substituted 1-amidosugars 3
(Scheme 2). These later compounds were prepared from a
readily available carboxylic acids 1 and the appropriate 1-
amino-β-sugars. In all cases, the expected β-amidosugars 3
were obtained as the major glycosides contaminated in some
cases, by a small amount of the α isomer (see the Supporting
Information for the β:α ratios), and this mixture was used for
the next step.
We were pleased to note that the coupling conditions were

efficient starting from either iodo- or bromo- and chloro-aryl
substrates, delivering product 4a in the same yield (90%).
Interestingly, in contrast to the iodide substrate 3a (20:1 β:α)

Scheme 2. Scope of the Intramolecular N-Arylation of 1-Amidosugars 3e

aYield of the isolated product. bThe reaction was conducted on a 1 mmol scale. cThe β:α ratio was determined by 1H NMR after purification on
flash chromatography. d4k and its precursor 3k were obtained as a racemic mixture with regard to the stereogenic center. eReaction conditions: 1-
amidosugar 3 (0.036−0.1 mmol), Pd(OAc)2 (10 mol %), RuPhos (40 mol %), K2CO3 (2 equiv) in toluene (0.015−0.021 M), 130 °C, 3 h.

Organic Letters pubs.acs.org/OrgLett Letter

https://dx.doi.org/10.1021/acs.orglett.0c01262
Org. Lett. XXXX, XXX, XXX−XXX

C

http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c01262/suppl_file/ol0c01262_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c01262/suppl_file/ol0c01262_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c01262?fig=sch2&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.0c01262?ref=pdf


used, bromide 3a′ (20:1 β:α) or chloride 3a″ (9:1 β:α)
analogues delivered a pure β-N-glycosyl oxindole 4a, although
they were used as a mixture of β and α anomers. This result
indicates clearly that anomerization occurs during the process
when bromide or chloride substrates (3a′ or 3a″, respectively)
were used. Substrates with electron-donating (3b,c,e,f) and
electron-withdrawing (3d,g−i) substituents on various posi-
tions of the aromatic ring were also successfully converted into
the corresponding N-glycosyl oxindoles in good to excellent
yields (≤90%). Additionally, the chemoselectivity of this
coupling was examined with dihalogenated substrate 3h
bearing two different C−X bonds (C−I and C−Cl) at the
orth−ortho′ positions of the benzene ring. Interestingly, under
our optimized conditions, only the C−I reacted delivering the
corresponding glycoside 4h in 84% yield and anomeric
stereoselectivity β:α of 20:1. The presence of an aryl fused
ring was also tolerated well as shown with compound 4j.
Moreover, the N-glycosyl congested tetracycle 4k was obtained
in 84%. In addition, the spiro-oxindole N-glycosylated
compound 4l with a cyclopropyl ring at the C3 position was
prepared in good 58% yield as a pure β anomer.
The successful synthesis of N-glucosides 4a−l from 1-

amido-glucose 3a−l encouraged us to investigate other sugar
partners on this coupling. Pleasantly, the coupling reaction was
successfully extended to substrates with various peracetylated
mono-, di-, and triglycosides (3m−p). The corresponding
oxindoles bearing a mannose (4m), a galactose (4n), a
cellobiose (4o), or a maltotriose (4p) were all prepared with
excellent yields (≤90%) and high stereoselectivity.
Encouraged by these results, we investigated the feasibility of

this approach with the aim of synthesizing N-glycosylated six-
membered heterocycles (Scheme 3). In this context, we were

pleased to see that substrates 5a and 5b bearing an ether
linkage or their thioether congener 5c all reacted successfully
under our reaction conditions to furnish N-glycosylated
dihydroquinolinone 6a, benzoxazinone 6b, and benzothiazi-
none 6c in 70%, 68%, and 24% yields, respectively. These
results represent the first examples of diversification of this
family of N-heterocycle glycosides through this methodology.
With substantial amounts of 4a in hand (Scheme 4), we

focused our attention on demonstrating whether our method
could be employed for molecular diversity. At first, the
unprotected glycoside-indolin-2-one 7a was synthesized by
deacetylation of 4a under Zamplen conditions. This N-

glucosyloxindole 7a was thus obtained in a six-step procedure,
starting from 1a, in 22% overall yield.
Finally, this methodology was applied to the synthesis of

bioactive drug analogues. As shown in Scheme 4, β-N-glucosyl
SUGEN derivative 8a, which is an N-glycosylated analogue of
semaxanib (SU5416, a tyrosine-kinase inhibitor drug used as a
cancer therapeutic), was obtained in 72% yield by post-
functionalization of the N-glycosyl oxindole 4a, via con-
densation with 3,5-dimethyl-1H-pyrrole-2-carbaldehyde. As it
was previously described,15 only the Z isomer of the alkene was
observed presumably because of the hydrogen bond formed
between the nitrogen of the pyrrole and the carbonyl of the
oxindole. The deprotected analogue 9a was further prepared
by removal of the acetate groups in the presence of a catalytic
amount of potassium carbonate in methanol in 84% yield.
In summary, we succeeded in synthesizing N-glycosylated

oxindoles by intramolecular Pd-catalyzed N-arylation of 1-
amidosugars. This is the first methodology reporting an
efficient way to prepare a large variety of substituted N-glycosyl
oxindoles. This coupling reaction tolerates various functional
groups and sugar moieties. Moreover, this approach was
extended to the synthesis of N-glycosylated dihydroquinoli-
none, benzoxazinone, and benzothiazinone. Finally, because of
this methodology, we described for the first time the synthesis
of an N-glycosylated SUGEN derivatives and expect to apply
this general methodology to other therapeutic compounds.
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