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A simple synthesis of 5-(trifluoromethyl)cyclohexane-1,3-dione and 3-amino-5-(trifluoromethyl)cyclo-
hex-2-en-1-one from the sodium salt of methyl or ethyl-4-hydroxy-2-oxo-6-(trifluoromethyl)cyclohex-
3-en-1-oate is demonstrated. The compounds represent highly functionalized reactive intermediates
for the synthesis of organic and heterocyclic compounds containing a trifluoromethyl group.

� 2008 Elsevier Ltd. All rights reserved.
Fluorine-building blocks are important because of their exten-
sive use in the synthesis of drugs covering a wide variety of thera-
peutic areas. A fluorine atom is similar in size to a hydrogen atom.
Therefore, the replacement of hydrogen by fluorine is expected not
to cause any significant alteration in molecular geometry and
shape.1 The high electronegativity of fluorine has a major effect
on the electronic properties of the basic molecules. On a molecular
level this allows for the inhibition of some metabolic pathways,
including the modulation of membrane permeability, as well as
electrostatic interactions with the target site.2 From a physiological
standpoint, better bioavailability and enhanced selectivity for the
target site can be achieved. In addition, a much lower dose of a
fluorinated drug is often needed in some cases, compared to the
unfluorinated ones. We are particularly interested in trifluoro-
methyl-containing pharmaceuticals, since they are present in
many commercially available drugs. In medicinal chemistry, the
trifluoromethyl group is similar in size to a chloro-group and can
often be used interchangeably, without loss in biological activity.
Although, several trifluoromethyl building blocks are commercially
available, many of them are expensive. Therefore, several laborato-
ries are engaged in the synthesis of these important trifluoro-
methyl ‘carrier reagents’.3–8 For example, the trifluoromethyl
group has been successfully used as a probe for the hydrophobic
binding site in human thymidylate synthase.9 As a strong
electron-withdrawing group at the 3 position of tetrahydroiso-
quinoline (THIQ), Grunewald and co-workers reported that the
ll rights reserved.

: +1 615 963 5326.
trifluoromethyl group decreased the affinity of THIQ for the a2-
adrenoceptor versus human phenylethanolamine N-methyltrans-
ferase (hPNMT).10

The non-fluorinated 3-aminocyclohexenone, a cyclic enami-
none and 1,3-cyclohexandione constitute interesting building
blocks for further functionalization by various reactions. Indeed
such substrates are well-known synthons in the synthesis of
complex natural product. Consequently, such trifluoromethylated
cyclic compounds should constitute very effective building blocks
as starting material in the synthesis of fluorinated molecules.

Presently, there are few reports of compounds containing the
trifluoromethyl group on a cycloalkyl or heterocyclic rings. Some
of these include 3-phenyl-5-(trifluoromethyl) cyclohex-2-en-1-
one,11 3-trifluoromethyl THIQ,10 and 2-trifluoromethyl-1-(substi-
tuted phenyl)-4-(1H) quinolones.12

In a previous Letter, we reported the synthesis of fluorinated
cyclic s-trans vinylogous acid and amide ester derivatives,13 which
was accompanied by unexpected by-products 1 and 2.

We undertook an in-depth study of the above reaction in order
to establish the mechanism underpinning the formation of the
by-product.

Reaction of keto-ester 3 with Michael acceptor 4 in the presence
of sodium alkoxide in refluxing alcohol afforded the sodium salt of
methyl or ethyl-4-hydroxy-2-oxo-6-(trifluoromethyl)cyclohex-3-
en-1-oate 5 and the diester 1 (Scheme 1).14

Our studies led us to propose the plausible mechanism for the
formation of 1. The mechanism appears to involve the intermedi-
ate Michael adducts 6, in which the keto-carbonyl carbon of the
intermediate undergoes a nucleophilic attack by a methoxide or
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Scheme 1. Synthesis of highly functionalized fluorinated building blocks 1, 10, and 11.14 Reagents and conditions: (a) base, solvent, reflux. 7 h; (b) 5 M NaOH, H2O, Heat, 1 h;
(c) NH4(OAc), xylene, reflux, 3 h.
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ethoxide ion to give a tetrahedral intermediate that collapses to
give the ester 1 with the loss of methyl or ethyl acetate (Scheme 2).

It should be noted that when Michael acceptor 7 is used, ethyl-
3-(cyanomethyl)-4,4,4-trifluorobutanoate8 was formed along with
desired product enaminone 9 (Scheme 3).13

Its formation is presumed to occur via earlier proposed mecha-
nism (Scheme 2).

No by-product was observed when tert-butoxide, a stronger
base and poorer nucleophile, was used. In addition, higher yield
of the desired product was obtained compared to methoxide and
ethoxide, respectively (Table 1).14

It should be mentioned that when excess alcohol is used in the
presence of alkoxide, better yield of the desired product was
observed, along with the by-product. The presence of excess
alcohol presumably decreased the nucleophilicity of the alkoxide.
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However, since the reactive site of the intermediate is highly elec-
trophilic (Fig. 1), the formation of the by-product is unavoidable
when methoxide or ethoxide is used as base.

Although low yield was obtained after long reaction time when
NaH or DBU was used, the by-product was not detected (Table 1).

We note that no analogous by-product was reported by other
laboratories when a non-fluorinated Michael acceptor is employed.
Thus the observed by-product may be unique to the strong elec-
tron-withdrawing character of the CF3 moiety, which activates
the keto-carbonyl carbon of the Michael adduct intermediate 6
(Fig. 1) and favors nucleophilic attack to this highly reactive site
(Scheme 2).

We then concentrated on the removal of the ester functionality.
Treatment of the sodium salt 5 with 5 M NaOH led to the dianion of
methyl or ethyl-4-hydroxy-2-oxo-6-(trifluoromethyl)cyclohex-3-
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Table 1
Formation of desired cyclohexandione 10 and by-product pentanedioate 1

Keto-ester Base (equiv) Solvent Yieldb (%)

1 10

1a MeONa (1.0 equiv) MeOH 28a 1a 20
1b EtONa (1.0 equiv) EtOH 39 1b 26
1a t-BuONa (1.0 equiv) t-BuOH 0 45
1a NaH (1.2 equiv) THF 0 5.6
1a DBU (10%) CH2Cl2 0 9.2
1a DBU (10%) Toluene 0 12

a Due to transesterification caused by ethoxide ion, 1b was formed in 7% yield.
b Isolated yields.
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Figure 1. Possible activation by the CF3 moiety.

O. O. Fadeyi, C. O. Okoro / Tetrahedron Letters 49 (2008) 4725–4727 4727
en-1-oate, followed by heating in water gave moderate yield of 5-
(trifluoromethyl)cyclohexane-1,3-dione 10 as stable white solids
(Scheme 1).14

We note that attempted hydrolysis and decarboxylation under
strong acid or strong base conditions, including the use of
lithium hydroxide in tetrahydrofuran, led to ring-opened product.
The resulting 5-(trifluoromethyl)cyclohexane-1,3-dione was easily
converted to 3-amino-5-trifluoromethyl)cyclohex-2-en-1-one via
azeotropic removal of water using a dean Stark trap (Scheme 1),
as reported by Manfredini and co-workers.15,16

In summary, two six-membered trifluoromethyl building blocks
have been prepared as novel synthetically useful intermediates.
The use of these compounds for the synthesis of various hetero-
cycles, including anticancer and anticonvulsant agents is in
progress and will be reported in specialized journals.
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