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Preparation of 5-Aryl-3-Oxo-d-Lactones by
the Potassium Carbonate–Promoted

Condensation of Aromatic Aldehydes and
Ethyl Acetoacetate in Ethanol

Brad Andersh, Jessica Gereg, Mical Amanuel,

and Carl Stanley

Department of Chemistry and Biochemistry, Bradley University, Peoria,

Illinois, USA

Abstract: 5-Aryl-3-oxo-d-lactones (6-aryl-dihydro-2H-pyran-2,4(3H)-diones) were

prepared by the potassium carbonate–promoted condensation of aromatic aldehydes

and ethyl acetoacetate in absolute ethanol. Benzaldehyde and substituted benzal-

dehydes bearing an alkoxy group (2 or 3 position), a chlorine atom (2, 3, or 4

position), a nitro group (3 or 4 position), a cyano group (4 position), or an acetyl

group (4 position) react in high yields under these conditions.

Keywords: aromatic aldehyde, 6-aryl-dihydro-2H-pyran-2,4(3H)-dione, 5-aryl-3-oxo-

d-lactone, ethyl acetoacetate, potassium carbonate

While investigating conditions for Knoevenagel condensation reactions, we dis-

covered that a side product, 5-(2-allyloxyphenyl)-3-oxo-d-lactone (1), often

formed when inorganic bases were used for the reaction between 2-allyloxyben-

zaldehyde and ethyl acetoacetate. Upon further investigation, we found that

potassium carbonate in ethanol induced the condensation of 2-allyloxybenzal-

dehyde and ethyl acetoacetate to generate 1 in 93% isolated yield [Eq. (1)]:
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This result is surprising because carbonate salts have seen use as bases for

Knoevenagel condensation (Eq. 1) reactions[1] and because the reaction

proceeds via the addition of the less stable conjugate base of ethyl aceto-

acetate, which is being generated by the weak base carbonate.

The synthesis of 5-aryl-3-oxo-d-lactones is of interest because they

exhibit a wide variety of biological activities. For example, 5-phenyl-3-oxo-

d-lactone has shown antioxidant,[2] molluscicidal,[3] and antinociceptive

activity.[4] In addition, the products from the condensation of 5-phenyl-3-

oxo-d-lactone, 2,6-disubstituted anilines, and triethyl orthoformate show anti-

fungal properties,[5] and 5-phenyl-3-oxo-d-lactone derivatives have been

shown to be effective HIV protease inhibitors.[6]

Previous syntheses of 5-substituted-3-oxo-d-lactones most commonly

involve trapping the preformed dianion of ethyl acetoacetate with an

aldehyde or a ketone. Hydrolysis of the resulting hydroxyketoester (2)

followed by treatment with hydrochloric acid then affords the desired

lactone (Scheme 1).[7]

It has also been shown that hetero Diels–Alder reactions between

aromatic aldehydes and diene (3) yield 5-aryl-3-oxo-d-lactones after hydroly-

sis of the adduct [Eq. (2)].[8] However, the lengthy synthesis of diene 3[9] has

limited the use of this method.

The procedure described herein has several advantages over the previously

published methods: 1) Strong bases are not necessary for our method. 2) Highly

Scheme 1. Formation of 5-substitued-3-oxo-d-lactones from the dianion of ethyl

acetoacetate.
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toxic solvents are not used in our reaction. The dianion method often employs

the use of an anion stabilizers such as hexamethylphosphoramide (HMPA)

along with the solvent, tetrahydrofuran (THF). 3) Our method is procedurally

less complex. The dianion method requires three chemical reactions (anion

addition, hydrolysis, and lactonization) to produce the desired compound, and

the hetero Diels–Alder method requires the multiple-step synthesis of diene

3. Our method requires only one reaction; the aldehyde, ethyl acetoacetate,

and potassium carbonate are mixed in ethanol and stirred for 16–24 h at

458C, followed by an acidic workup.

As shown in Table 1, aromatic aldehydes bearing an array of dissimilar

electronic substituents are tolerated by these conditions. The generation of

lactones from 3- or 4-nitrobenzaldehyde is especially noteworthy given that

de Aguiar Amaral et al. reported difficulty with the preparation of the

desired d-lactone by the treatment of 4-nitrobenzaldehyde with the dianion

of ethyl acetoacetate.[4]

Although our method is easier to perform than previously published

methods, it does have limitations. For example, enolizable aldehydes (i.e.,

heptanal), yield self-condensation (aldol) products as the major products. In

addition, ketones do not react under these conditions. For example, no

reaction was observed when benzophenone or 4-chloroacetophenone was

used in the reaction. However, the difference in reactivity of aldehydes and

ketones provides the opportunity to perform the cyclization on an aldehyde

in the presence of an unprotected ketone (Table 1, entry k).

