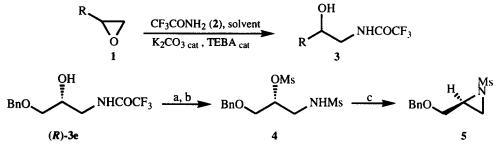


Tetrahedron 55 (1999) 6387-6394

TETRAHEDRON

Synthesis of N-Sulfonyl Aziridines Through Regioselective Opening of Epoxides Under Solid-Liquid PTC Conditions

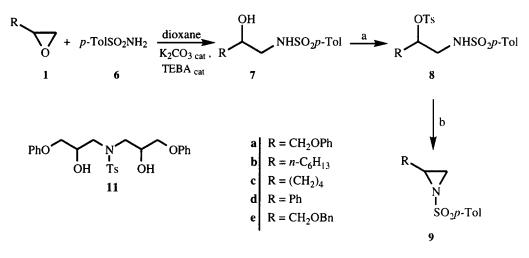
Domenico Albanese,* Dario Landini, Michele Penso, Silvia Petricci


Centro CNR and Dipartimento di Chimica Organica e Industriale dell'Università Via Venezian 21, I-20133 Milano, Italia. E-mail: domenico@iumchz.chimorg.unimi.it

Received 4 January 1999; accepted 15 February 1999

Abstract: The ring opening of epoxides 1 with 4-toluenesulfonamide (6) under solid-liquid phase transfer catalysis (SL-PTC) conditions afforded regioselectively β -sulfonamidoalcohols 7 in high yields. These were further converted into N-sulfonylaziridines 9 after activation of the hydroxy leaving group followed by ring closing in the presence of potassium carbonate. © 1999 Elsevier Science Ltd. All rights reserved.

The importance of aziridines as versatile synthetic intermediates,¹ chiral auxiliaries and ligands for stereoselective synthesis² is well known. They are frequently prepared through the three steps ring closure of β -amino alcohols derived from natural amino acids even though this method is limited by the availability of the amino acids. Alternative procedures are alkene³ and imine aziridination⁴ along with the nitrogen nucleophilic ring opening of epoxides.⁵ The latter strategy appears particularly attractive and more flexible due to recent advances in the development of enantioselective methods for the synthesis of epoxides.⁶


In a previous paper we have reported on the synthesis of β -hydroxytrifluoroacetamides 3 by ring opening of epoxides 1 with trifluoroacetamide (2) under solid-liquid phase transfer catalysis (SL-PTC) conditions.⁷ Due to the easy removal of the trifluoroacetamide group by mild alkaline hydrolysis, hydroxyamides 3 can be considered synthetic equivalents of the β -amino alcohol moiety,⁷ thus representing valuable intermediates for the synthesis of aziridines. For example (2R)-(-)-1-N-(trifluoroacetyl)-3-(phenylmethoxy)propan-2-ol (3e), obtained from (S)-1e, has been converted into aziridine 5 in 87% overall yield through the procedure depicted in Scheme 1.

a) NaOH 3%/THF 0°C, 1 h; 98%. b) MsCl, Et₃N, CH₂Cl₂; 92%. c) K₂CO₃, TEBA_{cat}, CH₃CN + h, 45 °C; 96%.

Scheme 1

In order to optimise the conversion of epoxides into aziridines, 4-toluenesulfonamide (6) was investigated as a tool to deliver and protect the aziridine nitrogen. Herein we wish to report that excellent yields of Ntosylamino alcohols 7 were obtained by ring opening of 1 with 6 under SL-PTC conditions. Moreover the selective O-tosylation of 7 followed by ring closing of the resulting 8 produced the aziridines 9 in high overall yields (Scheme 2).

a) TsCl, Py, CH₂Cl₂. b) K₂CO₃, CH₃CN.

Scheme 2

RESULTS AND DISCUSSION

The ring opening was performed by stirring at 90 °C a heterogeneous mixture of the epoxide 1 (1 mol). triethylbenzylammonium chloride (TEBA) (10) (0.1 mol), anhydrous K₂CO₃ (0.1 mol), 4-toluenesulfonamide (6) (2 mol) and dioxane as solvent. Under these reactions conditions β -amido alcohols **7a-e** were isolated in 75-93% yield after 2.5-12 h (Table 1).⁸ As expected, the reaction takes place in a complete regioselective fashion affording β -amido alcohols **7** deriving from the nucleophilic attack to the less substituted carbon atom of the oxirane ring. As a consequence of the observed regiochemistry non racemic epoxides generate enantiopure β -amido alcohols, as confirmed in the case of (2S)-(+)-[(Phenylmethoxy)methyl]oxirane (1e). The enantiomeric purity of (*R*)-**7e** was determined by 300 MHz ¹H NMR analysis of Mosher derivatives. In fact the Mosher's ester prepared from (*R*)-**7e** and (*R*)-Mosher acid chloride⁹ showed a single signal for the methoxy group at 3.507 ppm, whereas the diastereoisomeric esters obtained from racemic **7e** showed two separated singlets at 3.507 and 3.488 ppm.

