LETTERS

Synthesis of 1-Aryltetralins and 1-Arylnaphthalenes via (4 + 2) Annulation of β -Ketosulfones with Styryl Bromides

Meng-Yang Chang* and Yu-Chieh Cheng

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan

(5) Supporting Information

ABSTRACT: A novel route has been developed for the synthesis of various substituted 1-aryltetralins 6 and 1-arylnaphthalenes 8 via (1) K_2CO_3 -mediated α -styrylation of β -ketosulfones 3 with bromostyryl bromides 4 and (2) stereocontrolled NaBH₄-promoted reduction of the resulting γ -alkenones 5, followed by BF₃·OEt₂-catalyzed intramolecular

annulation of the corresponding γ -alkenols 7 under rt/5 h and reflux/10 h conditions, respectively. The key structures of **6** and **8** were confirmed by X-ray crystallographic analysis. A plausible mechanism has been proposed.

T etralin is a highly privileged core structure found in many valuable biologically active molecules, pharmaceuticals, and natural products. $^{1-4}$ With regard to the construction of this key building block, the 90-year-old Darzens tetralin synthesis $(H_2SO_4\text{-mediated}$ intramolecular ring-closure of a 1-phenyl-4-pentene)^5 still stands out as one of the most direct and convenient methods. It uses arenes with an allylic chain 6 1 or an unactivated alcohol 7 2 as the starting materials; it is especially effective when combined with the recent remarkable advances in metal-catalyzed annulation. Various catalysts have been employed to accelerate the formation of a carbon–carbon bond via a carbocation-like intermediate (Scheme 1). 8

Scheme 1. Intramolecular Friedel–Crafts Substitution Reaction

As part of our recent studies of BF₃·OEt₂-promoted tandem cyclization reactions,⁹ we devised an efficient stereocontrolled synthesis of sulfonyl 2,5-diaryltetrahydrofurans in good yield via the Lewis acid promoted intramolecular hydroalkoxylation of sulfonyl γ -alkenols (X = H),¹⁰ as shown in Scheme 2. In this paper, we report the BF₃·OEt₂-mediated intramolecular Friedel– Crafts electrophilic substitution of sulfonyl γ -alkenols (X = Br) by tethering a β -bromovinyl group to the aryl rings. In contrast to a hydrogen atom, the weakly deactivating bromo group initiates the stereospecific progression of the delocalized electron pair (in an *exo* \rightarrow *endo* \rightarrow *exo* direction), leading to the formation of a sixmembered ring under metal-free catalyzed conditions. This stereospecific annulation reaction provides facile access to Scheme 2. Synthetic Route of 2,5-Diaryltetrahydrofurans, 1-Aryltetralins, and 1-Arylnaphthalenes

functionalized 1-aryltetralins. However, to the best of our knowledge, the bromo group-initiated intramolecular Friedel– Crafts alkylation procedure for the preparation of 1-aryltetralins has not been reported,¹¹ nor has the intramolecular annulation of bromostyryl β -ketosulfones been explored. Herein, we report our studies^{12,13} on these two processes for aryltetralin synthesis.

K₂CO₃-mediated α-styrylation of β-ketosulfones **3a**-**r** with bromostyryl bromides **4a**-**d** (prepared by p-TsOH-catalyzed double bromination of styrene with 2.5 equiv of NBS in CH₂Cl₂ at reflux) in acetone at reflux provided **5a**-**x** in a yield range of 78–89%, as shown in Table 1. The yields of **5a**-**x** did not change much as a function of the structure of **3a**-**r** under these reaction conditions. The bromo group promoted intramolecular ring closure of **5** was examined via a two-step route: stereoselective NaBH₄-mediated reduction followed by BF₃·OEt₂-promoted Friedel–Crafts annulation of the resulting sulfonyl 4-alkenols. For different R substituents on **5**, a diversity of electron-

