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ABSTRACT: In this study, a commercially available homoge-
neous pincer-type complex, Ru-Macho, was directly heterogenized
via the Lewis acid-catalyzed Friedel−Crafts reaction using
dichloromethane as the cross-linker to obtain a heterogeneous,
pincer-type Ru porous organometallic polymer (Ru-Macho-
POMP) with a high surface area. Notably, Ru-Macho-POMP
was demonstrated to be an efficient heterogeneous catalyst for the
chemoselective hydrogenation of α,β-unsaturated carbonyl com-
pounds to their corresponding allylic alcohols using cinnamalde-
hyde as a model compound. The Ru-Macho-POMP catalyst
showed a high turnover frequency (TOF = 920 h−1) and a high turnover number (TON = 2750), with high chemoselectivity (99%)
and recyclability during the selective hydrogenation of α,β-unsaturated carbonyl compounds.

■ INTRODUCTION

The chemoselective hydrogenation of α,β-unsaturated carbon-
yl compounds to their corresponding unsaturated alcohols is
an important class of organic reactions because the resulting
allylic alcohols are important intermediates in the synthesis of
numerous fine chemicals and pharmaceutical agents, agro-
chemicals, and perfumes.1−10 The chemoselective hydro-
genation of a carbonyl group of the α,β-unsaturated carbonyl
compounds is challenging because reduction of the olefin
group is kinetically faster than that of the carbonyl group.
Additionally, hydrogenation of the CC group relative the
CO group is thermodynamically preferred by a factor of 35
kJ mol−1.11 Therefore, developing highly efficient catalysts for
the chemoselective reduction of α,β-unsaturated carbonyl
compounds to allylic alcohols is highly desirable.12−16

In this context, numerous heterogeneous and homogeneous
catalysts have been studied for chemoselective reduction of the
carbonyl group of the α,β-unsaturated carbonyl com-
pounds.1−3,10−12,17−52 Here, the homogeneous catalysts show
admirable reactivity for the chemoselective hydrogenation of
carbonyl compounds. Alternatively, the heterogeneous cata-
lysts exhibit noticeable benefits, including multiple-recycling
ability, facile separation of products and catalysts, and easy
handling, that underline the demand for developing highly
efficient heterogeneous catalysts for the chemoselective
reduction of α,β-unsaturated carbonyl compounds.
Pincer-type metal complexes are an indispensable class of

catalytic materials for a variety of chemical transformations. A
plethora of pincer-type ligand-based transition-metal com-
plexes have been used as catalysts for the hydrogenation of

various functional groups.53−57 One of the notable pincer-type
complexes is the commercially available Ru-Macho complex,
which is a highly robust catalyst for several transformations,
including the reduction of carbon dioxide, ester, and carbonyl
compounds, as well as the dehydrogenation of amines,
alcohols, and formic acid.34,58−80

Considering the efficiency and high catalytic activity of the
Ru-Macho complex in a variety of chemical transformations
and its commercial availability, it is suitable for use in
industrial-level hydrogenation processes.81 Furthermore, a Ru-
Macho-based complex has been reported as an active catalyst
for the base-free transfer hydrogenation of α,β-unsaturated
carbonyl compounds to their corresponding alcohols, which
suggests the possibility of using Ru-Macho complexes in large-
scale hydrogenation processes.25

However, the homogeneous nature of the complex
complicates the catalyst isolation and recycling in an industrial
process and increases the operational cost. Notwithstanding its
variety of catalytic applications, the homogeneous Ru-Macho
complex has been reported to be unstable under basic
conditions and forms various impurities, including dimeric
Ru complexes.82,83 Therefore, to conveniently achieve the
benefits of both homogeneous and heterogeneous catalytic
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processes in further exploration studies, heterogenization of
the Ru-Macho complex is highly desirable.
Recently, the Lewis acid-catalyzed Friedel−Crafts reaction