Table 1. Isolated yields of 5-aryl-3-oxo-d-lactones

Entry Z Isolated yield (%)

a 2-(O-CH2CH55CH2) 93

b 2-(MeO) 89

c 3-(MeO) 73

d H 88

e 2-Cl 79

f 3-Cl 76

g 4-Cl 72

h 3-NO2 65

i 4-NO2 75

j 4-CN 56

k 4-COCH3 82a

aIsolated by trituration from ether.
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In summary, 5-aryl-3-oxo-d-lactones can be prepared in high yields by

the potassium carbonate–promoted condensation of aromatic aldehydes and

ethyl actetoacetate in absolute ethanol. The presence of substituents, with

varying electronic contribution, on the aromatic ring of the aldehyde is

tolerated by these conditions. Although this method has some limitations, it

provides a noteworthy alternative to previously published methods.

EXPERIMENTAL

Benzaldehyde, 3-methyoxybenzaldehyde, 3-nitrobenzaldehyde, 4-nitrobenzal-

dehyde, and 4-acetylbenzaldehyde were purchased from Aldrich Chemical

Company and used without further purification. 2-Chlorobenzaldehyde,

3-chlorobenzaldehyde, 4-chlorobenzaldehyde, o-anisaldehyde, and ethyl acet-

oacetate were purchased from Acros Organics and used without further purifi-

cation. 4-Cyanobenaldehyde was purchased from Alfa Aesar and used without

further purification. 2-Allyloxybenzaldehye was prepared from salicylalde-

hyde.[10] Ethanol was purchased from Quantum Chemical Corporation and

distilled under nitrogen from sodium. NMR spectra were collected on a

JEOL Eclipse þ spectrometer (300 MHz, 1H). Mass spectra were collected at

the University of Illinois School of Chemical Sciences Mass Spectrometry Lab-

oratory on a VG 70-VSE 8-kV double-focusing sector mass spectrometer

[electron ionization (70 eV), chemical ionization (CH4)].

Procedure

The aldehyde (2 mmol), ethanol (2 mL, distilled from sodium), ethyl aceto-

acetate (2 mmol), and potassium carbonate (4 mmol) were added to a flame-

dried, 15-mm � 100-mm, screw-cap centrifuge tube under nitrogen. The

septa and the nitrogen-filled balloon were replaced with the centrifuge cap,

and the tube was placed in an oil bath at 458C and heated overnight (16–

24 h). After cooling the tube to room temperature, the reaction mixture was

transferred to a separatory funnel using 20 mL of ethyl acetate, and then

10 mL of 1 M HCl (aq.) were slowly added. The aqueous layer was

extracted with two additional portions (2 � 15 mL) of ethyl acetate. The

combined organic extracts were dried over Na2SO4, filtered, concentrated,

and purified by flash chromatography.

Data

6-(2-(Allyloxy)phenyl)-dihydro-2H-pyran-2,4(3H)-dione (Entry a)

1H NMR (CDCl3) d 7.49 (dd, J ¼ 7.7, 1.6, 1H), 7.35 (ddd, J ¼ 8.2, 7.7, 1.6,

1H), 7.06 (dt, J ¼ 7.4, 0.8, 1H), 6.90 (dd, J ¼ 8.2, 0.8 1H), 6.02 (m, 2H),
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5.32 [m (two poorly resolved dq, J ¼ 17.3, 1.7, and J ¼ 10.4, 1.4), 2H], 4.58

[m (poorly resolved dq, J ¼ 5.5, 1.4), 2H], 3.76 (d, J ¼ 19, 1H), 3.52

(d, J ¼ 19, 1H), 3.04 (dd, J ¼ 18.4, 3.0, 1H), 2.69 (dd, J ¼ 18.4, 11.3, 1H).

HRMS (M þ H) calcd. for C14H15O4
þ 247.0970; found 247.0965.

6-(2-Methoxyphenyl)-dihydro-2H-pyran-2,4(3H)-dione (Entry b)

1H NMR (CDCl3) d 7.49 (dd, J ¼ 7.4, 1.6, 1H), 7.39 (ddd, J ¼ 8.3, 7.4, 1.6,

1H), 7.07 (dt, J ¼ 7.4, 1.1, 1H), 6.92 (dd, J ¼ 8.3, 0.8 1H), 6.01 (dd,

J ¼ 11.3, 3.0, 1H), 3.83 (s, 3H), 3.75 (d, J ¼ 19, 1H), 3.53 (d, J ¼ 19, 1H),

3.03 (dd, J ¼ 18.4, 3.0, 1H), 2.68 (dd, J ¼ 18.4, 11.3, 1H). HRMS (M þ H)

calcd. for C12H13O4
þ 221.0814; found 221.0812.

6-(3-Methoxyphenyl)-dihydro-2H-pyran-2,4(3H)-dione (Entry c)

1H NMR (CDCl3) d 7.34 (t, J ¼ 7.7, 1H), 6.93 (m, 3H), 5.68 (dd, J ¼ 9.6, 3.8,

1H), 3.84 (s, 3H), 3.66 (d, J ¼ 19, 1H), 3.48 (d, J ¼ 19, 1H), 2.96 (dd,

J ¼ 18.4, 3.8, 1H), 2.87 (dd, J ¼ 18.4, 9.6, 1H). HRMS (M þ H) calcd. for

C12H13O4
þ 221.0814; found 221.0815.

