Tetrahedron 71 (2015) 4035-4038

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Rh(I)-catalyzed decarbonylation synthesis of carbazoles via C–N cleavage

School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China

ARTICLE INFO

Article history: Received 14 March 2015 Received in revised form 16 April 2015 Accepted 19 April 2015 Available online 24 April 2015

Keywords: Rh(1)-catalyzed Carbazoles C–N cleavage Decarbonylation

ABSTRACT

A one-pot Rh(I)-catalyzed synthesis of 9-*H* carbazoles via C–N bond cleavage by activation of aldehyde C–H bonds is reported. This protocol offers good yields and tolerates a broad range of functional groups. Based on the extensive control experiments, we propose a plausible decarbonylation mechanism. © 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Carbazole and its derivatives are important organic structural motifs found in natural products and biologically active molecules.^{1,2} Representative synthetic protocols involving intramolecular C–N coupling are summarized in Scheme 1, including transition-metal-catalyzed C–N formation with halide-

 $R_{1} = RCO, Alkyl$ $R_{1} = RCO, Alkyl$ $R_{1} (R = Aryl or Alkyl)$ $R_{1} (R = Ary$

Scheme 1. Intramolecular C-H amination to form N-substituted carbazoles.

* Corresponding author. E-mail address: fengbainian@jiangnan.edu.cn (B. Feng). functionalized arenas,³ metal-catalyzed or organocatalytic intramolecular C–H amination to form carbazoles,^{4–6} rhodiumcatalyzed carbazole formation from biaryl azides,⁷ transitionmetal-free cyclization of 2-nitrobiaryls,⁸ thermal cyclization (550 °C),⁹ photostimulated cyclization¹⁰ and Rh(III) or Ir(III) catalyzed C–H amination of nonprotected 2-aminobiaryls.¹¹

Despite the numerous useful synthetic procedures to prepare these compounds, several limitations still need to be overcome to synthesize 9-H carbazoles directly in one-pot reaction,^{3–11} such as using pre-activated substrates (synthesized by many steps),^{3,7,8,10} high temperature (>250 °C),⁹ special B₂pin₂ additive¹¹ or additional hydrolysis.^{4–6} Herein, we aimed to trigger C–N bond cleavage by activation of aldehyde C–H bonds using Rh-catalysis via one-pot decarbonylation to synthesis 9-H carbazoles.

During the past decades, many successful Rh(I) or Rh(III) catalysis of decarbonylation from aldehydes were reported.^{12–15} The general mechanism always included the most important oxidative addition process to form Rh(III)-hydride intermediate along with decarbonylation¹⁶ (Scheme 2). Besides this, the proper ligand for the Rh-catalysts also plays the important roles.^{12c,16}

Scheme 2. The general decarbonylation mechanism.

http://dx.doi.org/10.1016/j.tet.2015.04.058 0040-4020/© 2015 Elsevier Ltd. All rights reserved.

Tetrahedror

2. Results and discussion

Encouraged by these, our initial studies were carried out with $Rh(PPh_3)_3Cl$ and *N*-formyl 2-aminobiaryls. Unfortunately, we got very poor yield of **2a** (<5%, Table 1, entry 1), even in harsh conditions (in DMSO, 180 °C). Subsequently screening the other catalysts, $[Rh(COD)OTf]_2$ showed the best catalytic activity to get 58% yield of **2a** (Table 1, entries 2–6). Addition of some bidentate ligands, such as dppe, dppf, Binap or Xantphos (Table 1, entries 7–10), the yield was further increased the yields to 75% (Table 1, entry 9). The scanning of different solvents such as DMSO, Diglyme, NMP, Mesitylene as well as different temperatures (Table 1, entries 11–13, SD-Table 1, entries 16–23), revealed that NMP at 190 °C was the best combination (Table 1, entry 12). As expectedly, we could not detect any **2a** without Rh-catalyst. An increased loading of the Rh-catalyst or increasing the time of transformation had no significant improvement on the yield (SD-Table 1, entries 25–29).

