

Tetrahedron Letters, Vol. 37, No. 22, pp. 3899-3902, 1996 Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 3 0040-4039/96 \$15.00 + 0.00

PII: S0040-4039(96)00684-3

Regioselective Synthesis of Calix[8]crowns by Direct Alkylation of *p-tert*-Butylcalix[8]arene

Corrada Geraci, Mario Piattelli and Placido Neri*

Istituto per lo Studio delle Sostanze Naturali di Interesse Alimentare e Chimico-Farmaceutico, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy

Abstract: Direct alkylation of *p*-tert-butylcalix[8]arene with oligoethylene glycol ditosylates affords calix[8]crowns-n with a bridging pattern dependent on the nature of the base used. Alkali metal hydrides (NaH or KH) afford mainly 1,4-calix[8]crowns 2_n in yield up to 46%, while K_2CO_3 and Cs_2CO_3 with triethylene glycol ditosylate give the 1,3-crown 4_4 and its 1,5-isomer 5_4 as the main product, respectively. Appreciable amounts of 1,2-calix[8]crowns 3_4 are formed with all bases but NaH. At room temperature the ¹H NMR spectra of compounds 2_n - 5_4 show broad signals indicative of hampered conformational mobility. Copyright © 1996 Elsevier Science Ltd

Among the variety of calixarene¹ derivatives synthesized in the last decade calixcrowns² undoubtedly occupy a prominent position due to their complexing properties toward several cations, often with very remarkable selectivity,³ leading to several practical applications.⁴ Although the greatest attention has been paid to calix[4]crowns, interesting results have recently been obtained also with calix[5]crowns⁵ and calix[6]crowns.⁶ Concerning calix[8]crowns, we have recently shown that the introduction of polyether chains in 1,3,5,7-tetra-*O*-benzylated derivatives originates compounds conformationally preorganized in the 220-415 K range.⁷ In that

study, preliminary attempts at the direct regioselective introduction of polyether chains in the parent *p-tert*-butylcalix[8]arene (1) had given unsatisfactory results.⁷ Further experiments have now allowed us to find that 1 reacts under appropriate conditions with oligoethylene glycol ditosilates to give the desired calix[8]crowns in satisfying yields.

chromatography in yield up to 46% (entries 1-2, Table 1).⁸ The reaction was extended to tetra- and pentaethylene glycol ditosylates to afford 1,4-calix[8]crown-n 2_5 and 2_6 in 31 and 25% yield respectively (entries 3-4, Table 1).⁸ The use of KH in place of NaH under identical conditions resulted in the formation of 1,2-calix[8]crown-4 3_4 (entry 5, Table 1), in addition to 2_4 .⁸ Weaker bases such as alkali metal carbonates required longer reaction time in order to give appreciable amounts of crowned calix[8]arenes. In fact, after 47 h the reaction using K₂CO₃ as a base afforded monotosylpolyether 6_4 in appreciable yields besides 1,2-crown 3_4 , while the main product was the 1,3-crowned calix[8]arene 4_4 (entry 6, Table 1).⁸ Cs₂CO₃ in similar conditions yields 1,5-isomer 5_4 as the main product (entry 7, Table 1).⁸

Structure for assignment compounds 2_n relied essentially on spectral analysis. Thus, the molecular masses were determined by FAB(+) mass spectroscopy, while the bridging pattern was inferred from extensive NMR analysis. At room temperature the ¹H NMR spectra of calix[8]crown 2_n show broad signals indicating that conformational motion is hampered. Thus, the spectrum of 2_4 at rt in (CD₃)₂CO shows broad, shapeless signals in the methylene region. The presence of four equal intensity signals at 1.17, 1.97, 1.22, and 1.25 ppm for the t-Bu groups is indicative of the presence in the molecule of a symmetry axis passing through two diametrical ArCH₂Ar groups.⁸ This was confirmed by the appearance in the ¹³C NMR spectrum of eight signals due to aromatic carbons bearing either an oxygen atom or a t-Bu-group (140-155 ppm region), as well as two signals at δ 133.4 and 133.6 for the C-CH₂ carbons alkylated phenolic of rings.

