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Abstract

With the improvement of organic synthesis technglagd the development of
fluorescent probe, more and more fluorescent probisexcellent performance and
versatility are required, so as to better realmartapplication value. High sensitivity,
high selectivity, targetable and fast response filiBrescence probes are still needed
for hydrogen sulfide precise detection. In thisdgtuphenol containing 2, 4-dinitro
group was selected as a strong electrophilic grougromote the nucleophilic
substitution reaction. After the nucleophilic adutit reaction between probe and
hydrogen sulfide with delicate structure, strongclaeaphile, 2, 4-dinitrophenol
departure quickly and the NIR fluorophore was redel which showed fluorescence
emission at 741 nm, and the probe detection liarihfydrogen sulfide was calculated
as 96 nM. Interestingly, because of the positivargé in the hemiocyanine, the probe
can locate efficiently in the mitochondria. Thisudtescent probe with excellent
performance was used to detect the endogenouss le¥élydrogen sulfide iwivo.
This work provides guidance for the design of nfuftctional and high-performance

fluorescent probes.

Keywords: Fluorescent probe; Multifunctional; Efficient; Bioaging; HS.
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1. Introduction

Hydrogen sulfide (bKB) is recently regarded as the third gas messenglercule
in addition to carbon monoxide (CO) and nitric axi(NO). [1] HS is not only
widely exists in mammals, including humans, bub gdlys an important in numerous
pathologic and physiologic processes.[2-5]SHan be endogenously catalyzed by
enzymes such as cystathionizbrase (CSE), cystathionirfesynthase (CBS), and
3-mercapto-sulfurtransferase.[6-11] As an endogensignal molecule, % is
involved in vasodilation, angiogenesis, cell growtleuromodulation, insulin signal
inhibition, inflammation and other physiologicalnfttions.[12-18] Many physical
diseases of diabetes, Alzheimer's disease, cighokithe liver are now widely
accepted as being induced or related to abnormellsl®f hydrogen sulfide. Recently,
the potential biological significance of,8l has attracted growing interest. As an
effective detection approach, fluorescent probe drast development potential in
visualizing HS in biological systems due to the unique advamstage simple
operation, fast response and excellent selectigityd,S. To date, various red emitted
or NIR fluorescent probes for ,H have been developed, but their emission
wavelengths are under 700 nm. [19-29] In recentsyessdme NIR fluorescent probes
were reported which the emission wavelengths ayerite 700 nm. In 2018, Ai et al.
developed a NIR fluorescent probe Imazide feEHind the emission maxima was
733 nm.[30] Wang et al. developed a new fluorespeuibe for HS based on cyanine
dyes and the emission wavelength centered at 83[BbhjhThese probes have made a
perfect effect in detection of mitochondriab$lin the living cells. However, the
optical properties analysis was performed in thigebsolutions with 90% glycerol or
the response time of probe te3His within 1 h. In 2019, Feng et al. developediB N
fluorescent probe for ¥ with the signal at 744 nm based nitrobenzoxatkagther.
[32] Huang group developed a new probe DBT for ceia of H,S with a significant
"turn-on" fluorescence response at 716 nm.[33] diessithe probes were successfully
applied in imaging kBB in live cells and mice. They did not achieve dit@ of HS

in mitochondria as an important organelle of th# pkying a significant role in
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pathophysiology. [34-37] Therefore, it is still me& develop some new types of
fluorescent probes for43.

With the above in mind, we focused on developme&ntNBR mitochondrial
targeting fluorescent probe for detectiopSHo elucidate the function of hydrogen
sulfide in mitochondria and the association betwbgdrogen sulfide and related
diseases in mitochondria. It is worth noting thdie tkey to design a
mitochondria-targetable NIR fluorescent probe fe6Hs to choose a mitochondrial
targeting group, the near-infrared fluorophore amdspecific response site for
detection of HS. It is generally known that many kinds of catouiyes, such as
cyanine and rhodamine, possessing a positive chatgeh can be well accumulated
in the mitochondria of cells.[38] Thus, we chooke tyanine dydMito-OH as the
fluorophore, owing to its mitochondrial targetingdaNIR emission. In addition, we
used 2,4-dinitrophenyl (DNP) ether for reaction etpibecause of its sensitivity and
selectivity for HS without the interference of biothiols.[39-45] Té#re, in this
work, we designed and synthesisMfto-DNP with NIR emission for detection of
H,S on the basis of the thiolysis of dinitrophenyiestvia combinatorial chemistry
(Scheme 1). After treatment of,5, Mito-DNP would occur HS-triggered thiolysis
of dinitrophenyl ether to relead¢ito-OH. Moreover, the feasibility oMito-DNP as
a fluorescent probe to monitor the level afSHvas evaluated in the HepG2 cells and
mice. These results might lead to better understid@daoles of HS in physiological

processes.