Table 1

Optimization of the reaction conditions

H H Solvent, T 1a 2a Via decarbonylation				
Entry ^a	Catalyst	Ligand	Solvent/T (°C)	Yield (%) ^b
1	Rh(PPh ₃) ₃ Cl	_	DMSO/180	<5
2	Rh(CO)(PPh3)2Cl	_	DMSO/180	<5
3	[Rh(COD)Cl]2	_	DMSO/180	18
4	[Rh(COD)BF ₄] ₂	_	DMSO/180	41
5	[Rh(COD)OTf]2	_	DMSO/180	58
6	Rh(COE)2Cl	_	DMSO/180	35
7	[Rh(COD)OTf]2	dppe	DMSO/180	30
8	[Rh(COD)OTf]2	dppf	DMSO/180	69
9	[Rh(COD)OTf]2	Xantphos	DMSO/180	75
10	[Rh(COD)OTf]2	Binap	DMSO/180	53
11	[Rh(COD)OTf]2	Xantphos	Diglyme/160	48
12	[Rh(COD)OTf]2	Xantphos	NMP/190	81
13	[Rh(COD)OTf]2	Xantphos	Mesitylene/160	27
14	—	Xantphos	NMP/190	0

 a Conditions: 1a (0.2 mmol), Rh(I)-catalyst (2 mol %), Ligand (3 mol %), in 4 mL solvent, reacting at proper temperature under Ar atmosphere for 24 h.

^b Isolated yield.

To determine the scope and limitations of the decarbonylation procedure several different *N*-formyl 2-aminobiaryls were subjected to the optimized conditions (Table 2). The 2-aminobiaryl derivatives with either an electron-donating or an electronwithdrawing group (e.g., Ph, OMe, Me, COCH₃, CN, F, CF₃) on the aryl rings gave rise to the corresponding N–H carbazole products (**2a**–**2p**, Table 2) in middle to good yields except the big steric substrate of **2n** (0). In general, a substrate that contained an electron-donating group in rings A (See Table 2 for labeling) led to a higher yield (**2b**, **2k** vs **2c**, **2d**, **2h**), but the yields were lower for products containing 3-substituted (See Table 2 for labeling) group in ring A (**2e**, **2f**). 3-Formyl substrates (**1i**) gave only 76% yield of **2a** under the standard conditions. Note that N-substituted biaryl derivatives (**2q**–**2t**) gave no products. However, when R₃ was ^tBu group (**1t**), **2a** was isolated unexpectedly.

To understand the role of each compound in the formation of the N–H carbazole products, control experiments were performed (Scheme 3, SD-3 in the Supplementary data). Firstly, 2-aminobiaryls **1u** (R=CH₃CO) and **1v** (R=H) reacting under standard conditions gave no **2a** (eq 1), which suggested that the CH₃CO or NH₂ groups were more difficult to occur oxidative addition process¹⁶ to form C–Rh species than CHO group. Secondly, using **1a-D** as starting material gave a mixture of **2a**' (D:H=7:3), which suggested forming N–Rh or N=Rh species after

Conditions: **1** (0.2 mmol), Rh-cat (2 mol %), Xantphos (3 mol %), stirring for 24 h in 4 mL NMP at 190 $^{\circ}$ C under Ar atmosphere.

Scheme 3. Control experiments.

decarbonylation^{12–15} (eq 2). Finally, **1a-D** or **1a** reacted with addition 5 equiv H₂O or D₂O under standard conditions affording the mixture of **3a** (D/H=5.5:4.5, D/H=3.5:6.5, respectively). This experiments were also in agreement with the forming N–Rh or N= Rh species.

With these results in hand, a possible mechanism was suggested in Scheme 4. The initial oxidative addition process occurred to form intermediate \mathbf{I} ,^{12–15} subsequently decarbonylation to form intermediates \mathbf{II} or \mathbf{III} ,¹⁶ finally C–H activation to leaving H₂ or Rh(I) species to give **2a**.¹⁶ However, Some of the results in Table 2, such as **2n** and **2t**, can not be explained by the proposed mechanism, which might due to the big steric hindrance making the intermediate \mathbf{II} or \mathbf{III} unstable.

Scheme 4. Proposed formation mechanism.

3. Conclusions

In summary, we have developed a one-pot Rh(I)-catalyzed synthesis of 9-H carbazoles via C–N bond cleavage by activation of aldehyde C–H bonds. This direct C–H amination is suitable for a broad range of substrates. The control experiments suggested a possible decarbonylation mechanism. Further studies concerning the detailed mechanism and the broader scope of substrates are currently underway in our laboratory.