Discrimination between the two possible bridging patterns (1,2 or 1,4) compatible with the observed symmetry was achieved by a combination of 2D HETCOR and long-range HETCOR NMR experiments performed in C_6D_6 at 310 K in order to have sufficiently resolved methylene signals. The presence of cross-peaks between the bridgehead aromatic carbons and two ArCH₂Ar singlets of 4 H intensity (δ 4.04 and 4.08) clearly indicated the 1,4-bridging. Structure assignment for the other 1,4-calix[8]crown 2₅ and 2₆ was based on similar arguments.

At this point the structure of 1,2-calix[8]crown-4 could be immediately assigned to 3_4 , that possesses the same symmetry as 2_4 (four 18 H singlets for *t*-Bu groups at 1.19, 1.20, 1.208, and 1.213 ppm are present in its ¹H NMR spectrum in (CD₃)₂CO, as well as eight signals for quaternary aromatic carbons are seen in the 140-155 ppm region of the ¹³C NMR spectrum).⁸ Interestingly, the chemical shift values for the three 2 H hydroxyl groups in the 1,2- and 1,4-isomers, 2_4 and 3_4 , are a sensitive structural probe. Indeed, in the spectrum of 2_4 these resonances appear at δ 8.35, 8.85, and 9.05, and are to be attributed respectively to a singly-H-bonded hydroxyl, a singly-H-bonded hydroxyl in a semicircular array and a doubly-H-bonded hydroxyl. In contrast, the spectrum of 3_4 contains a signal at δ 8.69, attributable to an OH single-H-bonded in a semicircular array, and two resonances at δ 8.97 and 9.13 for doubly-H-bonded OH groups.

Assignment of the bridging pattern to 1,3-calix[8]crown-4 44 was based on the presence of a symmetry element bisecting opposite aromatic rings, as indicated by its ¹H NMR spectrum which shows five singlets for t-Bu groups (δ 1.18, 1.23, 1.24, 1.26, and 1.27, 1:2:1:2:2) and by the presence in its ¹³C NMR spectrum of ten resonances in the 140-155 ppm region.⁸ Analogously the 1,5bridging in 5_4 was deduced from

Table 1. Yield of Calix[8]crown-n in Direct Alkylation of 1 with TsO(CH2CH2O)mTs (1 equiv)					
Entry	m	Base	Solvent	Time (h)	Compd (yield %)
1	3	NaH	THF/DMF	17	2 ₄ (46)
2	3	NaH	THF/DMF	3	2 ₄ (35)
3	4	NaH	THF/DMF	3	2 ₅ (31)
4	5	NaH	THF/DMF	3	2 ₆ (25)
5	3	КН	THF/DMF	17	2 ₄ (28), 3 ₄ (8)
6	3	K ₂ CO ₃	Me ₂ CO	47	3 ₄ (5), 4 ₄ (12), 6 ₄ (6)
7	3	Cs ₂ CO ₃	Me ₂ CO	22	2 ₄ (2), 3 ₄ (6), 5 ₄ (13)

the presence of three t-Bu signals in its ¹H NMR spectrum (δ 1.24, 1.32, and 1.35, 2:1:1) and six quaternary carbon resonances in the low-field ¹³C NMR region.⁸

The regiochemical outcome observed in the alkylation of 1 with triethylenglycol ditosylate in the presence of various bases deserves a comment. We suggest that the major factor controlling the bridging position is the

strength of the base. Thus, in the presence of 6-10 equiv of a strong base (NaH or KH) the closure step of a mono-O-alkylcalix[8]arene like 6_4 reasonably proceeds through a well defined polyanion, very likely a 2,4,6,8-tetraanion of type 7, thus leading to 1,4-bridging. The reaction promoted by a weak base (K₂CO₃) proceeds through the formation of a monoanion in which, according to earlier observations,⁹ the charge is preferentially localized at position 3, so 1,3-bridged derivatives are preferentially formed. Cs₂CO₃, a base of intermediate strength, is unable to reach the same level of multiple deprotonation as does an alkali metal hydride and gives either a di- or a trianion, with a negative charge preferentially located at position 5. Cation

template effect can be invoked to explain the formation of 1,2-bridge with all bases but NaH.¹⁰ In any case, definite conclusions have to await a more systematic study extended to polyethylene glycols of different length.