The presence of the PTC agent 10 is essential in order to obtain high yields of β -sulfonamido alcohols in short reaction times. In fact the catalysed ring opening of [(phenoxy)methyl]oxirane (1a) afforded 75% of 7a in 2.5 h, whereas 11 h were necessary to generate 54% of 7a in the absence of TEBA. Sodium and cesium carbonate were found to be less selective bases for the mono-*N*-alkylation of 6. In fact 7a was generated in 45-60% yield together with 43-34% of the dialkylated byproduct 11.¹⁰

epoxide 1	t (h)	yield (%)	β-sulfonamido alcohol
(±)- 1a	2.5	2.5 75 (±)- 7 a	(±)-7a
	11	54a	
(±)-1b	6	91	(±)- 7b
(±)-1c	12	93	(±)-7c
(±)-1d	6	93	(±)- 7d
(S)-1e	2	85	(R)-7e

Table 1. β -Amido Alcohols 7 Prepared by Opening of Epoxides 1

^a Without TEBA.

The selective O-tosylation of **7a-e**, required for the activation of the hydroxy leaving group, was carried out with tosyl chloride and pyridine in dichloromethane affording N, O-ditosyl derivatives **8a-e** in 80-92% yield. In the case of 1-N-tosyl-2-phenyl-1-ethanol (**7d**) only the corresponding N-(2-chloro-2-phenylethyl)-4-(methylphenyl)sulfonamide (**12**) was isolated in low yield.¹¹

N-Sulfonyl aziridines **9a-e** were produced by stirring at 45°C an acetonitrile solution of *N*,*O*-ditosyl derivatives **8a-e** in the presence of an excess of anhydrous potassium carbonate. It is worth noting that they can be isolated as pure compounds in quantitative yields after an aqueous work-up. The ring closing to aziridines takes place even at room temperature, although in longer reaction times. In this case faster reactions can be obtained in the presence of catalytic amounts of TEBA (Table 2). For example **8c** afforded 96% of *N*-(4-methylphenylsulfonyl)-7-azabicyclo[4.1.0]heptane (**9c**) after 40 min at 45°C, whereas 60 and 120 minutes were necessary at 20°C in the presence or without TEBA, respectively.

	ditosyl 8 (%)	t (h)	aziridine 9 (%)	t (min)
a	92	5	96	40
b	84	13	97	60
с	82	24	96	40
c			97	60 ^a
c			98	120 ^b
d	-	-	76 ^c	-
e	83	24	97	40

Table 2. N,O-Ditosyl derivatives 8 and Aziridines 9 Prepared

^a At 20°C with TEBA (0.1 equiv). ^b At 20°C. ^c Obtained through ring closure of 7d under Mitsunobu conditions.¹³

It is well known that the *N*-tosyl function is a quite robust one and can tolerate a wide variety of harsh reaction conditions, moreover the *N*-tosyl moiety is well suited to activate aziridines to nucleophilic ring opening. However in many cases a more easily removable group is preferred due to the presence of sensitive functionalities unable to survive normal deprotection conditions. Due to recent advances in the cleavage of nitroaryl sulfonamides¹⁴ and being aware of the stronger activating power to nucleophilic ring opening of the

nitroarylsulfonyl moiety,¹³ 2-nitrophenylsulfonamide can be used instead of 4-toluenesulfonamide (6) as shown in experimental.

In conclusion we showed that β -sulfonamido alcohols 7 can be efficiently generated by regioselective ring opening of epoxides 1 under SL-PTC conditions, thus allowing the synthesis of polyfunctionalised building blocks bearing a stereocenter of known configuration. A chemically robust or easily removable *N*-sulfonyl moiety can be produced as convenient by the opportune choice of the arylsulfonamide **6**. β -Sulfonamido alcohols 7 are converted to aziridines in good overall yields. In the case of sensitive substrates the ring closure to aziridines can be carried out at room temperature, if necessary in the presence of a PTC agent in order to speed up the reaction.