Received: March 3, 2016

Table 1. Synthesis of 5 and $6^{a,b}$

Br Br + V 4	$\begin{array}{c} O \\ S \\ S \\ Ar \end{array} \xrightarrow{R} \begin{array}{c} K_2CO_3 \\ (2.9 \text{ equiv}) \\ acetone, 10 \text{ h} \end{array} \xrightarrow{Br} \begin{array}{c} O \\ S \\ F \\ C \\ CH_2Cl_2 \end{array} \xrightarrow{R} \begin{array}{c} NaBH_4 (5.1) \\ THF / Met \\ THF / Met \\ THF / Met \\ THF / Met \\ CH_2Cl_2 \end{array}$	$\begin{array}{c} 0 \text{ equiv}) \\ \text{OH, 1 h} \\ \text{OH, 2 h} \\ OH, 2 h$	o S Ar
		vield ^c (%)	
t	2 A., D. 4 V.A.,	yield ((70)
entry	3, Ar = , K =; 4, 1-Ar =	5	0
1	3a , Ph, Me; 4a , Ph	5a , 80	6a, 82
2	3b , Ph, Ph; 4a , Ph	5b , 84	6b , 80
3	3c , Ph, Tol; 4a , Ph	5c, 89	6c , 76
4	3d , 4-FC ₆ H ₄ , Tol; 4a , Ph	5d , 83	6d , 78
5	3e , 4-MeOC ₆ H ₄ , Tol; 4a , Ph	5e , 86	6e , 74
6	3f , 4-MeC ₆ H ₄ , Tol; 4a , Ph	5f , 83	6f , 70
7	3g , 4-CF ₃ C ₆ H ₄ , Tol; 4a , Ph	5g , 80	6g, -a
8	3h , 4-NO ₂ C ₆ H ₄ , Tol; 4a , Ph	5h , 80	$6h, -a^{a}$
9	3i , 3-NO ₂ C ₆ H ₄ , Tol; 4a , Ph	5i , 82	6i, - ^a
10	3 j, 4-PhC ₆ H ₄ , Tol; 4 a, Ph	5 j, 84	6 j, 74
11	3k, 2-naphthalene, Tol; 4a, Ph	5k, 88	6k, 70
12	3l , Ph, 4-FC ₆ H ₄ ; 4a , Ph	51 , 82	6l , 78
13	3m , Ph, 4-MeOC ₆ H ₄ ; 4a , Ph	5m, 80	6m , 81
14	3n , Ph, 3-MeC ₆ H ₄ ; 4a , Ph	5n , 84	6n , 82
15	30 , Ph, 4-EtC ₆ H ₄ ; 4a , Ph	50 , 82	60 , 78
16	3p , Ph, 4- <i>n</i> BuC ₆ H ₄ ; 4a , Ph	5p , 83	6p , 74
17	3b , Ph, Ph; 4b , 4-FC ₆ H ₄	5q , 84	6q , 80
18	3c , Ph, Tol; 4b , 4-FC ₆ H ₄	5r, 83	6r , 80
19	3b , Ph, Ph; 4c , 4-PhC ₆ H ₄	5s , 84	6s , 78
20	3c , Ph, Tol; 4c , 4-PhC ₆ H ₄	5t , 85	6t, 76
21	3c, Ph, Tol; 4d, 2-naphthalene	5u , 82	6u , 80
22	3k, 2-naphthalene, Tol; 4d, 2-naphthalene	5v , 79	6v , 80
23	3q , 3,4-Cl ₂ C ₆ H ₃ , Tol; 4a , Ph	5w , 78	6 w, 81
24	3r, 2-thiophene, Tol; 4a, Ph	5x , 80	6 x, 82

^{*a*}Alkylation reaction: **3** (1.0 mmol), K_2CO_3 (2.9 mmol), **4** (1.05 mmol), acetone (15 mL), reflux, 10 h. ^{*b*}Annulation reaction: **5** (0.2 mmol), NaBH₄ (1.0 mmol), THF (5 mL)/MeOH (5 mL), 0 °C, 1 h, then BF₃·OEt₂ (0.2 mmol), CH₂Cl₂ (5 mL), 25 °C, 5 h. ^cIsolated yields. ^{*d*}No reaction; 7g (89%), 7h (92%), and 7i (90%) were recovered.

