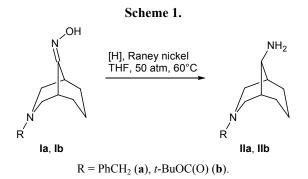
Synthesis and Properties of 3-Substituted 3-Azabicyclo-[3.3.1]nonan-9-amines

A. I. Moskalenko, A. Yu. Chashchin, and V. I. Boev


Lipetsk State Pedagogical University, ul. Lenina 42, Lipetsk, 398020 Russia e-mail: kaf himii@lspu.lipetsk.ru

Received November 16, 2009

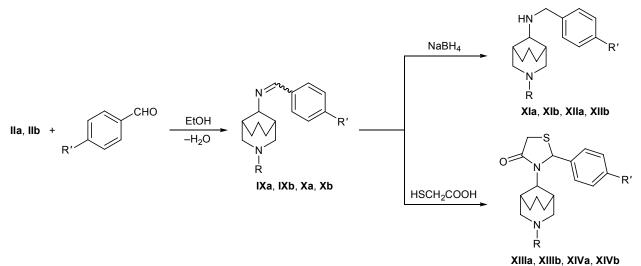
Abstract—Catalytic hydrogenation of 3-benzyl- and 3-*tert*-butoxycarbonyl-3-azabicyclo[3.3.1]nonan-9-one oximes over Raney nickel gave the corresponding 3-substituted 3-azabicyclo[3.3.1]nonan-9-amines which were converted into amides via reactions with acetyl and chloroacetyl chlorides and maleic and succinic anhydrides, into Schiff bases by condensation with benzaldehyde and 4-chlorobenzaldehyde, and into isothiocyanates by treatment with thiophosgene in the presence of K_2CO_3 . 3-Benzyl- and 3-*tert*-butoxycarbonyl-3-azabicyclo-[3.3.1]nonan-9-yl isothiocyanates readily reacted with methanol, aniline, and sodium azide to produce methyl thiocarbamate, thiourea, and dihydrotetrazole-5-thione derivatives having a 3-azabicyclo[3.3.1]nonane fragment.

DOI: 10.1134/S1070428011070062

In continuation of our studies on 3-azabicyclo-[3.3.1]nonane derivatives [1, 2] as potential biologically active compounds [3], in the present work we synthesized for the first time some 3-substituted 3-azabicyclo[3.3.1]nonan-9-amines having a primary amino group and obtained a number of their derivatives at the amino group. The optimal procedure for the synthesis of 3-azabicyclo[3.3.1]nonan-9-amines **IIa** and **IIb** is catalytic reduction of the corresponding accessible 3-azabicyclo[3.3.1]nonan-9-one oximes **Ia** and **Ib** [2] with hydrogen over Raney nickel. This procedure ensured smooth formation of target amines **IIa** and **IIb** in 73–76% yield (Scheme 1).

The purity and structure of compounds **IIa** and **IIb** were confirmed by their elemental analyses and IR, ¹H NMR, and mass spectra (GC–MS). The IR spectra of **IIa** and **IIb** contained absorption bands in the region

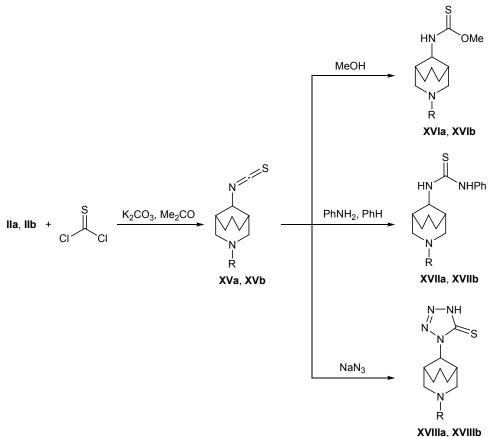
3370–3360 cm⁻¹ due to stretching vibrations of N–H bonds. In the ¹H NMR spectra of **Ha** and **Hb**, the NH₂ protons resonated as a broadened singlet at δ 4.23 ppm, and a new signal appeared in the region δ 3.62–3.80 ppm due to 9-H (no such signal was observed in the spectra of the initial compounds).


Diverse chemical transformations of amines IIa and IIb provided additional proofs for their structure and demonstrated wide potential of their application in organic synthesis for the preparation of new compounds having an azabicyclic fragment. Amines IIa and IIb readily reacted with acetyl and chloroacetyl chlorides in the presence of triethylamine, as well as with maleic and succinic anhydrides on heating in anhydrous chloroform. As a result, N-substituted amides III–VI were obtained. Maleamic and succinamic acid derivatives Va, Vb, VIa, and VIb were subjected to intramolecular cyclization on heating in acetic anhydride. We thus isolated the corresponding *N*-substituted maleimides VIIa and VIIb and succinamides VIIIa and VIIIb (Scheme 2).

Schiff bases IXa, IXb, Xa, and Xb were synthesized by condensation of amines IIa and IIb with benzaldehyde and 4-chlorobenzaldehyde on heating in boiling anhydrous ethanol. Compounds IXa, IXb, Xa, and Xb are promising as intermediate products in organic synthesis. Their reduction with sodium tetrahydridoborate afforded secondary aromatic amines

 $R = PhCH_2$ (**a**), *t*-BuOC(O) (**b**); III, Me; IV, $R' = ClCH_2$.

Scheme 3.



 $R = PhCH_2$ (a), *t*-BuOC(O) (b); IX, XI, XIII, R' = H; X, XII, XIV, R' = Cl.

