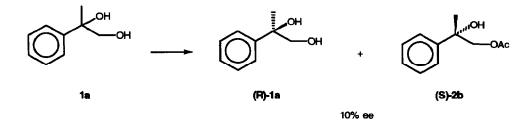
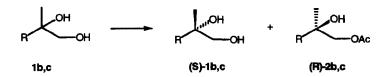

0957-4166(94)00273-8

Enantioselective Pseudomonas fluorescens (P. cepacia) Lipase-Catalyzed Irreversible Transesterification of 2-Methyl-1,2-Diols in an Organic Solvent

PATRIZIA FERRABOSCHI, SILVANA CASATI, PARIDE GRISENTI, ENZO SANTANIELLO Dipartimento di Chimica e Biochimica Medica, Università degli Studi di Milano Via Saldini, 50 - 20133 Milano, Italy


Abstract: The *Pseudomonas fluorescens* (*P. cepacia*) lipase-catalyzed irreversible transesterification of 2-phenyl-1,2-propanediol 1a is not enantioselective, whereas the diols 1b and 1c are enzymatically resolved with the same procedure to (S)-1b and 1c (>98 and 92% e.e.) and the (R)-acetates 2b and 2c (92% e.e.).

1,2-Diols can be found in many pharmaceuticals and synthetic intermediates¹ and several chemical and enzymatic approaches have been used to achieve the preparation of such compounds in enantiomerically pure forms.² A special class of these compounds is constituted by 2-methyl-1,2-diols 1 that contain a primary and a tertiary alcohol group and that could be interesting chiral synthons if prepared optically pure.³ Among the vast array of biocatalytic methods for the preparation of enantiomerically pure compounds,⁴ the lipasecatalyzed transesterification in organic solvents⁵ has been frequently used to resolve racemic alcohols.⁶ However, this method does not seem to apply satisfactorily to the resolution of 1,2-diols,^{7,8} including a few 2-methyl-1,2-diols.⁹ In contrast, a few α, α -disubstituted 1,2-diols were examined as substrates for a lipasecatalyzed resolution, that proceeded with high enantioselectivity.¹⁰ We describe here the results of our study on the resolution of the diols **1a-c** under conditions of the irreversible transesterification with vinyl acetate in an organic solvent in the presence of *Pseudomonas fluorescens (P. cepacia)* lipase.⁵ We investigated these diols, since we have collected many results on the resolution of several 2-substituted alkanols,¹¹ including some 2-substituted oxiranemethanols.¹² We were interested in the structural features of the diols **1a-c** which would permit the stereogenic center to be accepted by the enzyme so that an enantio- and regioselective enzymatic acylation could be achieved.



P. FERRABOSCHI et al.

It has already been reported that the enzymatic resolution of 2-phenyl-1,2-propanediol 1a using other conditions is not enantioselective^{9a} and we repeated the enzymatic reaction with PFL and vinyl acetate in chloroform. The PFL-catalyzed transesterification of the diol $1a^{13}$ was very slow, since 31 and 69 hours were required to reach 40 and 60% conversion, respectively, to the acetate 2a.¹⁴ The low optical rotation for both (-)-1a and 2a ([α]_D -0.7 in both cases)¹⁵ suggested that a low e.e. was obtained for this resolution. This was confirmed by the 500 MHz ¹H-NMR spectra of the MTPA esters¹⁶ of (-)-1a and of the alcohol 1a obtained by hydrolysis of the (-)-acetate 2a that showed a 10% e.e. in both cases.¹⁷

Since it could not be excluded that the racemization of the optically active diol 1a had occurred in the reaction medium, ¹⁸ we subjected to the PFL-catalyzed transesterification the (R)-(-)-diol 1a (92% e.e.)^{19,20} and its optical rotation remained unchanged. This experiment ruled out the possibility of a chemical racemization and confirmed that the diol 1a is not a suitable substrate for the PFL-catalyzed resolution. On the contrary, the enzymatic resolution of the racemic diols 1b and 1c proceeded with high enantioselectivity and in both cases the (S)-diols 1b and 1c ²¹ and the (R)-acetates 2b and 2c were obtained with e.e. between 92 and >98%, the only difference being in the reaction times.^{22,23}

Thus, the PFL-catalyzed transesterification also proceeds efficiently on a 2-methyl-1,2-diol as substrate, provided that some structural requirements are taken in consideration. In fact, the negative results of the diol **1a** confirms previous observations²⁰ that in the class of 2-substituted alkanols the phenyl ring directly bound to the stereogenic center exerts a sort of unfavourable electronic effect that influences the steric orientation of the groups at the active site of the enzyme.²⁴ As a result, the reaction proceeds with a very low enantioselectivity in a completely different fashion with respect to substrates as the diols **1b** and **1c** that are better recognized by the active site of the enzyme.

Acknowledgements: This work was financially supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) and Consiglio Nazionale delle Ricerche (CNR, Programmi Finalizzati Chimica Fine). The technical assistance of Dr. Simonetta De Grandi and Miss Shahrzad Rezaelahi is also gratefully acknowledged.