4. Experiment

4.1. General

4.1.1. Procedure for synthesis of **2a**–**2t**. A mixture of **1** (0.2 mmol), $[Rh(COD)OTf]_2$ (2 mol %) and Xantphos (3 mol %) in NMP (4 mL) was stirred at 190 °C under Ar atmosphere for 24 h. After the reaction system was cooled to room temperature, saturated NH₄Cl solution (30 mL) and EtOAc (20 mL) were added. The combined organic phases were dried over Na₂SO₄ and then concentrated to give crude products. Further separation by column chromatography on silica gel (eluant with EtOAc and *n*-hexane) gave the corresponding products.

4.2. Characterization data

4.2.1. **2a**: 9*H*-Carbazole.^{6c} (81%) mp 243–245 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, *J*=7.8 Hz, 2H), 8.05 (br s, 1H, NH), 7.45–7.40 (m, 4H), 7.27–7.24 (m, 2H); HRMS (EI) *m*/*z* calcd for C₁₂H₉N [*M*]⁺: 167.0735, found: 167.0736.

4.2.2. **2b**: 2-Methyl-9H-carbazole.^{7d} (85%) mp 174–175 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.06 (d, J=8.0 Hz, 1H), 7.95 (d, J=8.0 Hz, 1H), 7.86 (br s, 1H), 7.39–7.38 (m, 2H), 7.26–7.20 (m, 2H), 7.07 (d,

J=7.6 Hz, 1H), 2.55 (s, 3H); HRMS (EI) *m*/*z* calcd for C₁₃H₁₁N [M]⁺: 181.0891, found: 181.0890.

4.2.3. **2c**: 2-Chloro-9H-carbazole.^{7d} (79%) mp 236–240 °C; ¹H NMR (500 MHz, DMSO- d_6): 11.45 (s, 1H), 8.10 (d, *J*=8.4 Hz, 2H), 7.56 (d, *J*=2.0 Hz, 1H), 7.51 (td, *J*=8.1, 0.7 Hz, 1H), 7.42 (m, 1H), 7.18 (m, 1H), 7.17 (dd, *J*=8.4, 2.0 Hz, 1H); HRMS (EI) *m*/*z* calcd for C₁₂H₈ClN [*M*]⁺: 201.0345, found: 201.0344.

4.2.4. **2d**: 2-Nitro-9H-carbazole.^{7d} (74%) mp 174–175 °C; ¹H NMR (500 MHz,DMSO- d_6): δ 8.38–8.35 (m, 2H), 8.28–8.26 (m, 1H), 8.05–8.03 (m, 1H), 7.64–7.62 (m, 1H), 7.55–7.53 (m, 1H), 7.30–7.27 (m, 1H); HRMS (EI) *m*/*z* calcd for C₁₂H₈N₂O₂ [*M*]⁺: 212.0586, found: 212.0583.

4.2.5. **2e**: 4-Methyl-9H-carbazole.^{7d} (55%) mp 120–122 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.23 (d, *J*=8.0 Hz, 1H), 8.02 (br s, 1H), 7.45–7.43 (m, 2H), 7.36–7.33 (m, 1H), 7.29–7.25 (m, 2H), 7.04 (dd, *J*=7.0 Hz, 0.5 Hz, 1H), 2.94 (s, 3H); HRMS (EI) *m*/*z* calcd for C₁₃H₁₁N [*M*]⁺: 181.0891, found: 181.0890.

4.2.6. **2f**: 4-Chloro-9H-carbazole.^{7d} (62%) mp 88–92 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.66 (d, *J*=8.0 Hz, 1H), 7.92 (br s, 1H), 7.50 (dd, *J*=7.6 Hz, 1.0 Hz, 1H), 7.38–7.33 (m, 3H), 7.25–7.22 (m, 2H); HRMS (EI) *m*/*z* calcd for C₁₂H₈ClN [*M*]⁺: 201.0345, found: 201.0346.

4.2.7. **2g**: 3-*Fluoro-9H-carbazole*.^{7d} (84%) mp 208–209 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.03 (d, *J*=7.6 Hz, 2H), 7.72 (dd, *J*=9.0 Hz, 2.5 Hz, 1H), 7.47–7.42 (m, 2H), 7.35 (dd, *J*=9.0 Hz, 4.0 Hz, 1H), 7.27–7.20 (m, 1H), 7.17 (dt, *J*=9.0 Hz, 2.6 Hz, 1H); HRMS (EI) *m/z* calcd for C₁₂H₈NF [*M*]⁺: 185.0641, found: 185.0640.