(FCR) has been considered to be a potential approach to
directly heterogenizing active homogeneous catalysts because
it is a simple and economically viable method.84−88 Addition-
ally, the FCR-assisted aryl knitting strategy promotes the
development of heterogenized catalysts with very high surface
area, porosity, and robustness, which are beneficial for
enhanced catalytic performance.56,57,84,85,89−93 In this context,
the commercially available homogeneous pincer-type complex
Ru-Macho is heterogenized via the FCR to prepare a
heterogeneous pincer-type porous organometallic polymer,
Ru-Macho-POMP (catalyst 1; Scheme 1a). The catalytic
ability of the as-prepared catalyst 1 for the chemoselective
hydrogenation of α,β-unsaturated carbonyl compounds was
investigated using cinnamaldehyde (CAL) as a model
compound (Scheme 1b). Additionally, the scope and
limitations of catalyst 1 for the selective hydrogenation of

carbonyl groups in the presence of other reducible groups were
explored for carbonyl compounds containing cyano, nitro,
ester, carboxylic acid, and aryl bromide groups.

■ RESULTS AND DISCUSSION

Initially, catalyst 1 was prepared via the Friedel−Crafts-assisted
aryl knitting method using AlCl3 as a Lewis acid catalyst and
dichloromethane as a linker (Scheme 1a). The as-formed
catalyst 1 is insoluble in most organic solvents and water. The
porous properties of catalyst 1 were analyzed through N2
sorption isotherms. The N2 sorption isotherm for catalyst 1
shows the features of a type I isotherm (Figure 1a).94 The
steep adsorption at P/P0 ≈ 0.1, as well as the pore size
determined via the Barrett−Joyner−Halenda (BJH) analysis
method (Figure 1a, inset), indicates that the material is
microporous, with appreciable amounts of mesoporous voids
in it.94 The surface area and total pore volume of catalyst 1, as
determined by the Brunauer−Emmett−Teller analysis, are 465
m2 g−1 and 0.23 cm3 g−1, respectively. The high surface area of

Scheme 1. Schematic Representations for (a) the Heterogenization of Ru-Macho to Ru-Macho-POMP (Catalyst 1) and (b) the
Catalytic Hydrogenation of CAL

Figure 1. (a) N2 sorption curve of catalyst 1. The inset shows the pore-size distributions obtained via the BJH analysis method. (b) SEM image of
catalyst 1. (c) TEM image of catalyst 1. (d) FTIR spectra of the homogeneous Ru-Macho complex (black line) and catalyst 1 (red line). Ru 3d
core region from the XPS spectra of (e) catalyst 1 and (f) the Ru-Macho complex.
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catalyst 1 and well-maintained porosity are highly beneficial in
catalysis to facilitate the mass transfer while maintaining the
heterogeneity of the catalyst.
The morphology and crystallinity of catalyst 1 were probed

via scanning electron microscopy (SEM), transmission
electron microscopy (TEM), and powder X-ray diffraction
(PXRD) analyses. The PXRD analysis of catalyst 1 reveals a
broad reflex at 2θ = 22°, demonstrating that Ru-Macho-POMP
is an amorphous carbonaceous solid (Figure S1). Additionally,
the reflexes corresponding to Ru metal were not observed in
the PXRD pattern of catalyst 1, thereby indicating a
homogeneous distribution of the Ru moiety in the POMP.95

The SEM image of catalyst 1 shows that the particles are
formed as polydispersed blocks with irregular shapes (Figure
1b), while the TEM images further reveal the porosity of
catalyst 1 (Figure 1c). Moreover, in line with the PXRD
pattern, the energy-dispersive X-ray spectroscopy (EDX)
analysis further supported the homogeneous distribution and
coherence existence of the P, N, Cl, and Ru atoms in catalyst 1
(Figure S2).
The Fourier transform infrared (FTIR) spectra of catalyst 1

and that of the homogeneous Ru-Macho catalyst are compared
in Figure 1d, which shows that the structural integrity of the
Ru-Macho complex was maintained during polymerization.
The FTIR spectrum of catalyst 1 shows the alkyl and aryl C−H
bands between 2880 and 3080 cm−1 and the P−Ph band at
1100 cm−1. However, the Ru−CO band at 1902 cm−1 in the
Ru-Macho complex shifts to 1952 cm−1 after polymerization.
This increased stretching frequency of the CO ligand in
catalyst 1 indicates that the electron density on the Ru atom
decreases after polymerization. Furthermore, the Ru−H band
at 1974 cm−1 in the homogeneous Ru-Macho complex
disappeared during polymerization, and the corresponding
Ru−H band was not observed in catalyst 1. This may be due to
exchange of the hydride ligand with chloride ions during the
AlCl3-assisted polymerization. To verify this, a controlled
experiment was performed using MeI as the alkylating agent in
the Friedel−Crafts alkylation process in the presence of AlCl3,