withdrawing and electron-donating groups was well-tolerated. However, when the Ar group was strongly electron-withdrawing, none of the desired products 6g-i were formed, and only 7g-iwere observed. Thus, in the presence of 3- or 4-nitrophenyl and 4-(trifluoromethyl)phenyl groups, no intramolecular annulation was observed. Moreover, for entries 7–9, different substituents on 5 did not affect the annulation, and the isolated yield of 6 was maintained. The structures of 5e, 6c, 6f, 6l, and 6u were all determined by single-crystal X-ray crystallography.¹⁴

In accord with our previous experience, a single skeleton derived from the sulfonyl 4-alkenol was obtained. On the basis of the Felkin–Anh model A,¹⁵ the stereochemical centers of two protons (green H–C_{α} and pink H–C_{β} in 7a) are well established. As shown in Scheme 3, a plausible mechanism

Scheme 3. Proposed Reduction Mechanism

suggests that NaBH₄-mediated carbonyl reduction of **5a** is affected by the steric hindrance of the sulfonyl substituent such that the hydride can only attack the less hindered carbonyl face, yielding a single stereoisomer.^{12b} Subsequently, complexation of the resulting hydroxyl group by BF₃·OEt₂ gives I (Scheme 4).

Scheme 4. Proposed Annulation Mechanism

Following model **B**, a stereocontrolled bromo group-initiated intramolecular $S_N 2$ annulation leads to **II** via a six-membered chairlike conformation having two adjacent equatorial protons. An $S_N 1$ process can also be envisioned with **III** (model **C**), deprotonation of **II** affording **6a** via a sequential aromatization process.

The BF_3 ·OEt₂-mediated intramolecular annulation of **5** was investigated at elevated temperatures and longer reaction times, as shown in Scheme 5. Specifically, changing the reaction

 $\begin{array}{c} \textbf{8a, Ar = Ph (80\%, for 5a; 74\%, for 5c)} \\ \textbf{8b, Ar = 4-Fc_6H_4 (70\%, for 5d)} \\ \textbf{Ar = Ph} \\ \textbf{8d, Y = F (66\%, for 5r)} \\ \textbf{Y = Bh (70\%, for 5t)} \\ \textbf{8d, Y = Ph (70\%, for 5t)} \\ \textbf{8d, Y = Ph (70\%, for 5t)} \\ \textbf{8d, Y = Ph (70\%, for 5t)} \\ \textbf{8d, Ar = Ph (70\%, for 5t)} \\ \textbf$

conditions from 25 °C and 5 h to CH_2Cl_2 at reflux for 10 h generated substituted 1-bromomethyl naphthalenes **8a–e** (66–80%) and 1-bromomethyl phenanthrenes **8f**,**g** (73% and 70%) via $BF_3 \cdot OEt_2$ -promoted cascade desulfonative aromatization of **5a**,**c**,**d**,**j**,**r**,**t**–v. 1-Arylnaphthalene has been shown to exhibit a wide range of potential biological activities.¹⁶ The present protocol provides a novel synthetic route for the preparation of substituted naphthalenes.¹⁷ The structure of **8d** was determined by single-crystal X-ray crystallography.¹⁴

By changing the α -substituent from a sulfonyl group to an ethyl ester group (**3s**, Ar = Ph; **3t**, Ar = 4-MeOC₆H₄), **9a** and **9b** were isolated in 80% and 82% yields, respectively, as shown in Scheme 6. Using the above synthetic protocol, **10a**,**b** were generated in 73% and 74% yields. Comparing the 1,3-dicarbonyl synthons, both β -ketosulfones and β -ketoesters provided similar yields of 1-aryltetralins. However, **9c** containing a β -diketone group (prepared by alkylation of **3u** with **4a**) failed to afford the tetralin skeleton under the standard reaction conditions.

Scheme 6. Reaction of 4a with 3s-u

In further work, the bromo group was replaced with a chloro or iodo group, affording facile access to 1-aryltetralins. As shown in Scheme 7, α -styrylation of 3c with chlorostyryl chloride 4e

Scheme 7. Reaction of 3c with 4e,f

afforded **5y** in a 77% yield. The formation of **6y** (75%) was achieved via intramolecular annulation of **5y** using the above protocol. The structure of **5y** was determined by single-crystal X-ray crystallography.¹⁴ However, when **3c** was allowed to react with **4f**, a complex mixture was formed and no **5z** was observed. To examine the applicability of this synthetic route, a formal synthesis of sertraline (Zoloft)¹⁸ was developed (Scheme 8).