4.2.8. **2h**: 3-Trifluoromethyl-9H-carbazole.^{7d} (77%) mp 158–162 °C; ¹H NMR (500 MHz,DMSO- d_6): 10.65 (s, 1H), 8.03 (s, 1H), 7.81 (d, *J*=9.4 Hz, 1H), 7.32 (d, *J*=9.4 Hz, 1H), 7.27–7.18 (m, 2H), 7.14 (t, *J*=9.4 Hz, 1H), 6.85 (t, *J*=9.4 Hz, 1H); HRMS (EI) *m*/*z* calcd for C₁₃H₈NF₃ [*M*]⁺: 235.0609, found: 235.0610.

4.2.9. **2j**: 3-Phenyl-9H-carbazole.^{17a} (83%) mp; ¹H NMR (CDCl₃): 8.33 (t, J=6.8 Hz, 1H), 8.17 (m, 1H), 8.10 (br s, 1H, NH), 7.75–7.71 (m, 2H), 7.70 (m, 1H), 7.55–7.46 (m, 5H), 7.38 (m, 1H), 7.28 (m, 1H); HRMS (EI⁺) m/z calcd for C₁₈H₁₃N [M]⁺: 243.1048, found: 243.1045.

4.2.10. **2k**: 3-Methoyl-9H-carbazole.^{7d} (87%) mp; ¹H NMR (CDCl₃): 8.06 (d, J=7.0 Hz, 1H), 8.04 (br s, 1H, NH), 7.58 (d, J=7.2 Hz, 1H), 7.42–7.41 (m, 2H), 7.35 (d, J=9.8 Hz, 1H), 7.22 (m, 1H), 7.07 (dd, J_1 =7.2 Hz, J_2 =3.0 Hz, 1H), 3.99 (s, 3H, OMe); HRMS (EI⁺) m/z calcd for C₁₃H₁₁NO [M]⁺: 197.0841, found: 197.0840.

4.2.11. **2I**: 1,3-Dichloro-9H-carbazole.^{17b} (49%) mp; ¹H NMR (d⁶-acetone): 10.67 (br, 1H, NH), 8.19–8.14 (m, 2H), 7.60 (m, 1H), 7.53–7.47 (m, 2H), 7.25 (td, J_1 =7.4 Hz, J_2 =1.5 Hz, 1H); HRMS (EI⁺) m/z calcd for C₁₂H₇Cl₂N [M]⁺: 234.9956, found: 234.9958.

4.2.12. **20**: Methyl 9H-carbazole-2-carboxylate.^{7d} (65%) mp 180–182 °C; ¹H NMR (500 MHz,DMSO- d_6): δ 11.56 (s, 1H), 8.23 (d, *J*=8.2 Hz, 1H), 8.19 (d, *J*=7.8 Hz, 1H), 8.14 (d, *J*=2.8 Hz, 1H), 7.79 (dd, *J*=8.2, 1.4 Hz, 1H), 7.58 (d, *J*=8.2 Hz, 1H), 7.45 (m, 1H), 7.20 (m, 1H), 3.90 (s, 3H); HRMS (EI⁺) *m/z* calcd for C₁₄H₁₁NO₂ [*M*]⁺: 225.0790, found: 225.0791.

4.2.13. **2p**: 2-Cyano-9H-carbazole. (62%) mp 248–249 °C; ¹H NMR (500 MHz,DMSO- d_6): δ 10.68 (s, 1H), 8.39–8.37 (m, 2H), 8.30–8.25 (m, 1H), 8.08–8.05 (m, 1H), 7.64–7.62 (m, 1H), 7.58–7.57 (m, 1H), 7.30–7.28 (m, 1H); ¹³C NMR (125 MHz,DMSO- d_6): 167.5, 146.2, 142.5, 138.8, 128.7, 126.2, 124.3, 121.8, 120.4, 119.1, 114.2, 110.8,

106.9; HRMS (EI⁺) m/z calcd for C₁₃H₈N₂ [M]⁺: 192.2160, found 192.2163.