and the reaction progress was monitored via 1H NMR
spectroscopy (Figure S3). Notably, the intensity of the original
hydride peaks of the Ru-Macho complex that resonated at
−12.2 and −15.1 ppm gradually decreased, and after 12 h, the
hydride peaks completely disappeared. This experiment also
supports the replacement of hydride ligands with other halide
ions to form a ruthenium halogen complex during the FCR-
assisted aryl knitting heterogenization of Ru-Macho complexes.
The solid-state 13C cross-polarization magic-angle-spinning

(CP/MAS) NMR spectral analysis of catalyst 1 showed the
presence of aromatic phenyl rings at δ = 150−120 ppm (Figure
S4). The C sp3 atoms of the ethyl units and the C atoms of the
methylene linker units from CH2Cl2 were observed at δ = 52,
42, and 35 ppm. In addition, the solid-state 31P{1H} CP/MAS
NMR spectrum of catalyst 1 showed the resonance of the Ru-
PPh2 unit as a broad peak at δ = 65 ppm (Figure S5).
The inductively coupled plasma optical emission spectrom-

etry analysis of catalyst 1 revealed that the Ru content in the
POMP after heterogenization was 9.0 wt %. The coordination
environment of the Ru atom of catalyst 1 was probed via X-ray
photoelectron spectroscopy (XPS) analysis. The deconvoluted
Ru 3d core region shows the Ru 3d5/2 component at a binding
energy (BE) of 281.3 eV, indicating that the Ru atom in
catalyst 1 is in the 2+ oxidation state (Figure 1e).96 However,
for the homogeneous Ru-Macho complex, the 3d5/2
component is observed at a slightly lower BE of 280.8 eV,
suggesting that the electron density on the metal center
decreases after FCR-assisted polymerization (Figure 1f).
The aforementioned is attributed to the fact that the hydride

ligand in the Ru-Macho complex is converted to Ru−Cl during
polymerization. This result is consistent with the FTIR spectral
results of catalyst 1. These results again support that catalyst 1
is formed as shown in Scheme 1a.
After preparation of the heterogenized Ru-Macho-POMP

catalyst 1, its catalytic activity in the selective hydrogenation of
carbonyl compounds was investigated using CAL as a model
compound because the CC group in CAL is highly activated
toward hydrogenation by a catalyst.27,30 In the case of the

Table 1. Chemoselective Hydrogenation of CAL by Catalyst 1a

selectivity (%)b

entry solvent base time (h) pH2 (MPa) T (°C) conversion (%)b COL HCOL TONc

1 H2O KOH 1 1.0 40 2 99 1 4
2 MeOH KOH 1 1.0 40 98 99 1 190
3 ethanol KOH 1 1.0 40 85 93 7 160
4 isopropyl alcohol KOH 1 1.0 40 68 99 1 130
5 THF KOH 1 1.0 40 98 99 1 190
6 toluene KOH 1 1.0 40 3 99 1 5
7 MeOH Et3N 1 1.0 40 3 100 0 5
8 MeOH KHCO3 1 1.0 40 2 99 1 4
9 MeOH K2CO3 1 1.0 40 91 95 5 170
10 MeOH K3PO4 1 1.0 40 95 95 5 180
11d MeOH 1 1.0 40 70 0 0 0
12 MeOH KOH 1 1.0 80 >99 83 17 160
13 MeOH KOH 1 1.0 20 52 >99 trace 100
14 MeOH KOH 1 2.0 40 99 99 1 195
15 MeOH KOH 1 0.5 40 97 99 1 190
16e MeOH KOH 3 1.0 40 56 98 2.0 2750 (TOF = 920 h−1)
17f MeOH KOH 1 1.0 40 >99 83 17 160