The direct regioselective synthesis of calix[8]crowns here described provides a convenient method for the intrabridging of the calix[8]arene macrocycle with different bridging patterns. It is conceivable that a careful extension of this methodology could lead to multiple-crowned calix[8]arenes effectively preorganized to host suitable guests. Moreover, the succession of two or more steps in different conditions should lead to mixed bridging patterns with interesting stereochemical implications.

Acknowledgements. This work was supported by a M.U.R.S.T. 40 % grant. Thanks are due to Mr. R. Rapisardi (I.C.T.M.P., C.N.R., Catania) for measurement of FAB MS spectra.

REFERENCES AND NOTES

- 1. Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989. Calixarenes: A Versatile Class of Macrocyclic Compounds; Vicens, J.; Böhmer, V., Eds.; Kluwer: Dordrecht, 1991. For an update to 1994 see: Böhmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713.
- 2. Asfari, Z.; Wenger, S.; Vicens, J. J. Incl. Phenom. 1994, 19, 137 and references cited therein.

- Ghidini, E.; Ugozzoli, F.; Ungaro, R.; Harkema, S.; Abu El-Fadl, A.; Reinhoudt, D. N.; Ugozzoli, F.; J. Am. Chem. Soc. 1990, 112, 6979. Ungaro, R.; Casnati, A.; Ugozzoli, F.; Pochini, A.; Dozol, J.-F.; Hill, C.; Rouquette, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 1506. Asfari, Z.; Harrowfield, J. M.; Sobolev, A. N.; Vicens, J. Aust. J. Chem. 1994, 47, 757. Yamamoto, H.; Shinkai, S. Chem. Lett. 1994, 1115.
- King, A. M.; Moore, C. P.; Sandanayake, K. R. A. S.; Sutherland, I. O. J. Chem. Soc., Chem. Commun. 1992, 582. Brzozka, Z.; Lammerink, B.; Reinhoudt, D. N.; Ghidini, E.; Ungaro, R. J. Chem. Soc., Perkin Trans. 2 1993, 1037. Hill, C.; Dozol, J. F.; Lamare, V.; Rouquette, H.; Eymard, S.; Tournois, B.; Vicens, J.; Asfari, Z.; Bressot, C.; Ungaro, R.; Casnati, A. J. Incl. Phenom. 1994, 19, 399. Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud, F.; Fanni, S.; Schwing, M.-J.; Egberink, R. J. M.; de Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 2767.
- Kraft, D.; Arnecke, R.; Böhmer, V.; Vogt, W. Tetrahedron 1993, 49, 6019. Gordon, J. L. M.; Böhmer, V.; Vogt, W. Tetrahedron Lett. 1995, 36, 2445.
- Casnati, A.; Jacopozzi, P., Pochini, A.; Ugozzoli, F.; Cacciapaglia, R.; Mandolini, L.; Ungaro, R. Tetrahedron 1995, 51, 591.
- 7. Geraci, C.; Piattelli, M.; Neri, P. Tetrahedron Lett. 1995, 36, 5429.