Acknowledgements

This work was supported financially by grants from the National Natural Science Foundation of China (grants 21302066) and Young Program, SCF of Jiangsu Province (BK20130129).

Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2015.04.058. These data include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

- 1. (a) Neumann, J. J.; Rakshit, S.; Glorius, F. Angew. Chem. 2009, 121, 7024; (b) Liu, J. J.; Horst, R.; Katritch, V.; Stevens, R. C.; Wüthrich, K. Science 2012, 335, 1106; (c) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H.; Yao, X.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266; (d) Takeuchi, T.; Oishi, S.; Watanabe, T.; Ohno, H.; Sawada, J.-I.; Matsuno, K.; Asai, A.; Asada, N.; Kitaura, K.; Fujii, N. J. Med. Chem. 2011, 54, 4839; (e) Oishi, S.; Watanabe, T.; Sawada, J.-i.; Asai, A.; Ohno, H.; Fujii, N. J. Med. Chem. 2010, 53, 5054; (f) Cheng, J.; Kamiya, K.; Kodama, I. Cardiovasc. Drug Rev. 2001, 19, 152; (g) Sánchez, C.; Mèndez, C.; Salas, J. Nat. Prod. Rep. 2006, 23, 1007; (h) Vairavelu, L.; Zeller, M.; Prasad, K. J. R. Bioorg. Chem. 2014, 54, 12.
- 2. (a) Hudson, Z. M.; Lu, Z.-H.; Wang, S. Adv. Mater. 2012, 24, 2922; (b) Kim, D.; Coropceanu, V.; Brédas, J.-L. J. Am. Chem. Soc. 2011, 133, 17895; (c) Finke, A. D.; Gross, D. E.; Han, A.; Moore, J. S. J. Am. Chem. Soc. 2011, 133, 14063; (d) Lemasson, F. A.; Wenzel, W.; Kappes, M. M.; Mayor, M. J. Am. Chem. Soc. 2011, 133, 652; (e) Al-brecht, K.; Yamamoto, K. J. Am. Chem. Soc. 2009, 131, 2244; (f) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, D.; Blair, B.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732; (g) Zhao, J.; Jin, T.; Islam, A.; Kwon, E.; Akhtaruzzaman, Md.; Asao, N.; Han, L.; Alamry, K. A.; Kosa, S. A.; Asiri, A. M.; Yamamoto, Y. Tetrahedron 2014, 70, 6211; (h) Han, L.; Zu, X.; Cui, Y.; Wu, H.; Ye, Q.; Gao, J. Org. Electron. 2014, 15, 1536.
- 3. (a) Metal-Catalyzed Cross-Coupling Reactions; Dieterich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998; (b) Leblanc, M.; Fagnou, K. Org. Lett. 2005, 7, 2849; (c) Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 518; (d) Parisien, M.; Valette, D.; Fagnou, K. J. Org. Chem. 2005, 70, 7578; (e) Noji, T.; Fujiwarw, H.; Okano, K.; Tokuyama, H. Org. Lett. 2013, 15, 1946.
- 4. (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338; (b) García-Fortanet, J.; Kessler, F.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 6676; (c)

Tsang, W. C. P.; Munday, R. H.; Gordon, B.; Zheng, N.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7603; (d) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560.

- 5. (a) Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 16184; (b) Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 2892.
- (a) Neumann, J. J.; Rakshit, S.; Glorius, F. Angew. Chem., Int. Ed. 2009, 48, 6892; 6 (b) Li, B.-J.; Tian, S.-L.; Zhao, F.; Shi, Z.-J. Angew. Chem., Int. Ed. **2008**, 47, 1115, (c) Youn, S. W.; Bihn, I. H.; Kim, B. S. Org. Lett. 2011, 13, 3738; (d) Bautista, R.; Bernal, P.; Montiel, L. E.; Delgado, F.; Tamariz, J. Synthesis 2011, 929; (e) Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem. Soc. 2011, 133, 5996; (f) Chu, J.-H.; Lin, P.-S.; Wu, M.-I. Chem.—Eur. J. 2011, 17, 13613; (g) Kajiyama, D.; Inoue, K.; Ishikawa, Y.; Nishiyama, S. Tetrahedron 2010, 66, 9779; (h) Samanta, R.; Kulikov, K.; Strohmann, C.; Antonchick, A. P. Synthesis **2012**, 2325.
- C. (a) Stokes, B. J.; Richert, K. J.; Driver, T. G. J. Org. Chem. 2009, 74, 6442; (b) Stokes,
 B. J.; Dong, H.; Richert, K. J.; Riell, R. D.; Driver, T. G. J. Org. Chem. 2009, 74, 3225; (c) Shou, W. G.; Li, J.; Guo, T.; Lin, Z.; Jia, G. *Organometallics* **2009**, *28*, 6847; (d) Sun, K.; Sachwani, R.; Richert, K. J.; Driver, T. G. *Org. Lett.* **2009**, *11*, 3598.
- 8. Gao, H.; Xu, Q.-L.; Yousufuddin, M.; Ess, D. H.; Kurti, L. Angew. Chem., Int. Ed. 2014, 53, 2701.