aReaction conditions: catalyst:substrate:base = 1:200:200; 4.0 mL of solvent. bMeasured via 1H NMR spectroscopy. cTON = [COL]/[Ru]. dOnly
acetal formation was observed. eCatalyst:substrate:base = 1:5000:5000; fHomogeneous Ru-Macho was used as a catalyst in place of catalyst 1. TOF
= TON/h.
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hydrogenation of CAL, along with the expected product
cinnamyl alcohol (COL), the byproducts hydrocinnamalde-
hyde (HCAL) and hydrocinnamic alcohol (HCOL) are often
observed (Scheme 1b).
Initially, the catalytic ability of catalyst 1 for the chemo-

selective hydrogenation of CAL to COL was tested in water
(H2O) with a substrate-to-catalyst ratio (S/C) of 200 in the
presence of 100 mol % potassium hydroxide (KOH) at 40 °C
under 1.0 MPa of H2 pressure for 1 h. However, the use of
H2O as a solvent results in negligible formation of COL,
although with high selectivity (99%; Table 1, entry 1), which is
possibly due to the low dispersibility of catalyst 1 in H2O
arising from its low density. Therefore, other organic solvents
were tested for their suitability in the chemoselective
hydrogenation of CAL to COL using catalyst 1 (Table 1,
entries 2−6). As seen in Table 1, catalyst 1 was inactive in the
nonpolar solvent toluene. Notably, the catalytic conversion
considerably increases in polar solvents, such as alcohols and
tetrahydrofuran (THF). Among the tested alcoholic solvents,
methanol (MeOH) showed the highest conversion (98%) and
selectivity (99%) toward COL with a high turnover number
(TON) of 190. The higher solubility of the base and H2 gas in
MeOH might be responsible for this high reactivity. Addition-
ally, the aprotic polar solvent THF showed a reactivity similar
to that of MeOH; however, the latter was preferred as a solvent
in this study because the simple alcohol is an environmentally
benign and greener solvent compared to THF.
The influence of a base on the selective hydrogenation of

CAL to COL by catalyst 1 was then studied using a series of
inorganic and organic bases, such as Et3N, KHCO3, K2CO3,
K3PO4, and KOH (Table 1, entries 2 and 7−10). It is observed
that the addition of a strong base is favorable for the
conversion of CAL to COL because in the presence of the
organic base Et3N or the mild inorganic base KHCO3 catalyst
1 shows negligible reactivity in the hydrogenation of CAL
(<5% conversion; Table 1, entries 7 and 8).
The role of a base in the activation of Ru-Macho and related

PNHP-Ru complexes has been reported in the litera-
ture.25,34,58−80 The base assists in the initial formation of the
“activated Ru-Macho” via dehydrochlorination, as shown in
Scheme S1. In the case of 1, a series of dehydrochlorination
and hydrogenation steps may be required to form the
catalytically active Ru−H intermediate (Scheme S2), which
necessitates the presence of a base in the current study. In line
with this, in the absence of a base additive, only the acetal
product formed from the reaction of CAL and MeOH was
detected, and no COL formation was observed (Table 1, entry
11).
The reaction temperature significantly affects the outcome of

the CAL reduction by catalyst 1. At a higher temperature of 80
°C, 17% HCOL was formed as a result of additional reduction
of the resulting COL (Table 1, entry 12). The selectivity for
COL was only 83% in this case. However, decreasing the
reaction temperature to 20 °C showed a reduction in the
reaction rate, although the selectivity for COL was maintained
over 99% (Table 1, entry 13). Therefore, the optimum
temperature was maintained at 40 °C in this study.
Interestingly, catalyst 1 shows similar reactivity under

different H2 pressures ranging from 0.5 to 2.0 MPa (Table 1,
entries 2, 14, and 15). Under a higher pressure of 2.0 MPa,
only a negligible amount of HCOL was observed, whereas
employing lower H2 pressures of 1.0 and 0.5 MPa has shown
similar TON and selectivity for COL formation. This indicates

that a fast hydride-transfer reaction may occur from the Ru-
metal center to the carbonyl group of CAL, even under low H2
pressure. The reactivity of catalyst 1 was further investigated
with an increased S/C of 5000 under optimal reaction
conditions (Table 1, entry 16). A high TON of 2750 was
obtained after 3.0 h with a very high TOF of 920 h−1, and the
selectivity of the allylic alcohol product was maintained at 98%,
demonstrating that catalyst 1 was durable and active. However,
the initial TOF after 9% conversion under the similar
conditions of Table 1, entry 16, was determined to be 380 h−1.
Additionally, the homogeneous catalyst Ru-Macho had