Acknowledgements

Financial support by MURST ex 40% is gratefully acknowledged.

EXPERIMENTAL

Epoxides **1a-e** are commercially available. K₂CO₃ was dried by heating at 140°C in vacuum (0.05 mmHg) for 6 h. ¹H NMR spectra were recorded in CDCl₃ at 300 MHz using TMS as external standard. The coupling costants are in Hz. IR spectra were recorded on a FT-IR 1725 Perkin Elmer spectrometer and frequency values are in cm⁻¹. Optical rotations were measured with a Perkin Elmer 241 instrument. Melting points are corrected. Analytical TLC was performed using Merck precoated silica gel F₂₅₄ plates.

Synthesis of (2S)-N-Methanesulfonyl-2-[(phenylmethoxy)methyl]aziridine (5).

(2*R*)-(-)-1-*N*-(Trifluoroacetyl)-3-(phenylmethoxy)propan-2-ol (**3e**) (3 mmol, 832 mg) was dissolved in THF (3 ml) and NaOH 3% (6 mmol, 7.8 ml) was added. After stirring for 1h at 0 °C the solvent was evaporated and the residue extracted with Et₂O. The organic solution was dried (MgSO₄), filtered and evaporated to give 533 mg (98% yield) of (2*R*)-1-amino-3-benzyloxy-2-propanol, mp 61-62 °C, $[\alpha]_D^{20} =$ -4.64 (c = 0.01, CH₂Cl₂). ¹H NMR (CDCl₃), δ , 1.77 (bs, 3H), 2.72 (dd, 1H, *J* = 7.1 and 12.9), 2.83 (dd, 1H, *J* = 4.1 and 12.9), 3.44 (dd, 1H, *J* = 6.4 and 9.6), 3.51 (dd, 1H, *J* = 4.1 and 9.6), 3.75 (m, 1H), 4.54 (s, 2H), 7.25-7.37 (m, 5H).

(2*R*)-1-Amino-3-benzyloxy-2-propanol was dissolved in 10 ml of CH₂Cl₂ and Et₃N (5.90 mmol, 597 mg) was added. A solution of freshly distilled MsCl (6 mmol, 687 mg) in CH₂Cl₂ was added dropwise at 0 °C and the resulting mixture stirred at the same temperature for 2 h. The crude was subjected to flash column chromatography [AcOEt-petroleum ether (PE) 2:3] affording 912 mg (92% yield) of (2*R*)-1-(methanesulfonyl)amino-2-(methanesulfonyl)oxy-3-(phenylmethoxy)propane (4); mp 101-102 °C $[\alpha]_D^{20}$ = -3.11 (c = 0.01, CH₂Cl₂). ¹H NMR (CDCl₃), δ , 2.98 (s, 3H), 3.06 (s, 3H), 3.37-3.46 (m, 2H), 3.68 (dd, 1H, *J* = 4.4 and 10.9), 3.74 (dd, 1H, *J* = 5.8 and 10.9), 4.55 (dd, 2H, *J* = 11.8 and 14.2), 4.72 (bs, 1H), 4.85 (m, 1H), 7.27-7.39 (m, 5H). v_{max} (Nujol) 3372 (NH), 1344 (SO₂O), 1323 (SO₂N), 1171 (SO₂O), 1154 (SO₂N). Anal. Calcd. for Cl₂H₁9NO₆S₂: C, 42.72; H, 5.68; N, 4.15. Found: C, 42.97; H, 5.91; N, 4.01.

(2R)-1-(Methanesulfonyl)amino-2-(methanesulfonyl)oxy-3-(phenylmethoxy)propane (4) was dissolved in CH₃CN, treated with K₂CO₃ (10.8 mmol, 1.49 g) and TEBA (0.27 mmol, 62 mg) and stirred at 80 °C for 3 h.

After cooling to room temperature 2 ml of H₂O were added and the crude extracted with Et₂O. The organic solution was dried (MgSO₄), filtered and evaporated to give 627 mg (96% yield) of the title compound, $[\alpha]_D^{20} = +59.1$ (c = 0.01, CH₂Cl₂). ¹H NMR (CDCl₃), δ , 2.24 (d, 1H, J = 4.6), 2.65 (d, 1H, J = 7.2), 2.97 (m. 1H), 3.08 (s, 3H), 3.43 (dd, 1H, J = 6.7 and 10.9), 3.71 (dd, 1H, J = 3.7 and 10.9), 4.58 (s, 2H), 7.28-7.38 (m, 5H). v_{max} (Nujol) 1317 (SO₂N), 1153 (SO₂N). *Anal. Calcd.* for C₁₁H₁₅NO₃S: C, 54.76; H, 6.27; N, 5.81. *Found*: C, 54.90; H, 6.39; N, 5.92.