XIa, XIb, XIIa, XIIb, and the reaction with 2-sulfanylacetic acid in boiling anhydrous benzene led to the formation of bicyclic thiazolidin-4-one derivatives XIIIa, XIIIb, XIVa, and XIVb (Scheme 3). An important synthetic transformation of primary amino group is achieved via reaction with thiophosgene. In such a way we obtained bicyclic isothiocyanates **XVa** and **XVb**. As might be expected, com-

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 47 No. 7 2011

 $R = PhCH_2 (\mathbf{a}), t-BuOC(O) (\mathbf{b}).$

pounds XVa and XVb turned out to be highly reactive toward various nucleophiles. By heating isothiocyanates XVa and XVb in anhydrous methanol we synthesized methyl thiocarbamates XVIa and XVIb in quantitative yield; the reaction of XVa and XVb with aniline in boiling anhydrous benzene gave thiourea derivatives XVIIa and XVIIb, and treatment of the same substrates with sodium azide in water afforded 1-substituted dihydrotetrazole-5-thiones XVIIIa and XVIIIb (Scheme 4).

Compounds **IIb–XVIIIb** having a *tert*-butoxycarbonyl group (Boc) on the nitrogen atom were readily deprotected by treatment with a saturated solution of hydrogen chloride in anhydrous dioxane to produce the corresponding 3-azabicyclo[3.3.1]nonane derivatives having no substituent on N³ as hydrochlorides. Analogous water-soluble hydrochlorides were obtained from compounds **IIa–XVIIIa** with conservation of the initial structure.

The structure of the newly synthesized compounds was confirmed by analytical and spectral data. Due to

the presence of highly reactive functional groups the products may be used to create combinatorial libraries with a view to perform broader biological screening.

EXPERIMENTAL

The IR spectra were recorded in KBr on a Specord 75IR spectrometer. The ¹H NMR spectra were measured on a Varian Mercury Plus-400 spectrometer (400 MHz) from solutions in CDCl₃ using hexamethyldisiloxane as internal reference. The mass spectra (at-mospheric pressure chemical ionization) were obtained on a Thermo Finnigan Surveyor MSQ GC–MS instrument (USA). The purity of the isolated compounds was checked by thin-layer chromatography on Silufol UV-254 plates using hexane–ethyl acetate (1:1) as eluent; spots were visualized under UV light or by treatment with iodine vapor.

3-Benzyl-3-azabicyclo[3.3.1]nonan-9-amine (**IIa**). A high-pressure reactor was charged with 24.4 g (0.1 mol) of oxime **Ia** [2] and 10 g of Raney nickel in 250 ml of anhydrous THF, and hydrogen was supplied at a pressure of 50 atm at 60°C over a period of 10 h until the initial oxime disappeared (according to the TLC data) and hydrogen was no longer absorbed. The catalyst was filtered off and washed with 100 ml of THF, the filtrate was evaporated under reduced pressure, and the oily residue was dissolved in ethyl acetate and purified by chromatography on silica gel using ethyl acetate-hexane (1:1) as eluent. Yield 16.82 g (73%), mp 66–68°C. IR spectrum, v, cm⁻¹: 3369, 3358 (NH₂). ¹H NMR spectrum, δ, ppm: 1.36–2.05 m (6H, CH₂), 2.12–2.21 m (2H, CH), 2.78 d (2H, NCH₂), 2.85 d (2H, NCH₂), 3.35 s (2H, PhCH₂), 3.74 m (1H, 9-H), 4.24 br.s (2H, NH₂), 7.04–7.18 m (5H, C₆H₅). Mass spectrum: m/z 231 $[M + H]^+$. Found, %: C 78.13; H 9.45; N 12.08. C₁₅H₂₂N₂. Calculated, %: C 78.26; H 9.57; N 12.17. M 230.

tert-Butyl 9-amino-3-azabicyclo[3.3.1]nonane-3carboxylate (IIb) was synthesized in a similar way. Yield 71%, mp 87–90°C. IR spectrum, v, cm⁻¹: 3365, 3351 (NH₂); 1684 (C=O). ¹H NMR spectrum, δ , ppm: 1.31 s (9H, *t*-Bu), 1.46–2.12 m (6H, CH₂), 2.36– 2.42 m (2H, CH), 3.42 d (2H, NCH₂), 3.60 d (2H, NCH₂), 3.81 m (1H, 9-H), 4.25 br.s (2H, NH₂). Mass spectrum, *m*/*z*: 241 [*M* + H]⁺, 140 [*M* – 101 + H]⁺. Found, %: C 64.83; H 10.14; N 11.52. C₁₃H₂₄N₂O₂. Calculated, %: C 65.00; H 10.00; N 11.67. *M* 240.

N-(3-Benzyl-3-azabicyclo[3.3.1]non-9-yl)acetamide (IIIa). A solution of 0.47 g (6 mmol) of acetyl chloride in 5 ml of methylene chloride was added under stirring at 0–5°C to a solution of 1.15 g (5 mmol) of amine IIa and 0.6 g (6 mmol) of triethylamine in 20 ml of anhydrous methylene chloride. The mixture was then allowed to warm up to room temperature, stirred for 1 h until the initial amine disappeared completely (TLC), and poured into 100 ml of water. The organic phase was separated, the aqueous phase was extracted with methylene chloride $(2 \times 30 \text{ ml})$, the extracts were combined with the organic phase and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The oily residue crystallized on storage and was recrystallized from hexane-ethyl acetate (4:1). Yield 1.27 g (93%), mp 101–103°C. IR spectrum, v, cm⁻¹: 3396 (NH), 1697 (C=O). ¹H NMR spectrum, δ, ppm: 1.38–2.06 m (6H, CH₂), 1.98 s (3H, CH₃), 2.14–2.24 m (2H, CH), 2.81 d (2H, NCH₂), 2.87 d (2H, NCH₂), 3.39 s (2H, PhCH₂), 3.87 m (1H, 9-H), 6.94 br.s (2H, NH₂), 7.10-7.23 m (5H, C₆H₅). Mass spectrum: m/z 273 $[M + H]^+$. Found, %: C 75.18; H 8.67; N 10.42. C₁₇H₂₄N₂O. Calculated, %: C 75.00; H 8.82; N 10.29. M 272.