- 8. Satifactory microanalytical and spectral data were obtained for compounds 2_n-6_4 . Compound 2_4 : FAB(+) MS 1411 (MH⁺); ¹H-NMR [(CD₃)₂CO, 295 K] δ 1.17, 1.97, 1.22, 1.25 [s, (CH₃)₃, 18 H each], 3.70-4.10 (overlapped, OCH₂ and ArCH₂Ar, 28 H), 7.06 (d, J = 2.2 Hz, ArH, 2 H), 7.12 (d, J = 2.2 Hz, ArH, 2 H), 7.16 (d, J = 2.4 Hz, ArH, 2 H), 7.18 (d, J = 2.3 Hz, ArH, 2 H), 7.28 (bs, ArH, 4 H), 7.30 (d, J = 2.5 Hz, ArH, 2 H), 7.34 (d, J = 2.3 Hz, ArH, 2 H), 8.35, 8.85, 9.05 (bs, OH, 2 H each). Compound 25: FAB(+) MS 1455 (MH⁺); ¹H-NMR (CDCl₃, 306 K) δ 1.24, 1.28, 1.32, 1.34 [s, (CH₃)₃, 18 H each], 3.84 (bs, OCH₂, 8 H), 3.91, 3.94 (s, ArCH₂Ar, 2 H each), 3.95, 4.01, 4.11 (s, ArCH₂Ar, 4 H, each), 4.13, 4.36 (bt, OCH₂, 4 H each), 7.06 (d, J = 2.2 Hz, ArH, 2 H), 7.14 (d, J = 2.3 Hz, ArH, 2 H), 7.17 (d, J = 2.1 Hz, ArH, 4 H), 7.20 (d, J = 2.3 Hz, ArH, 4 H), 7.21 (d, J = 2.4 Hz, ArH, 2 H), 7.23 (d, J = 2.4 Hz, ArH, 2 H), 8.20, 9.04, 9.73 (bs, OH, 2 H each). Compound 2₆: FAB(+) MS 1499 (MH⁺); ¹H-NMR (CDCl₃, 293 K) δ 1.18, 1.23, 1.27, 1.28 [s, (CH₃)₃, 18 H each], 3.68 (bs, OCH₂, 4 H), 3.77, 3.83 (bt, OCH₂, 4 H each), 3.86, 3.90, 4.00, 4.10 (s, ArCH₂Ar, 4 H each), 4.11, 4.26 (bt, OCH₂, 4 H each), 7.00 (d, J = 1.9 Hz, ArH, 2 H), 7.08 (d, J = 2.5 Hz, ArH, 2 H), 6.95-7.23 (overlapped, ArH, 12 H), 8.20, 9.04 and 9.73 (bs, OH, 2 H each). Compound 3₄: FAB(+) MS 1411 (MH⁺); ¹H-NMR (CDCl₃, 295 K) δ 1.24, 1.25, 1.26 [s, (CH₃)₃, 36 H, 18 H, 18 H], 3.70-4.35 (overlapped, OCH₂ and ArCH₂Ar, 28 H), 7.00-7.27 (overlapped, ArH, 16 H), 8.69, 8.97, 9.13 (bs, OH, 2 H each). Compound 4_a: FAB(+) MS 1411 (MH⁺); ¹H-NMR (CDCl₃, 295 K) δ 1.18, 1.23, 1.24, 1.26, 1.27 [s, (CH₃)₃, 9 H, 18 H, 9 H, 18 H, 18 H], 3.65-4.35 (overlapped, OCH₂ and ArCH₂Ar, 28 H), 7.04, 7.14 (s, ArH, 2 H each), 7.15-7.18 (overlapped, ArH, 12 H), 7.65, 8.66, 9.01, 9.24 (bs, OH, 1 H, 2 H, 2,H, 1 H). Compound 5_a: FAB(+) MS 1411 (MH+); ¹H-NMR (CDCl₃, 295 K) δ 1.24, 1.32, 1.35 [s, (CH₃)₃, 36 H, 18 H, 18 H], 3.65-4.35 (overlapped, OCH₂ and ArCH₂Ar, 28 H), 7.12 (bs, ArH, 8 H), 7.17, 7.29 (s, ArH, 4 H each), 8.99, 9.65 (bs, OH, 4 H, 2 H). Compound 64: FAB(+) MS 1585 (MH+); ¹H-NMR (CDCl₃, 295 K) δ 1.26, 1.27, 1.29, 1.30 [s, (CH₃)₃, 36 H, 18 H, 9 H, 9 H], 2.23 (CH₃Ts, 3 H), 3.30, 3.53 (bt, OCH₂, 2 H each), 3.60-4.23 (overlapped, OCH₂ and ArCH₂Ar, 24 H), 6.96-7.36 (overlapped, ArH and TsH, 18 H), 7.68 (d, J = 8.0 Hz, TsH, 2 H), 8.96, 9.22, 9.42 (bs, OH, 2 H, 2H, 3 H).
- 9. Neri, P.; Geraci, C.; Piattelli, M. J. Org. Chem. 1995, 60, 4126.
- 10. Similar arguments have been proposed to explain the regioselectivity observed in the synthesis of calix[4]crown: Yamamoto, H.; Sakaki, T.; Shinkai, S. Chem. Lett. 1994, 469.

(Received in UK 11 March 1996; revised 10 April 1996; accepted 12 April 1996)

3902