General Method for the Preparation of β -Amido Alcohols 7a-e.

A mixture of the epoxide 1 (1 mmol), K₂CO₃ (0.1 mmol, 14 mg), TEBA 10 (0.1 mmol, 23 mg). 4toluenesulfonamide 6 (2 mmol, 342 mg) and dioxane (0.25 ml) was stirred at 90 °C until the starting material was no longer detectable (TLC analysis). After cooling, the crude was diluted with CH₂Cl₂, filtered on celite and the solvent evaporated under reduced pressure. The residue was purified by MPLC or flash column chromatography on silica gel (230-400 mesh). Starting epoxide, reaction time, chromatographic eluant, yield and physical, spectroscopic and analytical data of **7a-e** are as follows.

1-N-(4-methylphenylsulfonyl)amino-3-(phenoxy)propan-2-ol (7a). [(Phenoxy)methyl] oxirane (1a); 2.5 h; Et₂O-PE 3:1. 7a, 75%; mp 63 °C (lit., ¹⁵ 64-66 °C); ¹H NMR (CDCl₃), δ , 2.43 (s, 3H), 2.64 (d, 1H, J = 4.6), 3.05-3.13 (m, 1H), 3.25 (ddd, 1H, J = 3.9, 7.0 and 13.2), 3.91-3.96 (m. 2H), 4.07-4.11 (m, 1H), 6.85 (d, 2H, J = 8.1), 6.97 (t, 1H, J = 7.4), 7.25-7.32 (m, 4H), 7.75 (d, 2H, J = 8.3).

1-*N*-(4-methylphenylsulfonyl)aminooctan-2-ol (7b). 1,2-Epoxyoctane (1b); 6 h; Et₂O-PE 3:2. 7b, 91%; mp 40-41 °C; ¹H NMR (CDCl₃), δ , 0.86 (t, 3H, *J* = 6.6), 1.22-147 (m, 10H). 1.91 (d, 1H, *J* = 3.8), 2.42 (s, 3H), 2.77 (ddd, 1H, *J* = 5.1, 8.1 and 12.9), 3.08 (ddd, 1H, *J* = 3.1, 7.5 and 12.9), 3.64-3.71 (m, 1H), 4.91 (t, 1H, *J* = 6.1), 7.31 (d, 2H, *J* = 8.1), 7.74 (d, 2H, *J* = 8.2). v_{max} (Nujol) 3502 (OH), 3272 (NH), 1318 (SO₂N), 1159 (SO₂N). *Anal. Calcd.* for C₁₅H₂₅NO₃S: C, 60.17; H, 8.42; N, 4.68. *Found*: C, 60.34; H, 8.62; N, 4.40.

trans-2-*N*-(4-methylphenylsulfonyl)aminocyclohexanol (7c). Epoxycyclohexane (1c): 12 h; Et₂O-PE 7:3. 7c, 93%; mp 131-132 °C (lit., ¹⁶ 129-130 °C); ¹H NMR (CDCl₃), δ , 1.06-1.24 (m, 4H), 1.59-1.78 (m, 4H), 1.98 (bs, 1H), 2.43 (s, 3H), 2.79-2.86 (m, 1H), 3.27 (dt, 1H, *J* = 4.6 and 9.7), 4.59 (d, 1H, *J* = 6.7), 7.31 (d, 2H, *J* = 8.2), 7.77 (d, 2H, *J* = 8.2).

1-N-(4-methylphenylsulfonyl)amino-2-phenyl-1-ethanol (7d). Phenyloxirane (1d); 6 h; Et₂O-PE 1:1. 7d, 93%; mp 105-106 °C (lit.,¹⁷ 107-108 °C); ¹H NMR (CDCl₃), δ , 2.31 (d, 1H, J = 3.5), 2.42 (s, 3H), 3.01 (dd, 1H, J = 4.6 and 8.5), 3.05 (dd, 1H, J = 5.6 and 8.5), 4.79 (dd, 1H, J = 3.6 and 8.6), 5.01 (m, 1H), 7.23-7.34 (m, 7H), 7.72 (d, 2H, J = 8.3).