2. Experimental
2.1 Reagents and apparatus

Deionized water was used in the whole experiment #we chemicals were of
analytical grade and used directly. The ultravidpéectra and fluorescence spectra
were measured using the Agilent Technologies UiblagCary 60) and fluorescence
spectrophotometer (Cary Eclipse). The spectrdtbfNMR and *C NMR were
recorded by BUXI-I NMR spectrometer (Wuhan Zhongka-jin). The mass spectra
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were recorded on ESI mode (Bruker Ultraflex Xtrelh&LDI-TOF/TOF). Live cells
imaging was observed with laser confocal microsc(fyISS LSM 880). Animal
imaging was taken by the PerkinElmer IVIS Spectiwa animal imaging system.

2.2 Synthesis of Mito-DNP

The synthesis route ®fito-DNP is summarized in SchemeRluorophoreMito-OH
was synthesized according to previous researchritaboratory.[46Mito-OH (0.29
g, 0.5 mmol) and 2,4-dinitrobromobenzene (0.25gmiol) were dissolved in
dichloromethane (10 mL), then added thgCR; (0.21 g, 1.5 mmol) to the above
solution and stirring at 25 for 12 h. Next, after filtration, the solvent wagaporated
to give a crude product and then it was isolatediliga gel chromatography (G8l:
MeOH=30:1) to obtain a blue-purple solid (0.14 §,98).M.p. >280.'H NMR (400
MHz, CDCE) & (ppm): 8.82 (dJ = 2.2 Hz, 1H), 8.73 (d] = 12.0 Hz, 1H, 8.48 (d} =
7.2 Hz, 1H), 8.22-8.14 (m, 1H), 8.04 @= 8.0 Hz, 1H), 7.98 (dJ = 8.0 Hz, 2H),
7.71 (d,J = 8.6 Hz, 1H), 7.67-7.61 (m, 1H), 7.21 (t= 5.8 Hz, 3H), 7.68 (d] = 8.0
Hz, 1H), 7.69 (dJ = 17.2 Hz, 1H), 4.69 (s, 1H), 4.48 (s, 2H), 2.802(m, 4H), 2.04
(s, 6H), 1.93 (s, 2H), 1.60 (d,= 4.0 Hz, 3H);**C NMR (100 MHz, CDG) 5 (ppm):
179.2, 159.1, 155.4, 154.6, 153.7, 145.3, 142.9.713138.1, 136.6, 133.0, 131.5,
130.4, 129.7, 128.9, 128.7, 128.2, 127.5, 126.8,612122.4, 121.9, 120.1, 116.7,
115.5, 111.6, 108.1, 105.5, 52.7, 42.2, 33.6, 28i&, 20.1, 13.5. HRMS (ESty2):
Calcd for G/H3:N306" ([M] ) 614.2286, found: 614.2284.

<Inserted Scheme 1>

2.3 General preparation for optical measurements

The stock solution oMito-DNP and various analytes were prepared in DMSO
and deionized water respectively. All spectra waeasured in DMF-PBS (10 mM,
pH 7.4, viv =1:1) buffer solution. For the measueats, excitation wavelength was
680 nm, the slit widths were 5 nm and the voltags fixed at 600V.

2.4 Céll culture and imaging
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The HepG2 cells were grown in DMEM medium suppleteémwith 10 % FBS, 1 %
of penicillin at 37 °C under 5 % GOFor imaging of HS in living cells, HepG2 cells
wereincubated with 1uM of Mito-DNP for 30 min, and then imaged. Meanwhile,
for imaging of exogenous4S in live cells, after being pretreated with,8g20, 50,
100 uM) for 30 min, following by 1uM of Mito-DNP. For imaging of endogenous
H.S, three groups of experiments were carried oug. dglls were pretreated with an
inhibitor of H,S production by cystathioninelyase propargylglycine (PAG), cysteine
(Cys) or PAG and Cys, then were hatched Witho-DNP (10 uM) subsequently.