Compounds **IIIb**, **IVa**, and **IVb** were synthesized in a similar way.

tert-Butyl 9-acetylamino-3-azabicyclo[3.3.1]nonane-3-carboxylate (IIIb). Yield 92%, mp 135– 137°C. IR spectrum, v, cm⁻¹: 3401 (NH); 1698, 1683 (C=O). ¹H NMR spectrum, δ , ppm: 1.31 s (9H, *t*-Bu), 1.46–2.14 m (6H, CH₂), 2.03 s (3H, CH₃), 2.35–2.42 m (2H, CH), 3.41 d (2H, NCH₂), 3.61 d (2H, NCH₂), 3.98 m (1H, 9-H), 7.01 br.s (1H, NH). Mass spectrum, *m*/*z*: 283 [*M* + H]⁺, 182 [*M* – 101 + H]⁺. Found, %: C 63.71; H 9.36; N 9.81. C₁₅H₂₆N₂O₃. Calculated, %: C 63.83; H 9.22; N 9.93. *M* 282.

N-(3-Benzyl-3-azabicyclo[3.3.1]non-9-yl)-2chloroacetamide (IVa). Yield 90%, mp 114–116°C. IR spectrum, v, cm⁻¹: 3398 (NH), 1698 (C=O). ¹H NMR spectrum, δ, ppm: 1.38–2.05 m (6H, CH₂), 2.15–2.24 m (2H, CH), 2.83 d (2H, NCH₂), 2.89 d (2H, NCH₂), 3.41 s (2H, PhCH₂), 3.85 m (1H, 9-H), 4.45 s (2H, CH₂Cl), 6.97 br.s (1H, NH), 7.11–7.24 m (5H, C₆H₅). Mass spectrum: m/z 307 [M + H]⁺. Found, %: C 66.38; H 7.42; N 9.26. C₁₇H₂₃ClN₂O. Calculated, %: C 66.56; H 7.50; N 9.14. M 306.

tert-Butyl 9-(chloroacetylamino)-3-azabicyclo-[3.3.1]nonane-3-carboxylate (IVb). Yield 87%, mp 128–130°C. IR spectrum, v, cm⁻¹: 3402 (NH); 1701, 1684 (C=O). ¹H NMR spectrum, δ , ppm: 1.32 s (9H, *t*-Bu), 1.47–2.15 m (6H, CH₂), 2.36–2.44 m (2H, CH), 3.42 d (2H, NCH₂), 3.60 d (2H, NCH₂), 4.01 m (1H, 9-H), 4.48 s (2H, CH₂Cl), 7.03 br.s (1H, NH). Mass spectrum, *m/z*: 317 [*M* + H]⁺, 216 [*M* – 101 + H]⁺. Found, %: C 56.71; H 7.69; N 8.74. C₁₅H₂₅ClN₂O₃. Calculated, %: C 56.87; H 7.90; N 8.85. *M* 316.

4-(3-Benzyl-3-azabicyclo[3.3.1]non-9-ylamino)-4-oxobut-2-enoic acid (Va). Maleic anhydride, 0.216 g (2.2 mmol), was added to a solution of 0.5 g (2.2 mmol) of amine IIa in 5 ml of anhydrous chloroform, and the mixture was heated for 1 h under reflux until the initial amine disappeared completely (TLC). The solvent was removed under reduced pressure, and the residue was recrystallized from hexane-ethyl acetate (1:1). Yield 0.46 g (64%), mp 116-117°C. IR spectrum, v, cm⁻¹: 3482 (OH); 3404 (NH); 1728, 1719 (C=O); 1622 (C=C). ¹H NMR spectrum, δ , ppm: 1.38– 2.07 m (6H, CH₂), 2.09-2.24 m (2H, CH), 2.93 d (2H, NCH₂), 3.05 d (2H, NCH₂), 3.41 s (2H, PhCH₂), 3.89 m (1H, 9'-H), 6.05 d (1H, 3 -H, J = 15.1 Hz), 6.74 d (1H, 2-H, J = 15.1 Hz), 6.98 br.s (1H, NH), 7.12-7.26 m (5H, C₆H₅), 11.78 br.s (1H, COOH). Mass spectrum: m/z 329 $[M + H]^+$. Found, %: C 69.38; H 7.36; N 8.31. C₁₉H₂₄N₂O₃. Calculated, %: C 69.51; H 7.32; N 8.54. M 328.

Compounds **Vb**, **VIa**, and **VIb** were synthesized in a similar way.

4-(3-*tert***-Butoxycarbonyl-3-azabicyclo[3.3.1]non-9-ylamino)-4-oxobut-2-enoic acid (Vb).** Yield 69%, mp 131–132°C. IR spectrum, v, cm⁻¹: 3483 (OH); 3402 (NH); 1726, 1708, 1685 (C=O); 1622 (C=C). ¹H NMR spectrum, δ , ppm: 1.30 s (9H, *t*-Bu), 1.47– 2.16 m (6H, CH₂), 2.36–2.44 m (2H, CH), 3.43 d (2H, NCH₂), 3.62 d (2H, NCH₂), 3.97 m (1H, 9'-H), 6.05 d (1H, 3-H, *J* = 14.9 Hz), 6.75 d (1H, 2-H, *J* = 14.9 Hz), 6.98 br.s (1H, NH), 11.83 br.s (1H, COOH). Mass spectrum, *m/z*: 339 [*M* + H]⁺, 238 [*M* – 101 + H]⁺. Found, %: C 60.43; H 7.74; N 8.16. C₁₇H₂₆N₂O₅. Calculated, %: C 60.36; H 7.69; N 8.28. *M* 338.