(2R)-1-N-(4-methylphenylsulfonyl)amino-3-(phenylmethoxy)propan-2-ol (R)-7e. (2S)-(+)-[(Phenylmethoxy)methyl]oxirane (S)-1e; 2 h; Et₂O-PE 2:1. (R)-7e, 85%; mp 74.7-75 °C; $[\alpha]_D^{20} = -10.93$ (c = 0.84, CH₂Cl₂). ¹H NMR (CDCl₃), δ , 1.60 (bs, 1H), 2.42 (s, 3H), 2.93 (ddd, 1H, J = 6.1, 6.6 and 12.9), 3.11 (ddd, 1H, J = 4.0, 6.1 and 12.9), 3.43 (dd, 1H, J = 6.3 and 9.6), 3.49 (dd, 1H, J = 4.1 and 9.6). 3.84-3.91 (m, 1H), 4.50 (s, 2H), 4.85 (t, 1H, J = 5.9), 7.25-7.32 (m, 7H), 7.72 (d, 2H, J = 8.3). v_{max} (Nujol) 3400 (OH), 3277 (NH), 1331 (SO₂N), 1161 (SO₂N). Anal. Calcd. for C₁₇H₂₁NO4S: C, 60.87; H. 6.31; N, 4.18. Found: C, 61.17; H, 6.59; N, 4.00. **1-N-(2-Nitrophenylsulfonyl)amino-3-(phenoxy)propan-2-ol** (13). The title compound was prepared by using 2-nitrophenylsulfonamide (1.1 equiv) instead of **6**. [(Phenoxy)methyl] oxirane (1a); 6 h; Et₂O-PE 2:1. 13, 89%; oil; ¹H NMR (CDCl₃), δ , 2.50 (bs, 1H), 3.21-3.30 (m, 1H), 3.41 (ddd, 1H, J = 4.1, 6.8 and 13.2), 3.92-4.04 (m, 2H), 4.11-4.16 (m, 1H), 5.92 (t, 1H, J = 6.1), 6.86 (d, 2H, J = 8.0), 6.96 (t, 1H, J = 7.4), 7.24-7.29 (m, 2H), 7.69-7.74 (m, 2H), 7.81-7.86 (m, 1H), 8.12 (dd, 1H, J = 3.4 and 5.9). v_{max} (Nujol) 3480 (OH), 3270 (NH), 1540 (NO₂), 1327 (SO₂N/NO₂), 1155 (SO₂N). Anal. Calcd. for C₁₅H₁₆NO₆S: C, 51.13; H, 4.58; N, 7.95. Found: C, 51.50; H, 4.79; N, 7.71.

General Method for the Preparation of 8a-c,e

In a round bottom flask (4-methylphenyl)sulfonyl chloride (5 mmol, 0.95 g) was dissolved in CH₂Cl₂ (5 ml) and pyridine (5 mmol, 0.40 g) was dropwise added at 0 °C. The solution was magnetically stirred at 0°C for 20 min and a solution of 7 (1 mmol) in 5 ml of CH₂Cl₂ added at the same temperature. After 20 min the temperature was raised to 40 °C and the solution stirred for the time indicated in Table 2. After cooling the crude was washed with 5% HCl, brine, dried (MgSO4) and the solvent evaporated under reduced pressure. The residue was purified by MPLC or flash column chromatography on silica gel (230-400 mesh). Starting amido alcohol, reaction time, chromatographic eluant, yield and physical, spectroscopic and analytical data of **8a-c,e** are as follows.

1-*N*-(4-Methylphenylsulfonyl)amino-2-*O*-(4-methylphenylsulfonyl)oxy-3-(phenoxy)pro pane (8a). 7a; 5 h; Et₂O-PE 1:1. 8a, 92%; mp 56-57 °C; ¹H NMR (CDCl₃), δ , 2.40 (s, 3H), 2.44 (s, 3H), 3.26-3.43 (m, 2H), 3.97 (dd, 1H, J = 5.0 and 10.7), 4.04 (dd, 1H, J = 5.2 and 10.7), 4.73-4.79 (m, 1H), 4.89 (t, 1H, J = 6.5), 6.64 (d, 2H, J = 8.1), 6.94 (t, 1H, J 7.3), 7.19-7.27 (m, 4H), 7.32 (d, 2H, J = 8.2), 7.68 (d, 2H, J = 8.2), 7.76 (d, 2H, J = 8.3). v_{max} (Nujol) 3290 (NH), 1357 (SO₂O), 1336 (SO₂N), 1175 (SO₂O), 1158 (SO₂N). Anal. Calcd. for C₂₃H₂₅NO₆S₂: C, 58.09; H, 5.30; N, 2.95. Found: C, 58.50; H, 5.69; N, 2.81.