6-(Phenyl)-dihydro-2H-pyran-2,4(3H)-dione (Entry d)

1H NMR (CDCl3) d 7.42 (m, 5H), 5.71 (dd, J ¼ 9.6, 4.1, 1H), 3.67 (d, J ¼ 19,

1H), 3.49 (d, J ¼ 19, 1H), 2.97 (dd, J ¼ 18.4, 4.1, 1H), 2.89 (dd, J ¼ 18.4, 9.6,

1H). HRMS (M þ ) calcd. for C11H10O3 190.0630; found 190.0632.

6-(2-Chlorophenyl)-dihydro-2H-pyran-2,4(3H)-dione (Entry e)

1H NMR (CDCl3) d 7.64 (dd, J ¼ 7.4, 1.9, 1H), 7.38 (m, 3H), 6.06 (dd,

J ¼ 11.8, 2.7, 1H), 3.81 (d, J ¼ 19, 1H), 3.58 (d, J ¼ 19, 1H), 3.11 (dd,

J ¼ 18.4, 2.7, 1H). 2.61 (dd, J ¼ 18.4, 11.8, 1H). HRMS (M þ H) calcd. for

C11H10ClO3
þ 225.0319; found 225.0313.

6-(3-Chlorophenyl)-dihydro-2H-pyran-2,4(3H)-dione (Entry f)

1H NMR (CDCl3) d 7.43 (m, 1H), 7.38 (m, 2H), 5.67 (dd, J ¼ 10.7, 3.6, 1H),

3.69 (d, J ¼ 19, 1H), 3.52 (d, J ¼ 19, 1H), 2.97 (dd, J ¼ 18.4, 3.6, 1H), 2.83

(dd, J ¼ 18.4, 10.7, 1H). HRMS (M þ H) calcd. for C11H10ClO3
þ 225.0319;

found 225.0314.

6-(4-Chlorophenyl)-dihydro-2H-pyran-2,4(3H)-dione (Entry g)

1H NMR (CDCl3) d 7.42 (br d, J ¼ 8.5, 1H), 7.34 (br d, J ¼ 8.5, 1H), 5.67 (dd,

J ¼ 10.2, 3.3, 1H), 3.68 (d, J ¼ 19, 1H), 3.50 (d, J ¼ 19, 1H), 2.95 (dd,
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J ¼ 18.4, 3.6, 1H), 2.82 (dd, J ¼ 18.4, 10.4, 1H). HRMS (M þ H) calcd. for

C11H10ClO3
þ 225.0319; found 225.0327.

6-(3-Nitrophenyl)-dihydro-2H-pyran-2,4(3H)-dione (Entry h)

1H NMR (CD3OD) d 8.38 (br s, 1H), 8.25 (br d, J ¼ 8.0, 1H), 7.90 (br d,

J ¼ 8.0, 1H), 7.68 (br t, J ¼ 8.2), 5.66 (dd, J ¼ 11.5, 4.1, 1H), 2.87 (dd,

J ¼ 17.3, 11.5, 1H), 2.75 (dd, J ¼ 17.3, 4.1, 1H). HRMS (M þ H) calcd. for

C11H10NO5
þ 236.0559; found 236.0562.

6-(4-Nitrophenyl)-dihydro-2H-pyran-2,4(3H)-dione (Entry i)

1H NMR (CD3OD) d 8.29 (br d, J ¼ 8.8, 1H), 7.74 (br d, J ¼ 8.8, 1H),

5.66 (dd, J ¼ 11.3, 5.0, 1H), 2.84 (dd, J ¼ 17.3, 11.3, 1H), 2.74 (dd,

J ¼ 17.3, 5.0, 1H). HRMS (M þ H) calcd. for C11H10NO5
þ 236.0559; found

236.0553.

4-(4,6-Dioxotetrahydro-2H-pyran-2-yl)benzonitrile (Entry j)

1H NMR (CD3OD) d 7.79 (d, J ¼ 8.5, 2H), 7.67 (d, J ¼ 8.5, 2H), 5.60 (dd,

J ¼ 11.5, 4.7, 1H), 2.82 (dd, J ¼ 17.3, 11.5, 1H), 2.71 (dd, J ¼ 17.3, 4.7,

1H). HRMS (M þ H) calcd. for C12H9NO3
þ 216.0661; found 216.0665.

6-(4-Acetylphenyl)-dihydro-2H-pyran-2,4(3H)-dione (Entry k)

1H NMR (CD3OD) d 8.04 (d, J ¼ 8.2, 2H), 7.61 (d, J ¼ 8.2, 2H), 5.59

(dd, J ¼ 11.5, 4.4, 1H), 2.84 (dd, J ¼ 17.3, 11.5, 1H), 2.71 (dd,

J ¼ 17.3, 4.4, 1H). HRMS (M þ H) calcd. for C13H13O4
þ 233.0814; found

233.0820.
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