4-(3-Benzyl-3-azabicyclo[3.3.1]non-9-ylamino)-4-oxobutanoic acid (VIa). Yield 74%, mp 121– 122°C. IR spectrum, v, cm⁻¹: 3486 (OH); 3401 (NH); 1726, 1713 (C=O). ¹H NMR spectrum, δ , ppm: 1.36– 2.08 m (6H, CH₂), 2.10–2.23 m (2H, CH), 2.42– 2.73 m (4H, CH₂CH₂), 2.95 d (2H, NCH₂), 3.06 d (2H, NCH₂), 3.42 s (2H, PhCH₂), 3.89 m (1H, 9'-H), 6.97 br.s (1H, NH), 7.10–7.24 m (5H, C₆H₅), 12.02 br.s (1H, COOH). Mass spectrum: *m*/*z* 331 [*M* + H]⁺. Found, %: C 68.82; H 7.64; N 8.53. C₁₉H₂₆N₂O₃. Calculated, %: C 69.09; H 7.88; N 8.48. *M* 330.

4-(3-*tert***-Butoxycarbonyl-3-***azabicyclo***[3.3.1]non-9-ylamino)-4-oxobutanoic acid (VIb).** Yield 76%, mp 141–142°C. IR spectrum, v, cm⁻¹: 3485 (OH); 3398 (NH); 1727, 1712, 1686 (C=O). ¹H NMR spectrum, δ , ppm: 1.31 s (9H, *t*-Bu), 1.46–2.15 m (6H, CH₂), 2.37–2.45 m (2H, CH), 2.48–2.75 m (4H, CH₂CH₂), 3.42 d (2H, NCH₂), 3.62 d (2H, NCH₂), 3.97 m (1H, 9'-H), 7.01 br.s (1H, NH), 12.04 br.s (1H, COOH). Mass spectrum, *m*/*z*: 341 [*M* + H]⁺, 240 [*M* – 101 + H]⁺. Found, %: C 59.91; H 8.33; N 8.17. C₁₇H₂₈N₂O₅. Calculated, %: C 60.00; H 8.24; N 8.24. *M* 340.

1-(3-Benzyl-3-azabicyclo[3.3.1]non-9-yl)-1*H*-pyrrole-2,5-dione (VIIa). A mixture of 0.5 g (1.5 mmol) of compound Va, 0.2 g of anhydrous sodium acetate, and 3 ml of acetic anhydride was heated for 1 h at 100°C (until the initial compound disappeared completely according to the TLC data). The mixture was treated with 10 ml of water and left to stand for 12 h at room temperature, and the precipitate was filtered off, washed with water, and recrystallized from aqueous ethanol. Yield 0.36 g (77%), mp 102–103°C. IR spectrum, v, cm⁻¹: 1722, 1718 (C=O); 1620 (C=C). ¹H NMR spectrum, δ , ppm: 1.35–2.06 m (6H, CH₂), 2.07– 2.25 m (2H, CH), 2.94 d (2H, NCH₂), 3.04 d (2H, NCH₂), 3.42 s (2H, PhCH₂), 3.87 m (1H, 9'-H), 5.98 d (2H, CH=CH, J = 12.3 Hz), 7.08–7.18 m (5H, C₆H₅). Mass spectrum: m/z 311 $[M + H]^+$. Found, %: C 73.46; H 7.16; N 8.85. C₁₉H₂₂N₂O₂. Calculated, %: C 73.55; H 7.10; N 9.03. M 310.

Compounds **VIIb**, **VIIIa**, and **VIIIb** were synthesized in a similar way.

tert-Butyl 9-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1yl)-3-azabicyclo[3.3.1]nonane-3-carboxylate (VIIb). Yield 79%, mp 121–122°C. IR spectrum, v, cm⁻¹: 1724, 1720, 1688 (C=O); 1621 (C=C). ¹H NMR spectrum, δ , ppm: 1.30 s (9H, *t*-Bu), 1.48–2.17 m (6H, CH₂), 2.35–2.46 m (2H, CH), 3.42 d (2H, NCH₂), 3.64 d (2H, NCH₂), 3.98 m (1H, 9'-H), 6.04 d (2H, CH=CH, *J* = 12.5 Hz). Mass spectrum, *m/z*: 321 [*M* + H]⁺, 220 [*M* – 101 + H]⁺. Found, %: C 63.57; H 7.58; N 8.61. C₁₇H₂₄N₂O₄. Calculated, %: C 63.75; H 7.50; N 8.75. *M* 320.

1-(3-Benzyl-3-azabicyclo[3.3.1]non-9-yl)pyrrolidine-2,5-dione (VIIIa). Yield 69%, mp 98–100°C. IR spectrum, v, cm⁻¹: 1725, 1710 (C=O). ¹H NMR spectrum, δ , ppm: 1.35–2.05 m (6H, CH₂), 2.11– 2.34 m (6H, CH, CH₂CH₂), 2.97 d (2H, NCH₂), 3.08 d (2H, NCH₂), 3.43 s (2H, PhCH₂), 3.88 m (1H, 9-H), 7.12–7.25 m (5H, C₆H₅). Mass spectrum: *m/z* 313 [*M* + H]⁺. Found, %: C 73.18; H 7.56; N 8.74. C₁₉H₂₄N₂O₂. Calculated, %: C 73.08; H 7.69; N 8.97. *M* 312.

tert-Butyl 9-(2,5-dioxopyrrolidin-1-yl)-3-azabicyclo[3.3.1]nonane-3-carboxylate (VIIIb). Yield 74%, mp 110–112°C. IR spectrum, v, cm⁻¹: 1726, 1711, 1687 (C=O). ¹H NMR spectrum, δ , ppm: 1.31 s (9H, *t*-Bu), 1.47–2.15 m (6H, CH₂), 2.17–2.28 m (4H, CH₂CH₂), 2.38–2.46 m (2H, CH), 3.43 d (2H, NCH₂), 3.64 d (2H, NCH₂), 4.01 m (1H, 9-H). Mass spectrum, *m/z*: 323 [*M* + H]⁺, 222 [*M* – 101 + H]⁺. Found, %: C 63.52; H 7.94; N 8.73. C₁₇H₂₆N₂O₄. Calculated, %: C 63.35; H 8.07; N 8.70. *M* 322.