1-*N*-(4-Methylphenylsulfonyl)amino-2-*O*-(4-methylphenylsulfonyl)oxyoctane (8b). 7b: 13 h; Et₂O-PE 1:1. 8b, 84%; mp 79-80 °C; ¹H NMR (CDCl₃), δ, 0.75 (t, 3H, J = 6.9), 0.97-1.38 (m, 10H). 2.19 (s, 3H), 2.20 (s, 3H), 3.03-3.21 (m, 2H), 4.01 (m, 1H), 4.44 (t, 1H, J = 6.4), 7.32 (m, 4H), 7.71 (d, 2H, J = 8.3), 7.75 (d, 2H, J = 8.3). v_{max} (Nujol) 3283 (NH), 1350 (SO₂O), 1325 (SO₂N), 1175 (SO₂O), 1153 (SO₂N). Anal. Calcd. for C₂₂H₃₁NO₅S₂: C, 58.25; H, 6.89; N, 3.09. Found: C, 58.60; H, 7.31; N, 2.89.

1-*N*-(**4-Methylphenylsulfonyl)amino-2-***O*-(**4-methylphenylsulfonyl)oxycyclohexane** (8 c). **7**c; 24 h; Et₂O-PE 1:2. **8**c, 82%; mp 155-156 °C (lit.,¹⁸ 149-151 °C); ¹H NMR (CDCl₃). δ , 1.16-1.25 (m, 4H), 1.32-1.40 (m, 1H), 1.55-1.63 (m, 1H), 1.74-1.82 (m, 1H), 2.15-2.22 (m, 1H), 2.41 (s, 3H), 2.45 (s, 3H), 3.09-3.18 (m, 1H), 4.18-4.25 (m, 1H), 4.90 (bs, 1H), 7.26 (d, 2H, J = 8.2), 7.33 (d, 2H, J = 8.2). 7.72 (d, 4H, J = 8.2).

1-N-(4-Methylphenylsulfonyl)amino-2-O-(4-methylphenylsulfonyl)oxy-3-(phenylmethoxy)propane (8e). 7e; 24 h; Et₂O-PE 1:1. 8e, 83%; oil; ¹H NMR (CDCl₃), δ , 2.42 (s, 6H), 3.15-3.29 (m. 2H), 3.43 (dd, 1H, J = 10.9 and 12.6), 3.51 (dd, 1H, J = 10.9 and 12.9), 4.37 (dd, 2H, J = 11.9 and 17.5), 4.58 (m, 1H), 4.75 (t, 1H, J = 6.5), 7.16-7.32 (m, 9H), 7.67 (d, 2H, J = 8.3), 7.73 (d, 2H, J = 8.3). v_{max} (Nujol) 3235 (NH), 1340 (SO₂O), 1317 (SO₂N), 1181 (SO₂O), 1160 (SO₂N). Anal. Calcd. for C_{24H₂7NO₆S₂: C, 58.88; H, 5.56; N, 2.86. Found: C, 59.31, H, 5.82, N, 2.77.} 1-*N*-(2-Nitrophenylsulfonyl)amino-2-*O*-(4-methylphenylsulfonyl)oxy-3-(phenoxy)propa ne (14). 13; 3 h; Et₂O-PE 3:1. 14, 86%; mp 107-108 °C; ¹H NMR (CDCl₃), δ , 2.41 (s, 3H), 3.48-3.63 (m. 2H), 4.06 (dd, 1H, *J* = 5.6 and 11.7), 4.14 (dd, 1H, *J* = 5.5 and 11.7), 4.82-4.90 (m, 1H), 5.71 (t, 1H, *J* = 6.9), 6.74 (d, 2H, *J* = 8.0), 6.98 (t, 1H, *J* = 7.3), 7.23-7.28 (m, 2H), 7.36 (d, 2H, *J* = 8.2), 7.70-7.74 (m, 2H), 7.81 (d, 2H, *J* = 8.3), 7.86-7.89 (m, 1H), 8.08-8.11 (m, 1H). v_{max} (Nujol) 3336 (NH), 1543 (NO₂). 1346 (NO₂/SO₂O), 1340 (SO₂N), 1180 (SO₂O), 1175 (SO₂N). *Anal. Calcd.* for C₂₂H₂₂NO₈S₂: C, 52.16: H, 4.38; N, 5.53. *Found*: C, 52.70, H, 4.71, N, 5.21.

