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Abstract: A highly selective mono-C-allylation of pentaethyl di-
ethylenetriaminepentaacetate was achieved with allyl bromide and
potassium carbonate via a newly developed elaborate procedure
based on Stevens rearrangement. It is contrastive that the conserva-
tive one-pot procedure gave a complicated mixture.

Key words: MRI, Stevens rearrangement, chelating agent,
Mizoroki–Heck reaction

Diethylenetriaminepentaacetic acid (DTPA, 1) is a well-
known chelating agent of heavy-metal cations
(Scheme 1).1 To design the hybrid molecules possessing
both a peculiarity of the metal cations and an orthogonal
property such as a specific affinity for particular organs or
cells, a number of DTPA derivatives have been synthe-
sized.2–5,7,8 A major molecular design is shown as 2, which
can be synthesized from commercially available DTPA
dianhydride and an amine (H2NR1). Despite the simplicity
of this synthetic strategy, it should be reconsidered; the
loss of one of the five carboxylates decreases the binding
ability.3,9

Recently, syntheses of DTPA derivatives with five free
carboxylates that contain a linker-and-functionality group
at a carbon of the framework, such as in 3 and 4, have been
reported via a number of C–N bond-formation reactions.4

The loss of large amounts of halogen salts, however,
makes these processes unsustainable.

In contrast, fundamental molecule 1 has been prepared in
a highly sustainable industrial-scale process via addition–
dehydration reactions followed by hydrolysis of penta-
nitrile 5.6 We recently developed a carbon–carbon bond-
forming reaction that enables addition of a side chain di-
rectly onto the DTPA framework to afford 6.5 However,
poor reproducibility on a large scale has remained prob-
lematic. In this process, highly moisture- or air-sensitive
carbanion species must be generated with strict stoichio-
metric control because of the five reacting groups in the
DTPA framework. Similar procedures were reported by
Keana et al.7 and Muller et al.8 to afford 7 in only 32–36%
yield. Accordingly, the efficient methods for the synthesis
of DTPA-hybrid molecules have not yet been developed.

In this paper, we report a highly practical and reproducible
mono-C-allylation reaction of 85 using allyl bromide (9)
in DMF in the presence of potassium carbonate (K2CO3)
as an essential base (Scheme 2). Importantly, excessively
strict control of the quantity of each reagent is not re-
quired. It is believed that this key reaction proceeds via
the Stevens rearrangement,10 N-allylation followed by C-
migration.11 However, results of our preliminary attempts,
conservative procedures of Stevens rearrangement report-
ed in a number of previous papers,10 were described at

Scheme 1 Previous synthetic routes of DTPA derivatives for candidates of MRI agents
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first for comparison. Those conservative procedures were
the same as a newly developed condition except ‘one-pot’
and ‘stepwise’. The conservative conditions gave mix-
tures of mono-C-allylated products 10 and 11, recovered
8, and an unidentified complex mixture of byproducts 12–
14 (likely di- and triallylated compounds) were obtained
in irreproducible yields. The values of chemical yield
shown in Scheme 2 are the best of all we have attempted
by the conservative procedure. Although the reaction pro-
cedure was easy and simple, isolated yield of the desired
one was low, and it was very unpractical to purify the de-
sired one in pure form.

In contrast, the newly developed elaborate procedure re-
ported herein gave 1012 in 63% isolated yield along with
1112 and 8 in 5% and 10% yields, respectively. The chem-
ical yield and selectivity were significantly increased by
inserting a ‘vacuum operation’ between the N-allylation13

and C-migration steps. First, a mixture of 8 and nine
equivalents of 9 was heated in DMF without base for 39
hours. The mixture was then concentrated in vacuo to ex-
haustively remove any excess 9. The residue was dis-
solved in DMF, and K2CO3 was added. Heating the
suspension with stirring for 70 hours afforded 10 with
high selectivity.14,15 This procedure was highly reproduc-
ible even when 50 grams of 8 were used.

It is noteworthy that the central-selectivity of our new pro-
cedure contrasts with the edge-selectivity of the carbon–
carbon bond-forming reaction that afforded 65 and 7.7,8

We propose that the central nitrogen is more nucleophilic
than the two edge nitrogens because it has only one elec-
tronegative substituent (CH2CO2Et), while edge nitrogens

have two (Figure 1). The higher nucleophilicity increases
the central nitrogen’s ability to form an ammonium cat-
ion.

Figure 1 Considerable difference of nucleophilicity between the
central nitrogen atom and the edge nitrogen atoms

Compound 10 was then further reacted to form a DTPA-
hybrid molecule (Scheme 3). Via the Mizoroki–Heck
reaction,16 the allylic moiety of 10 was converted to a link-
er-and-functionality group using aryl iodide 15,17 which
was hydrogenated to afford 16 in 84% overall yield. Acid
hydrolysis of 16 led to formation of the hydrochloride salt
of all-carboxylate-free DTPA derivative 1718 bearing an
amino terminal group in 92% yield.