3-Benzyl-*N***-benzylidene-3-azabicyclo[3.3.1]nonan-9-amine (IXa).** A solution of 0.24 g (2.2 mmol) of freshly distilled benzaldehyde in 3 ml of anhydrous ethanol was added under stirring to a solution of 0.5 g (2.2 mmol) of amine **IIa** in 5 ml of anhydrous ethanol. The mixture was heated for 12 h under reflux with stirring, the solvent was distilled off under reduced pressure, and the residue was dissolved in hexane– ethyl acetate (3:1) and purified by column chromatography on silica gel. Yield 0.48 g (69%), oily substance. IR spectrum: v 1608 cm⁻¹ (C=N). ¹H NMR spectrum, δ , ppm: 1.39–2.08 m (6H, CH₂), 2.17–2.26 m (2H, CH), 2.82 d (2H, NCH₂), 2.93 d (2H, NCH₂), 3.41 s (2H, PhCH₂), 3.95 m (1H, 9-H), 6.78 s (1H, N=CH), 7.00–7.43 m (10H, C₆H₅). Mass spectrum: m/z 319 $[M + H]^+$. Found, %: C 82.91; H 8.03; N 8.74. C₂₂H₂₆N₂. Calculated, %: C 83.02; H 8.18; N 8.81. M 318.

Compounds IXb, Xa, and Xb were synthesized in a similar way.

tert-Butyl 9-benzylideneamino-3-azabicyclo-[3.3.1]nonane-3-carboxylate (IXb). Yield 70%, mp 74–76°C. IR spectrum, v, cm⁻¹: 1684 (C=O), 1608 (C=N). ¹H NMR spectrum, δ , ppm: 1.30 s (9H, *t*-Bu), 1.46–2.10 m (6H, CH₂), 2.37–2.45 m (2H, CH), 3.42 d (2H, NCH₂), 3.62 d (2H, NCH₂), 3.98 m (1H, 9-H), 6.81 s (1H, N=CH), 7.02–7.21 m (5H, C₆H₅). Mass spectrum, *m/z*: 329 [*M* + H]⁺, 228 [*M* – 101 + H]⁺. Found, %: C 73.26; H 8.48; N 8.39. C₂₀H₂₈N₂O₂. Calculated, %: C 73.17; H 8.54; N 8.54. *M* 328.

3-Benzyl-*N***-(4-chlorobenzylidene)-3-azabicyclo-**[**3.3.1]nonan-9-amine (Xa).** Yield 73%, mp 51–53°C. IR spectrum: v 1610 cm⁻¹ (C=N). ¹H NMR spectrum, δ , ppm: 1.38–2.09 m (6H, CH₂), 2.18–2.27 m (2H, CH), 2.85 d (2H, NCH₂), 2.97 d (2H, NCH₂), 3.45 s (2H, PhCH₂), 3.98 m (1H, 9-H), 6.84 s (1H, N=CH), 7.18–7.82 m (9H, H_{arom}). Mass spectrum: *m*/*z* 353 [*M* + H]⁺. Found, %: C 74.67; H 7.01; N 7.82. C₂₂H₂₅ClN₂. Calculated, %: C 74.89; H 7.09; N 7.94. *M* 352.5.

tert-Butyl 9-(4-chlorobenzylideneamino)-3-azabicyclo[3.3.1]nonane-3-carboxylate (Xb). Yield 78%, mp 88–90°C. IR spectrum, v, cm⁻¹: 1685 (C=O), 1610 (C=N). ¹H NMR spectrum, δ , ppm: 1.32 s (9H, *t*-Bu), 1.48–2.12 m (6H, CH₂), 2.41–2.48 m (2H, CH), 3.45 d (2H, NCH₂), 3.71 d (2H, NCH₂), 4.03 m (1H, 9-H), 6.95 s (1H, N=CH), 7.42–7.84 m (4H, C₆H₄). Mass spectrum, *m/z*: 363 [*M* + H]⁺, 262 [*M* – 101 + H]⁺. Found, %: C 66.13; H 7.52; N 7.64. C₂₀H₂₇ClN₂O₂. Calculated, %: C 66.21; H 7.45; N 7.72. *M* 362.5.

N,3-Dibenzyl-3-azabicyclo[3.3.1]nonan-9-amine (XIa). Sodium tetrahydridoborate, 0.1 g (2.7 mmol), was added to a solution of 0.64 g (2 mmol) of Schiff base IXa in 20 ml of a 1:1 mixture of anhydrous methanol and tetrahydrofuran, and the mixture was stirred for 5 h, poured into 50 ml of water, and extracted with ethyl acetate (2×30 ml). The combined extracts were dried over anhydrous sodium sulfate, the solvent was removed under reduced pressure, and the oily residue was dissolved in hexane–ethyl acetate (3:1) and purified by column chromatography on silica gel. Yield 0.52 g (81%), oily substance. IR spectrum: v 3352 cm⁻¹ (NH). ¹H NMR spectrum, δ , ppm: 1.32–2.04 m (6H, CH₂), 2.15–2.23 m (2H, CH), 2.80 d (2H,

NCH₂), 2.90 d (2H, NCH₂), 3.38 s (2H, PhCH₂), 3.93 m (1H, 9-H), 4.98 s (2H, NHCH₂), 5.24 br.s (1H, NH), 7.02–7.34 m (10H, C₆H₅). Mass spectrum: m/z 321 $[M + H]^+$. Found, %: C 82.35; H 8.64; N 8.57. C₂₂H₂₈N₂. Calculated, %: C 82.50; H 8.75; N 8.75. *M* 320.