shown hydrogenation activity superior to that of catalyst 1;
however, because of the high reactivity in the homogeneous
conditions, the selectivity for COL was only 83% and a 17%
HCOL formation was observed (Table 1, entry 17).
After exploration of the catalytic activity of catalyst 1 for the

selective hydrogenation of CAL, the scope and limitations of
catalyst 1 for the selective hydrogenation of carbonyl groups in
the presence of various other reducible functional groups, such
as nitrile, nitro, halogen, ester, carboxylic acid, and olefin, were
also evaluated under the optimized conditions. The results are
summarized in Table S1.
As seen in Table S1, the heterogenized catalyst 1 exhibited

high chemoselectivity for hydrogenation of the carbonyl group
over nitrile, carboxylic ester, and carboxylic acid functional
groups (Table S1, entries 1−3). Both the nitrile and ester
groups were tolerated during hydrogenation of the carbonyl
group with excellent conversion rates (Table S1, entries 1 and
2). Although the homogeneous Ru-Macho complex was
reported to be an active catalyst for the hydrogenation of
nitrile and ester functional groups, the soothingly mild reaction
conditions required for the reduction of aldehyde and keto
groups inherited high chemoselectivity in the case of catalyst 1.
The carboxylic group was not affected under the hydro-

genation conditions; however, it was shown to affect the
reaction rate (64%) for hydrogenation of the carbonyl group of
4-carboxybenzaldehyde (Table S1, entry 3).
However, when 4-bromobenzaldehyde was employed as a

substrate, hydrodebromination also occurred along with the
reduction of a carbonyl group (Table S1, entry 4). Similarly, in
the case of 4-nitrobenzaldehyde as the substrate, hydro-
genation of both the nitro and carbonyl functional groups
occurred (Table S1, entry 5). Thus, carbonyl compounds
containing the highly labile arylhalogen and nitro groups are
unsuitable substrates for the selective hydrogenation by
catalyst 1. Furthermore, p-anisaldehyde and o-tolualdehyde
are amenable substrates and are completely converted to the
corresponding alcohols (Table S1, entries 6 and 7).
Acetophenone, a ketone, was also smoothly hydrogenated to
1-phenylethanol by catalyst 1 (Table S1, entry 8). The
heterocyclic carbonyl compound furfural was hydrogenated to
furfuryl alcohol by catalyst 1 with a 100% conversion rate
(Table S1, entry 9).
The chief benefit of a heterogeneous catalyst entails its usage

in multiple-recycling runs with appreciable reactivity. There-
fore, the recyclability of catalyst 1 in the chemoselective
reduction of CAL was evaluated. As shown in Figure 2, catalyst
1 had shown recyclable catalytic activity at a reduced S/C of
100 for at least four cycles with high chemoselectivity.
Markedly, after the fourth cycle, the conversion of CAL
remained at 94% with a 97% chemoselectivity. Notably, the
TEM−EDX analysis of the spent catalyst 1 suggested that Ru
was maintained in the POMP support (Figure S6), which
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agreed with the observed recyclability. The FTIR spectrum of
the spent catalyst suggested that the Ru−CO bond was
retained without any changes (Figure S7). Additionally, no
band corresponding to Ru−H species was observed for the
spent catalyst.

■ CONCLUSIONS
The highly active homogeneous Ru-Macho catalyst was
directly heterogenized by the Friedel−Crafts method to
prepare a heterogeneous hydrogenation catalyst 1, Ru-
Macho-POMP. The scope and limitations of catalyst 1 in the
selective hydrogenation of a carbonyl group in the presence of
other reducible functional groups were evaluated. Catalyst 1
showed excellent selectivity and high turnovers in hydro-
genation of the carbonyl group of α,β-unsaturated carbonyl
compounds. The milder reaction conditions along with the
high reactivity in multiple cycles suggest the possibility of
heterogenization of the active homogeneous catalysts for the
chemoselective hydrogenation of carbonyl compounds.
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