Scheme 8. Formal Synthesis of Sertraline

Sertraline is a potent selective serotonin reuptake inhibitor (SSRI), which has become a popular synthetic target. For the formal synthesis of sertraline, **6w** was chosen as the starting material. Oxidative cleavage of **6w**, which contains a bromovinyl group, provided the 1-tetralone skeleton via a one-pot reaction in the presence of $OsO_4/NMO/NaIO_4$.¹⁹ Without further purification, removal of the β -sulfonyl group using freshly prepared 6% Na(Hg) (prepared from sodium and mercury in toluene at reflux) in MeOH at 25 °C²⁰ afforded the known intermediate **11**.^{18a} The overall yield of the two-step process was 47%.

In summary, we have developed a novel synthesis of various substituted 1-aryltetralins 6 and 1-arylnaphthalenes 8 via (1) K_2CO_3 -mediated α -styrylation of substituted β -ketosulfones 3 with bromostyryl bromides 4 and (2) stereocontrolled NaBH₄-promoted reduction of the resulting γ -alkenones 5, followed by a BF₃·OEt₂-catalyzed intramolecular annulation of the corresponding γ -alkenols. A plausible mechanism has been proposed

for these cyclization reactions. The structures of the key products **6** and **8** have been confirmed by X-ray crystallography. Further investigations regarding the asymmetric synthesis of chiral **6** will be studied via the desymmetrical annulation of **5**.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b00603.

X-ray analysis data of **5e** (CIF) X-ray analysis data of **5y** (CIF) X-ray analysis data of **6c** (CIF) X-ray analysis data of **6f** (CIF) X-ray analysis data of **6l** (CIF) X-ray analysis data of **6u** (CIF) X-ray analysis data of **6u** (CIF) Detailed experimental procedures and spectroscopic data for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: mychang@kmu.edu.tw.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Ministry of Science and Technology of the Republic of China for financial support (MOST 104-2113-M-037-012).

REFERENCES

(1) Tietze, L. F., Brasche, G., Gericke, K., Eds. *Domino Reactions in Organic Synthesis*; Wiley–VCH: Weinheim, 2006.

(2) For reviews, see: (a) Olah, G. A. In Friedel-Crafts and Related Reactions; Wiley: New York, 1963. (b) Olah, G. A. In Friedel-Crafts Chemistry; Wiley: New York, 1973. (c) Rueping, M.; Nachtsheim, B. J. Beilstein J. Org. Chem. 2010, DOI: 10.3762/bjoc.6.6. (d) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550. (e) Bandini, M.; Melloni, A.; Tommasi, S.; Umani-Ronchi, A. Synlett 2005, 1199. (f) Poulsen, T.; Jorgensen, K. A. Chem. Rev. 2008, 108, 2903.

(3) For biological activities, see: (a) Castro, M. A.; del Corral, J. M. M.; Gordaliza, M.; García, P. A.; Gómez-Zurita, M. A.; Garcia-Gravalos, M. D.; de la Iglesia-Vicente, J.; Gajate, C.; An, F.; Mollinedo, F.; Feliciano, A. S. J. Med. Chem. 2004, 47, 1214. (b) Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V.; Fiorentini, F.; Olgiati, V.; Ghiglieri, A.; Govoni, S. J. Med. Chem. 1995, 38, 942. (c) Brewster, W. K.; Nichols, D. E.; Riggs, R. M.; Mottola, D. M.; Lovenberg, T. W.; Lewis, M. H.; Mailman, R. B. J. Med. Chem. 1990, 33, 1756. (d) Saladino, R.; Fiani, C.; Belfiore, M. C.; Gualandi, G.; Penna, S.; Mosesso, P. Bioorg. Med. Chem. 2005, 13, 5949. (e) Bernini, R.; Gualandi, G.; Crestini, C.; Barontini, M.; Belfiore, M. C.; Willfor, S.; Eklund, P.; Saladino, R. Bioorg. Med. Chem. 2009, 17, 5676. (f) Sun, Y.-J.; Li, Z.-L.; Chen, H.; Liu, X.-Q.; Zhou, W.; Hua, H.-M. Bioorg. Med. Chem. Lett. 2011, 21, 3794. (g) Wang, J.; Yu, X.; Zhi, X.; Xu, H. Bioorg. Med. Chem. Lett. 2014, 24, 4542.