Compounds **XIb**, **XIIa**, and **XIIb** were synthesized in a similar way.

tert-Butyl 9-benzylamino-3-azabicyclo[3.3.1]nonane-3-carboxylate (XIb). Yield 80%, mp 56– 57°C. IR spectrum, v, cm⁻¹: 3354 (NH), 1685 (C=O). ¹H NMR spectrum, δ , ppm: 1.31 s (9H, *t*-Bu), 1.46– 2.12 m (6H, CH₂), 2.34–2.42 m (2H, CH), 3.40 d (2H, NCH₂), 3.60 d (2H, NCH₂), 3.94 m (1H, 9-H), 5.08 s (2H, PhCH₂), 5.36 br.s (1H, NH), 7.05–7.21 m (5H, C₆H₅). Mass spectrum, *m*/*z*: 331 [*M* + H]⁺, 230 [*M* – 101 + H]⁺. Found, %: C 72.78; H 8.93; N 8.39. C₂₀H₃₀N₂O₂. Calculated, %: C 72.73; H 9.09; N 8.48. *M* 330.

3-Benzyl-*N***-(4-chlorobenzyl)-3-azabicyclo[3.3.1]nonan-9-amine (XIIa).** Yield 80%, oily substance. IR spectrum: v 3358 cm⁻¹ (NH). ¹H NMR spectrum, δ , ppm: 1.35–2.08 m (6H, CH₂), 2.13–2.25 m (2H, CH), 2.84 d (2H, NCH₂), 2.95 d (2H, NCH₂), 3.42 s (2H, PhCH₂), 3.95 m (1H, 9-H), 5.08 s (2H, C₆H₄CH₂), 5.25 br.s (1H, NH), 7.16–7.80 m (9H, H_{arom}). Mass spectrum: *m*/*z* 355 [*M* + H]⁺. Found, %: C 74.32; H 7.55; N 7.78. C₂₂H₂₇ClN₂. Calculated, %: C 74.47; H 7.62; N 7.90. *M* 354.5.

tert-Butyl 9-(4-chlorobenzylamino)-3-azabicyclo-[3.3.1]nonane-3-carboxylate (XIIb). Yield 77%, mp 73–74°C. IR spectrum, v, cm⁻¹: 3356 (NH), 1685 (C=O). ¹H NMR spectrum, δ , ppm: 1.31 s (9H, *t*-Bu), 1.42–2.09 m (6H, CH₂), 2.32–2.41 m (2H, CH), 3.44 d (2H, NCH₂), 3.65 d (2H, NCH₂), 3.95 m (1H, 9-H), 5.12 s (2H, C₆H₄CH₂), 5.38 br.s (1H, NH), 7.38– 7.79 m (4H, C₆H₄). Mass spectrum, *m/z*: 365 [*M* + H]⁺, 264 [*M* – 101 + H]⁺. Found, %: C 65.71; H 7.98; N 7.43. C₂₀H₂₉ClN₂O₂. Calculated, %: C 65.84; H 7.96; N 7.68. *M* 364.5.

3-(3-Benzyl-3-azabicyclo[3.3.1]non-9-yl)-2-phenyl-1,3-thiazolidin-4-one (XIIIa). A mixture of 0.64 g (2 mmol) of Schiff base **IXa** and 0.2 g (2.2 mmol) of sulfanylacetic acid in 20 ml of anhydrous benzene was heated for 10 h under reflux with stirring. The solvent was removed under reduced pressure, the residue was treated with hot hexane, and the precipitate was filtered off and recrystallized from aqueous ethanol (1:2). Yield 0.38 g (49%), mp 164–166°C. IR spectrum: v 1705 cm⁻¹ (C=O). ¹H NMR spectrum, δ , ppm: 1.38–2.09 m (6H, CH₂), 2.18– 2.25 m (2H, CH), 2.84 d (2H, NCH₂), 2.95 d (2H, NCH₂), 3.41 s (2H, PhCH₂), 3.96 m (1H, 9-H), 4.10 s (2H, CH₂S), 6.24 s (1H, SCHN), 7.04–7.46 m (10H, C₆H₅). Mass spectrum: *m*/*z* 393 [*M* + H]⁺. Found, %: C 73.22; H 6.85; N 7.04. C₂₄H₂₈N₂OS. Calculated, %: C 73.47; H 7.14; N 7.14. *M* 392.

Compounds XIIIb, XIVa, and XIVb were synthesized in a similar way.

tert-Butyl 9-(4-oxo-2-phenyl-1,3-thiazolidin-3-yl)-3-azabicyclo[3.3.1]nonane-3-carboxylate (XIIIb). Yield 52%, mp 183–185°C. IR spectrum, v, cm⁻¹: 1705, 1685 (C=O). ¹H NMR spectrum, δ , ppm: 1.30 s (9H, *t*-Bu), 1.45–2.12 m (6H, CH₂), 2.36– 2.47 m (2H, CH), 3.44 d (2H, NCH₂), 3.65 d (2H, NCH₂), 3.96 m (1H, 9-H), 4.12 s (2H, CH₂S), 6.28 s (1H, SCHN), 7.14–7.39 m (5H, C₆H₅). Mass spectrum, *m/z*: 403 [*M* + H]⁺, 302 [*M* – 101 + H]⁺. Found, %: C 65.71; H 7.35; N 6.92. C₂₂H₃₀N₂O₃S. Calculated, %: C 65.67; H 7.46; N 6.97. *M* 402.