In conclusion, we have developed a highly selective
mono-C-allylation reaction for functionalizing the DTPA
framework via an elaborately modified Stevens rearrange-
ment and demonstrated the synthesis of a DTPA deriva-
tive bearing a linkage and functionality at the central
carbon atom. Detail exploration of the mechanism of the
allylation reaction and synthesis of various key synthetic
intermediates such as 17 are now in progress.

Scheme 2 A representative example of conservative one-pot procedure and a newly developed elaborate procedure of mono-C-allylation of
8. Reagents and conditions: a) allyl bromide (9), DMF, 40 °C, 39 h; then evaporation for removal of allyl bromide; b) K2CO3, DMF, 70 h, 80 °C.
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(4:1), reflux, 12.5 h, 92% yield. Boc = tert-butoxycarbonyl.
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1.250 (t, J = 7.2 Hz, 3 H, OCH2CH3). 

13C NMR (100 MHz, 
CDCl3): d = 172.9 (C, OC=O), 170.8 (4 × C, OC=O), 155.5 
(C, NC=O), 139.9 (C, arom.), 136.0 (C, arom.), 128.4 (2 × 
CH, arom.), 128.2 (2 × CH, arom.), 78.6 (C, OCMe3), 63.4 
(CH, NCHCO2Et), 60.0 (4 × CH2, OCH2CH3), 59.7 (CH2, 
OCH2CH3), 54.9 (4 × CH2, NCH2CO2Et), 53.4 [2 × CH2, 
N(CH2CH2N)2], 50.0 [2 × CH2, N(CH2CH2N)2], 41.5 (CH2, 
CH2NHBoc), 35.5 (CH2, one of CH2CH2CH2C6H4CH2), 
34.9 (CH2, one of CH2CH2CH2C6H4CH2), 29.3 (CH2, one of 
CH2CH2CH2C6H4CH2), 28.1 (3 × CH3C(CH3)3], 27.9 (CH2, 
one of CH2CH2CH2C6H4CH2), 14.1 (CH3, OCH2CH3), 13.9 
(4 × CH3, OCH2CH3). ESI-HRMS: m/z [M + H]+ calcd for 
C40H67N4O12: 795.4755; found: 795.4746.
Analytical Data for Compound 17
Hygroscopic colorless solid. FT-IR (KBr): 3420, 2955, 
2361, 1734, 1647, 1636, 1507, 1457, 1418, 1214, 1057, 954, 
899, 814, 667 cm–1. 1H NMR (400 MHz, D2O, 
TMSCH2CH2CO2Na as an internal standard): d = 7.28 (d, 
J = 7.2 Hz, 2 H, arom.), 7.26 (d, J = 7.2 Hz, 2 H, arom.), 3.96 
(s, 8 H, 4 × N+CH2CO2D), 3.56–3.53 (m, 1 H, N+CHCO2D), 
3.43 [t, J = 6.8 Hz, 4 H, N+(CH2CH2N

+)2], 3.26 (t, J = 6.8 
Hz, 2 H, CH2N

+D3], 3.19–3.09 [m, 4 H, N+(CH2CH2N
+)2], 

2.97 (t, J = 6.8 Hz, 2 H, C6H4CH2CH2N
+D3), 2.67 (t, J = 6.8 

Hz, 2 H, CH2CH2CH2C6H4), 1.87–1.78 (m, 1 H, 
CHACH2CH2C6H4), 1.76–1.69 (m, 2 H, CH2CH2CH2C6H4), 
1.64–1.58 (m, 1 H, CHBCH2CH2C6H4). 

13C NMR (100 MHz, 
D2O, TMSCH2CH2CO2Na as an internal standard): d = 
177.8 (C, CO2D), 171.8 (4 × C, CO2D), 143.6 (C, arom.), 
137.1 (C, arom.), 132.0 (2 × CH, arom.), 131.9 (2 × CH, 
arom.), 66.2 (CH, N+CHCO2D), 58.0 (4 × CH2, 
N+CH2CO2D), 56.0 [2 × CH2, N

+(CH2CH2N
+)2], 49.5 

[2 × CH2, N
+(CH2CH2N

+)2], 43.5 (CH2, CH2N
+D3), 37.1 

(CH2, one of CH2CH2CH2C6H4CH2), 35.2 (CH2, one of 
CH2CH2CH2C6H4CH2), 30.5 (CH2, one of 
CH2CH2CH2C6H4CH2), 30.2 (CH2, one of 
CH2CH2CH2C6H4CH2). ESI-HRMS: m/z [M – H]– calcd for 
C25H37N4O10: 553.2510; found: 553.2520. Anal. Calcd for 
C25H38N4O10·(HCl)4·(H2O)4.5: C, 38.42; H, 6.58; N, 7.17. 
Found: C, 38.32; H, 6.33; N, 7.19..
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