- Horaguchi, T.; Oyanagi, T. J. *Heterocycl. Chem.* 2004, *41*, 1.
 Guerra, W. D.; Rossi, R. A.; Pierini, A. B.; Barolo, S. M. *J. Org. Chem.* 2015, *80*, 928.
 (a) Jiang, Q.; Duan-Mu, D.; Zhong, W.; Chen, H.; Yan, H. *Chem.—Eur. J.* 2013, *19*, 1903; (b) Suzuki, C.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. **2015**, http://dx.doi. org/10.1021/acs.orglett.5b00502
- (a) Ohno, K.; Tsuji, J. J. Am. Chem. Soc. 1968, 90, 99; (b) Doughty, D. H.; Pignolet, L. H. J. Am. Chem. Soc. 1978, 100, 7083; (c) Kreis, M.; Palmelund, A.; Bunch, L; Madsen, R. Adv. Synth. Catal. 2006, 348, 2148.
- 13. (a) Weatherhead, G. S.; Cortez, G. A.; Schrock, R. R.; Hoveyda, A. H. Proc. Natl. (a) Weathernead, et al., Corres, 5: (b) Shibata, T.; Toshida, N.; Takagi, K. J. Org. Chem. 2002, 67, 7446; (c) Boeckman, R. K., Jr.; Zhang, J.; Reeder, M. R. Org. Lett. 2002, 4, 3891; (d) Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806; (e) Meyer, M. D.; Kruse, L. I. J. Org. Chem. 1984, 49. 3195.
- 14. (a) Hansson, T.; Wickberg, B. J. Org. Chem. 1992, 57, 5370; (b) McCague, R.; Moody, C. J.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 1984, 165; (c) Beck, C. M.; Rathmill, S. E.; Park, Y. J.; Chen, J.; Crabtree, R. H.; Liable-Sands, L. M.; Rheingold, A. L. Organometallics 1999, 18, 5311.
- 15. (a) Kato, T.; Hoshikawa, M.; Yaguchi, Y.; Izumi, K.; Uotsu, Y.; Sakai, K. Tetrahedron 2002, 58, 9213; (b) Zeng, C.-M.; Han, M.; Covey, D. F. J. Org. Chem. 2000, 65, 2264; (c) Ikeda, M.; Kugo, Y.; Kondo, Y.; Yamazaki, T.; Sato, T. J. Chem. Soc., Perkin Trans. 1 1997, 3339; (d) Ziegler, F. E.; Belema, M. J. Org. Chem. 1997, 62, 1083; (e) Tanaka, M.; Ohshima, T.; Mitsuhashi, H.; Maruno, M.; Wakamatsu, T. Tetrahedron 1995, 51, 11693; (f) Hakimelahi, G. H.; Tsay, S.-C.; Hwu, J. R. Helv. Chim. Acta **1995**, 78, 411.
- (a) Garralda, M. A. Dalton Trans. 2009, 3635; (b) Willis, M. C. Chem. Rev. 2010, 16. 110, 725; (c) Tsuji, J.; Ohno, K. Tetrahedron Lett. 1965, 6, 3969; (d) Murphy, S. K.; Park, J.-W.; Cruz, F. A.; Dong, V. M. Science 2015, 347, 56.
- 17. (a) Budén, M. E.; Vaillard, V. A.; Martin, S. E.; Rossi, R. A. J. Org. Chem. 2009, 74, 4490; (b) Larock, R. C.; Liu, Z.-J. Org. Lett. 2004, 6, 3739.