(4) For podophyllotoxin, see: (a) Eyberger, A. L.; Dondapati, R.; Porter, J. R. *J. Nat. Prod.* **2006**, *69*, 1121. For isogalbulin, see: (b) Messiano, G. B.; Wijeratne, E. M. K.; Lopes, L. M. X.; Gunatilaka, A. A. L. *J. Nat. Prod.* **2010**, *73*, 1933. For aglacins A, see: (c) Wang, B.-G.; Ebel, R.; Nugroho, B. W.; Prijono, D.; Frank, W.; Steube, K. G.; Hao, X.-J.; Proksch, P. *J. Nat. Prod.* **2001**, *64*, 1521.

(5) Darzens, G. Compt. Rend. 1926, 183, 748.

(6) For Ir⁺, see: (a) Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. **2012**, *14*, 2579. For In³⁺, see: (b) Hayashi, R.; Cook, G. R. Org. Lett. **2007**, *9*, 1311. For Hg²⁺, see: (c) Namba, K.; Yamamoto, H.; Sasaki, I.; Mori, K.; Imagawa, H.; Nishizawa, M. Org. Lett. **2008**, *10*, 1767. For Al³⁺, see: (d) Werle, S.; Fey, T.; Neudorfl, J. M.; Schmalz, H.-G. Org. Lett. **2007**, *9*, 3555. For Ag⁺, see: (e) Lim, H. J.; RajanBabu, T. V. Org. Lett. **2009**, *11*, 2924. For TFA, see: (f) Kraus, G. A.; Jeon, I. Org. Lett. **2006**, *8*, 5315. (7) For Fe³⁺/Ag⁺, see: (a) Jefferies, L. R.; Cook, S. P. Org. Lett. **2014**, *16*, 2026. For Ca²⁺, see: (b) Begouin, J.-M.; Capitta, F.; Niggemann, M. Org. Lett. **2013**, *15*, 1370.

(8) Naredla, R. R.; Klumpp, D. A. *Chem. Rev.* 2013, 113, 6905 and references cited therein.

(9) (a) Chang, M.-Y.; Lin, C.-H.; Chen, Y.-L.; Chang, C.-Y.; Hsu, R.-T. Org. Lett. **2010**, *12*, 1176. (b) Chang, M.-Y.; Lin, C.-H.; Chen, Y.-L.; Hsu, R.-T.; Chang, C.-Y. Tetrahedron Lett. **2010**, *51*, 3154.

(10) Chang, M.-Y.; Cheng, Y.-C. Synlett 2016, 27, 854.

(11) For selected examples on syntheses of 1-aryltetralins, see: (a) Hajra, S.; Maji, B.; Bar, S. Org. Lett. 2007, 9, 2783. (b) Tsoung, J.; Kramer, K.; Zajdlik, A.; Liebert, C.; Lautens, M. J. Org. Chem. 2011, 76, 9031. (c) Pelter, A.; Ward, R. S.; Li, Q.; Pis, J. Tetrahedron: Asymmetry 1994, 5, 909. (d) Maddaford, S.; Charlton, J. J. Org. Chem. 1993, 58, 4132. (e) Ting, C. P.; Maimone, T. J. Angew. Chem., Int. Ed. 2014, 53, 3115. (f) Vitale, M.; Prestat, G.; Lopes, D.; Madec, D.; Kammerer, C.; Poli, G.; Girnita, L. J. Org. Chem. 2008, 73, 5795. (g) Datta, P. K.; Yau, C.; Hooper, T. S.; Yvon, B. L.; Charlton, J. L. J. Org. Chem. 2001, 66, 8606. (h) Wu, Y.; Zhao, J.; Chen, J.; Pan, C.; Li, L.; Zhang, H. Org. Lett. 2009, 11, 597. (i) Tsoung, J.; Kramer, K.; Zajdlik, A.; Liebert, C.; Lautens, M. J. Org. Chem. 2011, 76, 9031. (j) Datta, P. K.; Yau, C.; Hooper, T. S.; Yvon, B. L.; Charlton, J. L. J. Org. Chem. 2001, 66, 8606. (k) Reddy, B. V. S.; Sundar, C. S.; Reddy, M. R.; Reddy, C. S.; Sridhar, B.; Reddy, B. V. S.; Sundar, C. S.; Reddy, M. R.; Reddy, C. S.; Sridhar, B. Synthesis 2015, 47, 1117.