3-(3-Benzyl-3-azabicyclo[3.3.1]non-9-yl)-2-(**4-chlorophenyl)-1,3-thiazolidin-4-one (XIVa).** Yield 46%, mp 178–180°C. IR spectrum, v, cm⁻¹: 1705 (C=O). ¹H NMR spectrum, δ , ppm: 1.37–2.09 m (6H, CH₂), 2.19–2.27 m (2H, CH), 2.86 d (2H, NCH₂), 2.96 d (2H, NCH₂), 3.41 s (2H, PhCH₂), 3.97 m (1H, 9-H), 4.10 s (2H, CH₂S), 6.26 s (1H, SCHN), 7.03–7.48 m (9H, H_{arom}). Mass spectrum: *m*/*z* 427 [*M* + H]⁺. Found, %: C 67.28; H 6.29; N 6.34. C₂₄H₂₇ClN₂OS. Calculated, %: C 67.53; H 6.33; N 6.57. *M* 426.5.

tert-Butyl 9-[2-(4-chlorophenyl)-4-oxo-1,3-thiazolidin-3-yl]-3-azabicyclo[3.3.1]nonane-3-carboxylate (XIVb). Yield 47%, mp 185–186°C. IR spectrum, v, cm⁻¹: 1705, 1685 (C=O). ¹H NMR spectrum, δ , ppm: 1.30 s (9H, *t*-Bu), 1.46–2.14 m (6H, CH₂), 2.35–2.46 m (2H, CH), 3.46 d (2H, NCH₂), 3.68 d (2H, NCH₂), 3.97 m (1H, 9-H), 4.12 s (2H, CH₂S), 6.28 s (1H, SCHN), 7.43–7.84 m (4H, C₆H₄). Mass spectrum, *m*/*z*: 437 [*M* + H]⁺, 336 [*M* – 101 + H]⁺. Found, %: C 60.56; H 6.77; N 6.23. C₂₂H₂₉ClN₂O₃S. Calculated, %: C 60.48; H 6.64; N 6.41. *M* 436.5.

3-Benzyl-9-isothiocyanato-3-azabicyclo[3.3.1]nonane (XVa). A solution of 2.9 g (25.2 mmol) of thiophosgene in 30 ml of anhydrous acetone was cooled to $0-5^{\circ}$ C, a solution of 5.75 g (25 mmol) of amine **Ha** in 30 ml of acetone was added under stirring, and 3.6 g (26 mmol) of anhydrous potassium carbonate was then added in small portions. The mixture was stirred for 3 h at room temperature, poured into 200 ml of water, and extracted with methylene chloride (3×50 ml). The combined extracts were dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. Yield 6.12 g (90%), oily substance. IR spectrum: v 2092 cm⁻¹ (NCS). ¹H NMR spectrum, δ , ppm: 1.38–2.07 m (6H, CH₂), 2.15–2.26 m (2H, CH), 2.83 d (2H, NCH₂), 2.87 d (2H, NCH₂), 3.38 s (2H, PhCH₂), 3.78 m (1H, 9-H), 7.08–7.24 m (5H, C₆H₅). Mass spectrum: *m*/*z* 273 [*M* + H]⁺. Found, %: C 70.42; H 7.18; N 10.13. C₁₆H₂₀N₂S. Calculated, %: C 70.59; H 7.35; N 10.29. *M* 272.

tert-Butyl 9-isothiocyanato-3-azabicyclo[3.3.1]nonane-3-carboxylate (XVb). Yield 96%, mp 58– 60°C. IR spectrum, v, cm⁻¹: 2095 (NCS), 1686 (C=O). ¹H NMR spectrum, δ , ppm: 1.30 s (9H, *t*-Bu), 1.47– 2.15 m (6H, CH₂), 2.35–2.48 m (2H, CH), 3.45 d (2H, NCH₂), 3.64 d (2H, NCH₂), 3.86 m (1H, 9-H). Mass spectrum, *m/z*: 283 [*M* + H]⁺, 182 [*M* – 101 + H]⁺. Found, %: C 59.67; H 7.61; N 10.04. C₁₄H₂₂N₂O₂S. Calculated, %: C 59.57; H 7.80; N 9.93. *M* 282.

O-Methyl (3-benzyl-3-azabicyclo[3.3.1]non-9-yl)carbamothioate (XVIa). A mixture of 0.272 g (1 mmol) of isothiocyanate **XVa** and 10 ml of anhydrous methanol was heated for 10 h under reflux, and the solvent was distilled off under reduced pressure. Yield 0.3 g (98%), mp 118–120°C. IR spectrum: v 3358 cm⁻¹ (NH). ¹H NMR spectrum, δ , ppm: 1.36– 2.08 m (6H, CH₂), 2.13–2.25 m (2H, CH), 2.81 d (2H, NCH₂), 2.88 d (2H, NCH₂), 3.40 s (2H, PhCH₂), 3.74 m (1H, 9-H), 3.96 s (3H, OCH₃), 7.02–7.21 m (5H, C₆H₅), 9.05 s (1H, NH). Mass spectrum: *m/z* 305 [*M* + H]⁺. Found, %: C 66.93; H 7.76; N 9.17. C₁₇H₂₄N₂OS. Calculated, %: C 67.11; H 7.89; N 9.21. *M* 304.

tert-Butyl 9-(methoxycarbonothioylamino)-3azabicyclo[3.3.1]nonane-3-carboxylate (XVIb) was synthesized in a similar way. Yield 99%, mp 136– 138°C. IR spectrum, v, cm⁻¹: 3359 (NH), 1685 (C=O). ¹H NMR spectrum, δ , ppm: 1.31 s (9H, *t*-Bu), 1.48– 2.16 m (6H, CH₂), 2.36–2.49 m (2H, CH), 3.45 d (2H, NCH₂), 3.65 d (2H, NCH₂), 3.85 m (1H, 9-H), 4.01 s (3H, OCH₃), 9.12 s (1H, NH). Mass spectrum, *m/z*: 315 [*M* + H]⁺, 214 [*M* – 101 + H]⁺. Found, %: C 57.19; H 8.38; N 8.76. C₁₅H₂₆N₂O₃S. Calculated, %: C 57.32; H 8.28; N 8.92. *M* 314.