2.5 Imaging of H,Sin vivo

BALB/c Nude Mice were purchased from Beijing Spafiotechnology Co., Ltd.
and utilized as biological models. The mice weié sgo four groups. As the control
group, the mice were injected with orf§ito-DNP, the other three groups of mice
were injected with N&, Cys or Cys and PAG respectively, following bjeation
with Mito-DNP. All injections were performed intraperitonealpnd images were
recorded by the PerkinElmer IVIS Spectrum live aalimaging system.

3. Resultsand discussion
3.1. Response of Mito-DNP to H,S

The sensing properties dflito-DNP for H,S were initially investigated. The
absorption and fluorescence emission spectra vem@ded in PBS buffer (10 mM,
pH 7.4) with 50 % DMF. Figure 1 depicted that threlj@ Mito-DNP exhibited an
absorbance peak at around 609 nm and a fluoresandssion at 741 nm with
addition of HS. Herein, it will helpful for further fluorescenémaging of HS in
organisms. Subsequently, the absorption and flaeree titration ofMito-DNP
towards HS were studied (Figure 2). In the absorbance gpectrthe probe
Mito-DNP (10 uM) showed maximum absorption peak at 609 nm. WhenNaS
(100 uM, the source for b5) was added, two new absorption peaks at 718 mm an
380 nm significantly increased, while the absomptipeak at 609 nm gradually
decreased. Corresponding to the fluorescence spedine free prob®lito-DNP had

no fluorescence, however, the fluorescence intensit Mito-DNP remarkably
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increased at 741 nm after adding 100 of N&S due to the thiolysis of dinitrophenyl
ether and theMito-OH to release. The fluorescence intensity of 741 eached
saturation and increased nearly by 20-fold. In @aldi the detection limit of
Mito-DNP for H,S was calculated as 0.0961 by S/N =3 method. [47] Moreover,
the kinetic analysis was also investigated andltlirescence intensity stabilized in 5
min after adding of BB, indicating thaMito-DNP has a fast response te3H(Figure
S1). Futhermore, such large emission wavelengthsliob-DNP were superior to
some reported probes for®l (Table S1) and it might be an excellent candidiate
detecting HS in biological systems. Beyond that, the effedtpld value on the
fluorescence response Mfito-DNP to H,S was also studied and discussed. The free
probe Mito-DNP was no fluorescence in the pH value of 3-11, bhviaus
fluorescence enhancementMito-DNP at 741nm in the pH value of 6-9 with,$l
(Figure S2). Thugvlito-DNP could function at physiological pH.

<Inserted Figure 1>

<Inserted Figure 2>

3.2 The Selectivity of probe Mito-DNP

Selectivity is an essential factor for fluorescpribe. Thus, the specific selectivity
of Mito-DNP for H,S was demonstrated. We performed interference sisabf
fluorescence spectra (Figure 3). Under the samditions, some analytes including
H,S, HO,, various anions (F SCN, I”, Br, HSQy', SQ?", COs*", NO; ", NO,, CI,
N3, ClO), biothiols (Hcy, Cys, GSH) and various cationd,(B&, C&*, Mg®*, Al**,
CU”") were added into the PBS-DMF solution containing @M Mito-DNP
respectively. None of these species led to sigmitidluorescence response and only
H,S induced obvious fluorescent turn-on changes.réhelts showed that the probe
did not react with any one of these analytes. liitaah, the competitive experiments
were also performed and the results showed thatptbbe Mito-DNP has the
anti-interference ability for the detection of,$ (Figure S3). Therefore, it

demonstrated thaMito-DNP has a high selectivity for 4%, confirming that the
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dinitrophenyl ether can selectively react witsSHn the biological systems.

<Inserted Figure 3>

3.3 Proposed mechanism

The proposed sensing mechanisnivato-DNP for H,S was shown in Scheme 2.
The nucleophilic HS attacked directly on the dinitrophenyl etherMito-DNP and
thereby led to a rapid release of the fluoresé&iib-OH. The proposed mechanism
was further confirmed by analyzing mass spectrangés ofMito-DNP before and
after the addition of N&. Upon addition of N& to the chromatographic methanol
solution containingMito-DNP and then was subjected to HRMS analysis. Thetgesul
showed a peak at 448.2274, which could be asctibéue releasetito-OH ([M]”,
calcd m/z=448.2271) (Figure S4). It revealed thaiS Hriggered thiolysis of
dinitrophenyl ether oMito-DNP to releaseMito-OH indeed happened and proved

the mechanism we speculated.