(12) (a) Chang, M.-Y.; Lu, Y.-J.; Cheng, Y.-C. Tetrahedron 2015, 71, 6840. (b) Chang, M.-Y.; Lu, Y.-J.; Cheng, Y.-C. Tetrahedron 2015, 71, 1192. (c) Chang, M.-Y.; Cheng, Y.-J.; Lu, Y.-J. Org. Lett. 2014, 16, 6252. (d) Chang, M.-Y.; Cheng, Y.-J.; Lu, Y.-R. Org. Lett. 2015, 17, 1264. (e) Chang, M.-Y.; Cheng, Y.-C.; Lu, Y.-J. Org. Lett. 2015, 17, 3142. (f) Chang, M.-Y.; Cheng, Y.-J. Org. Lett. 2016, 18, 608.

(13) For recent syntheses of β -ketosulfones, see: (a) Zhou, G.; Ting, P. T.; Aslanian, R. G. Tetrahedron Lett. 2010, 51, 939. (b) Pospisil, J.; Sato, H. J. Org. Chem. 2011, 76, 2269. (c) Kumar, A.; Muthyala, M. K. Tetrahedron Lett. 2011, 52, 5368. (d) Tsui, G. C.; Glenadel, Q.; Lau, C.; Lautens, M. Org. Lett. 2011, 13, 208. (e) Kumar, R.; Namboothiri, I. N. N. Org. Lett. 2011, 13, 4016. (f) Sreedhar, B.; Rawat, V. S. Synlett 2012, 23, 413. (g) Bouhlel, A.; Curti, C.; Tabele, C.; Vanelle, P. Molecules 2013, 18, 4293. (h) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, W. J. Am. Chem. Soc. 2013, 135, 11481. (i) Handa, S.; Fennewald, J. C.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2014, 53, 3432. (j) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Angew. Chem., Int. Ed. 2014, 53, 4205. (k) Chawla, R.; Singh, A. K.; Yadav, L. D. S. Eur. J. Org. Chem. 2014, 2014, 2032. (1) Singh, A. K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 4742. (m) Shi, X.; Ren, X.; Ren, Z.; Li, J.; Wang, Y.; Yang, S.; Gu, J.; Gao, Q.; Huang, G. Eur. J. Org. Chem. 2014, 2014, 5083. (n) Xuan, J.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem. - Eur. J. 2014, 20, 3045. (o) Singh, A. K.; Chawla, A. K.; Chawla, R.; Keshari, T.; Yadav, V. K.; Yadav, L. D. S. Org. Biomol. Chem. 2014, 12, 8550. (p) Saraiva, M. T.; Costa, G. P.; Seus, N.; Schumacher, R. F.; Perin, G.; Paixao, M. W.; Luque, R.; Alves, D. Org. Lett. 2015, 17, 6206. (q) Yadav, V. K.; Srivastava, V. P.; Yadav, L. D. Synlett 2016, 27, 427.

(14) CCDC 1445559 (5e), 14455598 (5y), 1445564 (6c), 14455597 (6f), 1445560 (6l), 1445561 (6u) and 1446957 (8d) contain the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: 44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).

(15) (a) Mengel, A.; Reiser, O. *Chem. Rev.* **1999**, *99*, 1191. (b) Gung, B. W. *Tetrahedron* **1996**, *52*, 5263. (c) Ager, D. J.; East, M. B. *Tetrahedron* **1992**, *48*, 2803.