General Method for the Synthesis of Aziridines 9a-c,e.

The ditosylderivative **8** (1 mmol) was dissolved in acetonitrile and K₂CO₃ (4 mmol, 0.55 g) was added. After stirring at 45 °C for the indicated time (see Table 2) the crude was diluted with Et₂O or CH₂Cl₂ and water. The organic phase was washed with brine, dried (Na₂SO₄) and solvent was removed under reduced pressure. affording pure aziridines. Starting ditosyl, reaction time, yield and physical, spectroscopic and analytical data of aziridines **9a-c,e** are as follows.

N-(4-Methylphenylsulfonyl)-2-[(phenoxy)methyl]aziridine (9a). 8a; 40 min; 96%; mp 109-110 °C; ¹H NMR (CDCl₃), δ, 2.33 (d, 1H, J = 4.2), 2.44 (s, 3H), 2.78 (d, 1H, J = 7.1), 3.14 (m, 1H), 3.92 (dd, 1H, J = 6.0, 10.8), 4.04 (dd, 1H, J = 4.4, 10.8), 6.72 (d, 2H, J = 8.2), 6.92 (t, 1H, J = 7.4), 7.18-7.32 (m, 4H), 7.82 (d, 2H, J = 8.2). v_{max} (Nujol) 1319 (SO₂N), 1159 (SO₂N). Anal. Calcd. for C₁₆H₁₇NO₃S: C, 63.34; H, 5.65; N, 4.62. Found: C, 63.51, H, 5.89, N, 4.90.

N-(4-Methylphenylsulfonyl)-2-*n*-hexylaziridine (9b). 8b; 60 min; 97%; mp 45-46 °C (lit.,¹⁹ 45-47 °C); ¹H NMR (CDCl₃), δ, 0.84 (t, 3H, J = 6.6), 1.12-1.33 (m, 8H), 1.49-1.55 (m, 2H), 2.05 (d, 1H, J = 4.5), 2.43 (s, 3H), 2.63 (d, 1H, J = 7.0), 2.68 (m, 1H), 7.32 (d, 2H, J = 8.2), 7.81 (d, 2H, J = 8.2).

N-(4-Methylphenylsulfonyl)-7-azabicyclo[4.1.0]heptane (9c). 8c; 40 min; 96%; mp 54.5-55.5 °C (lit.,²⁰ 55.3-55.9 °C); ¹H NMR (CDCl₃), δ, 1.17-1.26 (m, 2H), 1.35-1.46 (m, 2H), 1.78-1.83 (m, 4H), 2.43 (s, 3H), 2.98 (m, 2H), 7.30 (d, 2H, J = 8.2), 7.81 (d, 2H, J = 8.2).

N-(4-Methylphenylsulfonyl)-2-[(phenylmethoxy)methyl]aziridine (9e). 8e; 40 min; 97%. mp 42 °C; ¹H NMR (CDCl₃), 2.21 (d, 1H, J = 4.5), 2.44 (s, 3H), 2.69 (d, 1H, J = 7.1), 3.01-3.08 (m, 1H). 3.45 (dd, 1H, J = 6.2 and 11.3), 3.63 (dd, 1H, J = 4.2 and 11.3), 4.45 (s, 2H), 7.20-7.36 (m, 7H), 7.85-7.89 (m, 2H). v_{max} (Nujol) 1321 (SO₂N), 1160 (SO₂N). *Anal. Calcd.* for C₁₇H₁₉NO₃S: C, 64.33; H, 6.03: N, 4.41. *Found*: C, 64.80, H, 6.38, N, 4.62.

N-(4-Methylphenylsulfonyl)-2-phenylaziridine (9d). Aziridine 9d was prepared from 7d under Mitsunobu conditions.¹³ Diethyl azodicarboxylate (DEAD) (383 mg, 2.2 mmol) was added over 15 min to a THF (3 ml) solution of 7d (583 mg, 2 mmol) and PPh₃ (551 mg, 2.1 mmol) maintained at 0 °C. The mixture was warmed to 20 °C over 16 h and evaporated. The residue was purified by flash chromatography (silica gel CH₂Cl₂:PE 1:2) affording 415 mg (76% yield) of the title compound. mp 87-88 °C (lit.,²⁰ 88-89 °C); ¹H NMR (CDCl₃), δ , 2.38 (d, 1H, *J* = 4.5), 2.43 (s, 3H), 2.97 (d, 1H, *J* = 7.2), 3.76 (dd, 1H, *J* = 4.5 and 7.2), 7.19-7.34 (m, 7H), 7.86 (d, 2H, *J* = 8.3).