1-(3-Benzyl-3-azabicyclo[3.3.1]non-9-yl)-3phenylthiourea (XVIIa). A mixture of 0.272 g (1 mmol) of isothiocyanate **XVa** and 0.093 g (1 mmol) of aniline in 5 ml of anhydrous benzene was heated for 7 h under reflux. The solvent was distilled off under reduced pressure, and the residue was treated with hot hexane. The precipitate was filtered off and recrystallized from ethyl acetate. Yield 0.21 g (58%), mp 156– 158°C. IR spectrum, v, cm⁻¹: 3356, 3268 (NH). ¹H NMR spectrum, δ , ppm: 1.37–2.09 m (6H, CH₂), 2.11–2.24 m (2H, CH), 2.83 d (2H, NCH₂), 2.89 d (2H, NCH₂), 3.38 s (2H, PhCH₂), 3.74 m (1H, 9-H), 7.03– 7.43 m (10H, C₆H₅), 8.04 s (1H, NH), 9.18 s (1H, NH). Mass spectrum: *m*/*z* 366 [*M* + H]⁺. Found, %: C 72.24; H 7.52; N 11.33. C₂₂H₂₇N₃S. Calculated, %: C 72.33; H 7.40; N 11.51. *M* 365.

tert-Butyl 9-(phenylcarbamothioylamino)-3azabicyclo[3.3.1]nonane-3-carboxylate (XVIIb) was synthesized in a similar way. Yield 63%, mp 171– 173°C. IR spectrum, v, cm⁻¹: 3362, 3274 (NH), 1687 (C=O). ¹H NMR spectrum, δ , ppm: 1.31 s (9H, *t*-Bu), 1.47–2.15 m (6H, CH₂), 2.34–2.50 m (2H, CH), 3.44 d (2H, NCH₂), 3.66 d (2H, NCH₂), 3.87 m (1H, 9-H), 7.02–7.28 m (5H, C₆H₅), 8.06 s (1H, NH), 9.21 s (1H, NH). Mass spectrum, *m/z*: 376 [*M* + H]⁺, 275 [*M* – 101 + H]⁺. Found, %: C 63.85; H 7.84; N 11.07. C₂₀H₂₉N₃O₂S. Calculated, %: C 64.00; H 7.73; N 11.20. *M* 375.

1-(3-Benzyl-3-azabicyclo[3.3.1]non-9-yl)-4,5-dihydro-1*H*-tetrazole-5-thione (XVIIIa). A mixture of 0.272 g (1 mmol) of isothiocyanate XVa and 0.098 g (1.5 mmol) of sodium azide in 5 ml of water was heated for 4 h under reflux. The mixture was cooled and washed with 20 ml of diethyl ether. The aqueous solution was acidified with 10% hydrochloric acid to pH 2–3 and left to stand for 10 h in a refrigerator, and the precipitate was filtered off, washed with cold water and diethyl ether, and dried. Yield 0.28 g (89%), mp 187–190°C. IR spectrum, v, cm⁻¹: 3405 (NH), 1528 (N=N). ¹H NMR spectrum, δ , ppm: 1.38–2.10 m (6H, CH₂), 2.12–2.26 m (2H, CH), 2.85 d (2H, NCH₂), 2.92 d (2H, NCH₂), 3.39 s (2H, PhCH₂), 3.85 m (1H, 9-H), 7.04–7.26 m (5H, C₆H₅). Mass spectrum: m/z 316 $[M + H]^+$. Found, %: C 60.73; H 6.45; N 21.80. C₁₆H₂₁N₅S. Calculated, %: C 60.95; H 6.67; N 22.22. *M* 315.

tert-Butyl 9-(5-thioxo-4,5-dihydro-1*H*-tetrazol-1-yl)-3-azabicyclo[3.3.1]nonane-3-carboxylate (XVIIIb) was synthesized in a similar way. Yield 86%, mp 196–198°C. IR spectrum, v, cm⁻¹: 3406 (NH), 1687 (C=O), 1528 (N=N). ¹H NMR spectrum, δ , ppm: 1.32 s (9H, *t*-Bu), 1.48–2.15 m (6H, CH₂), 2.36– 2.52 m (2H, CH), 3.46 d (2H, NCH₂), 3.68 d (2H, NCH₂), 3.89 m (1H, 9-H). Mass spectrum, *m/z*: 326 [*M* + H]⁺, 225 [*M* – 101 + H]⁺. Found, %: C 52.01; H 7.23; N 21.43. C₁₄H₂₃N₅O₂S. Calculated, %: C 51.69; H 7.08; N 21.54. *M* 325.

Reaction of compounds IIb–XVIIIb with HCl. Compound **IIb–XVIIIb**, 2 mmol, was dissolved in 5 ml of anhydrous ethanol, 10 ml of a saturated (~16%) solution of hydrogen chloride in anhydrous dioxane was added, and the mixture was stirred for 1 h and then heated for 1 h under reflux. The solvent was removed under reduced pressure, the residue was dissolved in 3 ml of hot propan-2-ol, the solution was cooled, 15 ml of anhydrous diethyl ether was added, and the mixture was left to stand for 20 h. The precipitate was filtered off, washed with diethyl ether, and dried under reduced pressure over P_2O_5 . The yields of the corresponding 3-unsubstituted 3-azabicyclo[3.3.1]-nonane derivatives ranged from 87 to 98%.

REFERENCES

- 1. Moskalenko, A.I. and Boev, V.I., Russ. J. Org. Chem., 2009, vol. 45, p. 472.
- 2. Moskalenko, A.I. and Boev, V.I., Russ. J. Org. Chem., 2009, vol. 45, p. 895.
- 3. Jeyaraman, R. and Avila, S., *Chem. Rev.*, 1981, vol. 81, p. 149.