<|nserted Scheme 2>

3.4 Cdlular H,SAnalysis

Encouraged by above excellent performance of pkdlie-DNP, the capability of
probeMito-DNP for imaging HS in biological systems was explored. Initiallye th
cytotoxicity of probeMito-DNP was determined by the MTT assay. The results
suggested that the probe has negligible toxicitidépG2 within 20uM (Figure S5).
The cellular distribution oMito-DNP was further measured whethkfito-DNP
could detect KIS in living cells and localize in mitochondria bynsmercial
mitochondria labeling agent Mito-Tracker Green.ufeg4 indicated thatlito-DNP
could easily penetrate cell membrane and aggregat@tochondria and calculated

the overlap coefficient is about 0.963.



206 To further investigate the potential capability Bfito-DNP for quantitative
207  detection of HS in HepG2 cells. First, incubation of the HepGRsc&ith Mito-DNP
208 showed weak fluorescence. However, the HepG2 waelis pretreated with N& (20,
209 50, 100 puM), then incubated withMito-DNP, the enhanced fluorescence was
210 observed (Figure 5a), indicating tHdito-DNP could image exogenous,8l in live
211 cells with outstanding performance. Figure 5b depichat the cells were hatched
212 with only Mito-DNP (10 uM) and showed weak fluorescence. When cells were
213  pre-incubated with PAG for 30 min, following biito-DNP (10 uM), the
214  fluorescence signal decreased. However, the HegB were treated with Cys (an
215 inductor of endogenous;B), a stronger fluorescence has been observedheronbre,
216  when the HepG2 cells were incubated with PAG and, Ghen treated with
217  Mito-DNP, the fluorescence was inhibited to some extent.exhibited that
218  Mito-DNP could mornitor HS fluctuations in living cells. All the above retsul

219 demonstrated thaflito-DNP could be used to track.H in cells.

220
221 <Inserted Figure 4>
222 <Inserted Figure 5>
223

224 3.5Living Animals H,Sanalysis

225 With the above-mentioned results, the capabilityMafo-DNP to image HS in
226 animals was also evaluated. For the experiment,saelected the four-week old
227  athymic nude mice for the research. The mice weévelet into four groups and
228 induced by intraperitoneal injection. For the cohtgroup, the mouse was
229 anesthetized by urethane, then injected with prisheo-DNP (Figure 6A). In a
230 second group, the mouse was pre-treated with Qysngected withMito-DNP in the
231 same place, the higher fluorescence intensity vetised compared with the control
232 group (Figure 6B). Similarly, after injection of §ythen the mouse were treated PAG
233 and Mito-DNP, the fluorescence intensity weakened significar(figure 6C).

234  However, the mice was injected with /$aandMito-DNP, the obvious fluorescence
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was also observed (Figure 6D). Experimental datarb} indicated thaMito-DNP

could detect exogenous and endogenoisikl mice.

<Inserted Figure 6>

4. Conclusion

In conclusion, we designed and developed a newfltiRescent prob#ito-DNP
on the basis of thiolysis of dinitrophenyl ethemN[P) for selective detection of,H
over various analytes and biothiols via turn-orofescence emission. Due to lower
detection limit (96 nM) and application in a widél pange, the prob&ito -DNP
could be specifically triggered by endogenousS Hh HepG2 cells. Moreover, the
probe is also suitable for tracking endogenous exdgenous of k6 in mice.
Therefore, prob&ito-DNP is helpful for detection of 6 in organisms and has the
application of a large space in the disease diagnos
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406  Figurecaptions

407 Scheme1l (a) (a) Design and (b) synthesis routé&/bfo-DNP.

408 Scheme 2 Proposed detection mechanism.

409 Figure 1 The UV-vis absorption and fluorescence spectraMafo-DNP in the
410 presence of b6 (10 equiv.) in PBS buffer with 50 % DMF, excitedh 680 nm.

411  Figure 2 (a) The UV-vis absorption and (b) fluorescence spécchanges of
412  Mito-DNP (10 uM) upon addition of HS (0-10 equiv.), excited at 680 nm.

413  Figure 3 (a) Fluorescence spectral of pradéo-DNP (10 uM) with various analytes
414  (200uM of each unless otherwise stated) in the DMF-PBfeb (10 mM, pH 7.4, v:
415 v =1:1), such as (1) none, (2),F3) SCN, (4) I', (5) Br, (6) NG;, (7) HSQ, (8)
416 NOJ, (9) SQ7, (10) CQ7, (11) CIO, (12) CI, (13) HO,, (14), Ny, (15) K', (16)
417 Batt, (17) C&', (18)Mdf*, (19)AF*, (20)Cyd*, (21) Hey, (22) Cys, (23) 1mM GSH,
418 (24) 10uM NagS. (b) The changes of corresponding fluorescerteasity at 741 nm,
419  excited at 680 nm.