N-(2-Nitrophenylsulfonyl)-2-[(phenoxy)methyl]aziridine (15). Tosylate 14 (1 mmol. 507 mg) was dissolved in acetonitrile (0.5 ml) and lyophilised Na₂CO₃ (1 mmol, 106 mg) was added. After stirring at 80 °C for 1 h and the work-up described in the general method, the crude was purificated by flash column chromatography (AcOEt-PE 1:3) affording 274 mg (82% yield) of the title compound. ¹H NMR (CDCl₃). δ . 2.61 (d, 1H, *J* = 4.7), 3.02 (d, 1H, *J* = 7.1), 3.40-3.46 (m, 1H), 4.12 (dd, 1H, *J* = 4.4 and 11.0), 4.18 (dd. 1H, *J* = 5.0 and 11.0), 6.81 (d, 2H, *J* = 8.2), 6.94 (t, 1H, *J* = 7.3), 7.21-7.26 (m, 2H), 7.71-7.77 (m, 3H). 8.21 (m, 1H). v_{max} (Nujol) 1543 (NO₂), 1337 (NO₂/SO₂N), 1168 (SO₂N). Anal. Calcd. for C₁₅H₁₄N₂O₅S: C, 53.88; H, 4.22; N, 8.38. Found: C, 54.11, H, 4.51, N, 7.95.

REFERENCES AND NOTES

- 1. Tanner, D. Angew. Chem. Int. Ed. Engl. 1994, 33, 599-619.
- 2. Andersson, P.; Guijarro, D.; Tanner, D. J. Org. Chem. 1997, 62, 7364-7375.
- (a) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. A. J. Amer. Chem. Soc. 1993, 115, 5328-5329. (b) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Amer. Chem. Soc. 1993, 115, 5326-5327.
- 4. Aggarwal, V. K.; Thompson, A.; Jones, R. V. H.; Standen, M. C. H. J. Org. Chem. 1996, 61, 8368-8369.
- 5. Legters, J.; Thijs, L.; Zwanenburg, B. Recl. Trav. Chim. Pays Bas 1992, 111, 1-15.
- (a) Jacobsen, E. N. in Comprehensive Organometallic Chemistry II; Wilkinson, G., Stone, F. G. A., Abel; E. W., Hegedus, L. S., Eds.; Pergamon: New York, 1995; Vol. 12, Chapter 11.1. (b) Johnson, R. A.; Sharpless, K. B. in Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993; Chapter 4.1. (c) Jacobsen, E. N. Ibid. Chapter 4.2. (d) Katsuki, T. Coord. Chem. Rev. 1995, 51, 3710.
- 7. Albanese, D.; Landini, D.; Penso, M. Tetrahedron 1997, 53, 4787-4790.
- 8. Preliminar experiments confirmed that similar results can be obtained with methanesulfonamide as well, even though the use of this more expensive sulfonamide was not developed further.
- 9. Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549.
- 10. Johnson, D. A. J. Amer. Chem. Soc. 1955, 35, 2336-2337.
- 11. Mp 90-91°C (lit. ¹² 91-92°C).
- 12. Seden, T. P.; Turner, R. W. J. Chem. Soc. C 1968, 876-878.
- 13. Maligres, P. E.; See, M. M.; Askin, D.; Reider, P. J. Tetrahedron Lett. 1997, 36, 5253-5256.
- 14. Fukuyama, T.; Jow, C. H.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373-6374.
- 15. McFarland, J. W.; Beaulieu, J. J.; Arrey, L. N.; Frey, L. M. J. Heterocyclic Chem. 1988, 25, 1431-1434.
- 16. McCasland, G. E.; Horswill, E. C. J. Amer. Chem. Soc. 1951, 73, 3923-3926.
- 17. Sharpless, K. B.; Chong, A. O.; Oshima, K. J. Org. Chem. 1976, 41, 177-178.
- 18. Paris, O. E.; Fanta, P. E. J. Amer. Chem. Soc. 1952, 74, 3007-3010.
- 19. Fleming, I.; Frackenpohl, J.; Ila, H. J. Chem. Soc., Perkin Trans. 1 1998, 1229-1235.
- 20. Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Amer. Chem. Soc. 1994, 116, 2742-2753.