(16) For reviews on the syntheses of naphthalenes, see: (a) de Koning, C. B.; Rousseau, A. L.; van Otterlo, W. A. L. *Tetrahedron* **2003**, *59*, 7. For reviews on the benzannulation of naphthalenes, see: (b) Kotha, S.; Halder, S. *Tetrahedron* **2008**, *64*, 10775.

(17) For $Pd_2(dba)_3/CsF$, see: (a) Patel, R. M.; Argade, N. P. Org. Lett. **2013**, *15*, 14. For PtCl₄, see: (b) Kang, D.; Kim, J.; Oh, S.; Lee, P. H. Org. Lett. **2012**, *14*, 5636. For microwave irradiation, see: (c) Kocsis, L.; Brummond, K. M. Org. Lett. **2014**, *16*, 4158. For AgOAc/Na₂S₂O₈, see: (d) Naresh, G.; Kant, R.; Narender, T. Org. Lett. **2015**, *17*, 3446. For $Pd(OAc)_2/Cu(OAc)_2$, see: (e) Peng, S.; Wang, L.; Wang, J. Chem. - Eur. J. **2013**, *19*, 13322. For AuCl₃/AgSbF₆, see: (f) Balamurugan, R.; Gudla, V. Org. Lett. **2009**, *11*, 3116. For HNTf₂, see: (g) Ponra, S.; Vitale, M. R.; Michelet, V.; Ratovelomanana-Vidal, V. J. Org. Chem. **2015**, *80*, 3250. For AuCl₃/AgSbF₆, see: (h) Gudla, V.; Balamurugan, R. J. Org. Chem. **2011**, *76*, 9919. For Mn(OAc)₃, see: (i) Kao, T.-T.; Lin, C.-C.; Shia, K.-S. J. Org. Chem. **2015**, *80*, 6708. For (PhIO)_n/BF₃·OEt₂, see: (j) Gao, P.; Liu, J.; Wei, Y. Org. Lett. **2013**, *15*, 2872. For AlCl₃, see: (k) Kim, H. Y.; Oh, K. Org. Lett. **2014**, *16*, 5934. For TiCl₄, see: (1) Kabalka, G. W.; Ju, Y.; Wu, Z. J. J. Org. Chem. **2003**, *68*, 7915.

(18) For syntheses of sertraline, see: (a) Roesner, S.; Casatejada, J. M.;
Elford, T. G.; Sonawane, R. P.; Aggarwal, V. K. Org. Lett. 2011, 13, 5740.
(b) Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Angew. Chem., Int. Ed. 2009, 48, 5345. (c) Ohmiya, H.; Makida, Y.; Li, D.; Tanabe, M.; Sawamura, M. J. Am. Chem. Soc. 2010, 132, 879. (d) Garcia, A. E.; Ouizem, S.; Cheng, X.; Romanens, P.; Kundig, E. P. Adv. Synth. Catal. 2010, 352, 2306.
(e) Krumlinde, P.; Bogar, K.; Backvall, J. E. Chem. - Eur. J. 2010, 16, 4031. (f) Chen, F.; Wang, T.; He, Y.; Ding, Z.; Li, Z.; Xu, L.; Fan, Q. H. Chem. - Eur. J. 2011, 17, 1109. (g) Barluenga, J.; Florentino, L.; Aznar, F.; Valdes, C. Org. Lett. 2011, 13, 510. (h) Nair, V.; Rajan, R.; Rath, N. P. Org. Lett. 2002, 4, 1575. (i) Chen, C.-y.; Reamer, R. A. Org. Lett. 1999, 1, 293. (j) Lee, S. H.; Kim, I. S.; Li, Q. R.; Dong, G. R.; Jeong, L. S.; Jung, Y. H. J. Org. Chem. 2011, 76, 10011.

(19) (a) Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. **2004**, *6*, 3217. (b) Nielsen, T. E.; Meldal, M. Org. Lett. **2005**, *7*, 2695. (c) Nielsen, T. E.; Le Quement, S. T.; Meldal, M. Org. Lett. **2007**, *9*, 2469.

(20) For a review on desulfonylation reactions, see: Najera, C.; Yus, M. *Tetrahedron* **1999**, *55*, 10547.