420 Figure 4 Intracellular localization oMito-DNP in living cells. (A) HepG2 cells were
421  incubated with 1QuM of Mito Tracker Greenex = 488 nmaAem = 490-624 nm). (B)
422 HepG2 cells were incubated with 20M of NaS and following by 10uM of
423  Mito-DNP (hex = 633 nmAem= 638-747 nm). (C)The merged images. (D) The image
424  of bright-field. (E) The corresponding intensityofites. (F) colocalization coefficient
425  of MitoTracker green anilito-DNP. Scale bar: 1am.

426  Figure 5 (a) Images of exogenous,&lin living cells. (A-D) The HepG2 cells were
427  pretreated with N& (0, 20, 50, 10@QM), following by Mito-DNP (10 uM). (E) The
428 corresponding fluorescence intensity. (b) Imagesmdogenous 6 in live cells.
429 (A-D) The cells were respectively pretreated witthe, PAG (20QuM), Cys (100
430 uM), Cys (100uM) and PAG (20QuM), then incubated witiMito-DNP (10 uM). (E)
431  The corresponding fluorescence intensitgx(= 633 nmjem = 638-747 nm), Scale
432  bar: 10um.

433 Figure 6 Images of HS in BALB/c Nude Mice. (A) The mice incubated with
434  Mito-DNP (0.2mM, 10@L) for 30min, (B) The mice preincubated wikhito-DNP
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435 (0.2mM, 10QiL) for 30min after injection of Cys (2mM,1QQ) for 30min, (C) The
436  mice preincubated witMito-DNP (0.2mM, 10@L) for 30 min after injection of PAG
437  (2mM, 20QiL) and Cys (2mM,100L) for 30 min, (D) The image of the mice
438 incubated withMito-DNP (0.2mM, 10@L) for 30min after injection of N& (2 mM,
439  10QuL). excited at 680 nm.
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Highlights
1. A multifunctional and high efficient hydrogen sulfide NIR
fluorescent probewas developed.
2. Strong electrophilic group was selected to promote the
nucleophilic substitution reaction
3. The probe demonstrated excellent performance in the

detection hydrogen sulfide in vivo.
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Figure S1: Reaction time profile of the probéito-DNP and towards N&.
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Figure S1: Reaction time profile of the prob@ito-DNP (10 pM) and towards N&
(100uM) at 741 nm Qex = 680 NMAg, = 741 nm, slit: 5 nm/5 nm).

Figure S2: Choice of pH range for the measur ements.
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Figure S2: Effect of pH on the fluorescence intensityMito-DNP (10 uM) in DMF-
PBS buffer (10mM, pH7.4, v:v=1:1). Concentrationsoflium sulfide: (a) 0 uM, (b)
100 pM.



Figure S3Competing experiments.
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Figure S4: MTT assay
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Figure S4: MTT assay to determine the survival rate of differeoncentrations of

Mito-DNP (a-f: OuM. 2uM. 5uM. 10 pM, 15uM, 20uM) on HepG2 cells for 12

h.
Figure S5: HRM S spectra
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(hm)

medium

limit

time

410/541

PBS/CHCN
=4:1 (VIv)
solution

0.70uM

2h

550/690

PBS buffer
solution
(10mM PBS,
CTAB 4 mM,
pH 7.4).

0.28uM

3 min

NO
o 2

512/538

DMSO: PBS
(Viv, 7 : 3,
pH=7.4)
solution

64 nM

600 s

510/650

PBS buffer
solution (pH
7.4)

1.08 nM

60 s

410/575

BR buffer
solution
(H20;
pH=7.42, 40
mM)

11.2 nM

15 min

543/660

DMF/H,O
(3:7, viv, PBS
10 mM, pH =

7.4)

3.09uM

170 min

470/556

EtOH/H,O

medium (2

mL, pH ~ 7,
1:1, viv)

50 nM

60 s

488/565

PBS buffer
(20 mM, pH
7.4)

120 nM

20 min

448/522

buffer
PBS-DMSO
(9:1 vlv, pH
7.4)

2.55uM

55s




680/741 DMF-PBS 96 nM 4 min This
(10 mM, pH work
7.4,vv=11)

buffer
solution
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