References and Notes

- (a) Parida, S.; Dordick, J. S. J. Am. Chem. Soc. 1991, 113, 2253 and references cited therein. (b) Nelson,
 W. L.; Wennerstrom, J. E.; Sankar, S. R. J. Org. Chem. 1977, 42, 1006. (c) Bianchi, D.; Bosetti, A.;
 Cesti, P.; Golini, P. Tetrahedron Lett. 1992, 33, 3231.
- 2. An overview of the most significant chemical and enzymatic approaches of interest to this topic is reported in a recently published detailed study; see: Theil, F.; Weidner, J.; Ballschuh, S.; Kunath, A.; Schick, H. J. Org. Chem. 1994, 59, 388.
- 3. For a chemical approach, see: Fujisawa, T.; Watai, T.; Sugiyama, T.; Ukaji, Y. Chem. Lett. 1989, 2045.
- 4. Santaniello, E.; Ferraboschi, P.; Grisenti, P.; Manzocchi, A. Chem. Rev. 1992, 92, 1071.
- (a) Degueil-Castaing, M.; De Jeso, B.; Drouillard, S.; Maillard, B. Tetrahedron Lett. 1987, 28, 953. (b) Wang, Y. F.; Lalonde, J. J.; Momongan, M.; Bergbreiter, D. E.; Wong, C. H. J. Am. Chem. Soc. 1988, 110, 7200.
- 6. Santaniello, E.; Ferraboschi, P.; Grisenti, P. Enzyme Microb. Technol. 1993, 15, 367.
- 7. The enantioselectivity of the monoacylation step is apparently low and a sequential resolution of the diols is necessary to achieve high e.e. of the products (ref. 2).
- 8. Using the irreversible transesterification procedure on 2-phenyl 1,2-ethanediol and 3-phenyl-1,2propanediol only 30% e.e. could be achieved and protection of the above diols as 2-methyl ethers did not enhance the enantioselectivity of the resolution beyond 62%.
- (a) Janssen, A. J. M.; Klunder, A. J. H.; Zwanenburg, B. Tetrahedron 1991, 47, 7409. (b) Wirz, B.; Barner, R.; Hübscher, J. J. Org. Chem. 1993, 58, 3980. The lack of enantioselectivity coul be related to the peculiar structures of the substrates, since the compound reported in Ref. 9b is a prochiral triol (1, R=CH₂OH), whereas in the diol 1a a phenyl ring is directly bound to the stereogenic center.
- 10. Hof, R. P.; Kellogg, R. M. Tetrahedron: Asymmetry 1994, 5, 565.
- Santaniello, E.; Ferraboschi, P.; Grisenti, P.; Manzocchi, A. in *Biocatalysis in Non-conventional Media* Tramper, J.; Vermüe, M. H.; Beeftink, H. H.; von Stockar, U. Eds. Elsevier (Amsterdam) 1992, p. 533.
- 12. Ferraboschi, P.; Brembilla, D.; Grisenti, P.; Santaniello, E. J. Org. Chem. 1991, 56, 5478.
- 13. The diol 1a was prepared by lithium aluminum hydride reduction of the corresponding epoxy alcohol, in turn obtained by epoxidation of 2-phenyl-2-propen-1-ol that could be prepared directly from benzoyl chloride only on millimolar scale. (Barluenga, J.; Concellon, J. M.; Fernandez-Simon, J. L.; Yus, M. J. Chem. Soc., Chem. Commun. 1988, 536). For larger scale, the required methylene alcohol was obtained (47% yield) starting from phenacyl alcohol protected as *t*-butyldimethylsilyl ether by reaction under a classic Wittig reaction and selective removal of the silyl moiety.
- 14. According to our experience, the highest e.e. for the unreacted alcohol was reached at 60% conversion to the acetate, whereas very high e.e. were obtained for acetate if the acetylation was stopped at 40%. Therefore, two separate runs were always necessary for the highest e.e. of the products.

- 15. For the enantiomerically pure (S)-(+)-1a the reported optical rotation is +8.99 (c 5.8 in diethyl ether); see: Eliel, E. L.; Freeman, J. P. J. Am. Chem. Soc. 1952, 74, 923.
- 16. Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.
- 17. Although the e.e. values were low, the optical rotation of (-)-1a indicated the R configuration for the compound and the alcohol obtained by hydrolysis of the (-)- acetate 2a showed by the 500 MHz ¹H-NMR analysis of the MTPA ester to be the enantiomer of (-)-1a. Note that the stereochemical outcome of the enzymatic resolution of the racemic 1a is the opposite to that of the diols 1b and 1c.
- 18. We thank Professor H. Griengl (Graz University of Techonology, Austria) for this suggestion.
- 19. (R)-(-)-1a with $[\alpha]_D$ -8.3 (c 5.8 in diethyl ether) was prepared by lithium aluminum hydride reduction of (S)-(+)-2-phenyl oxiranemethanol acetate, $[\alpha]_D$ +42 (c 1.6 in chloroform) corresponding to 92% e.e., in turn obtained by the PFL-catalyzed resolution of the racemic epoxyalcohol. By the enzymatic transesterification of (R)-(-)-1a, the unreacted diol was isolated in 40% yield after 69 h and showed $[\alpha]_D$ -8 (c 5.8 in diethyl ether).
- 20. Results presented at the European Congress on Biocatalysis, Graz, Austria (September 1993). See also: Ferraboschi, P.; Casati, S.; De Grandi, S.; Grisenti, P.; Santaniello, E. *Biocatalysis* 1994, 10, 279.
- 21. The required diols 1b,c were prepared by reduction with lithium aluminum hydride of the corresponding epoxyalcohols, in turn prepared essentially as described in Ref. 12. For the PFL-catalyzed resolution, to a solution of the diol (5 mmol) in dichloromethane (10 mL) vinyl acetate (1.9 mL, 20 mmol) and PFL (70 mg, 31.6 U/mg) were added and the mixture was kept under stirring at 30 °C for a time depending on the required conversion. At 60% conversion to the corresponding acetates, (S)-(-)-1b was obtained in 66 h (38% yield, >98% e.e.) and (S)-(-)-1c was isolated in 36% yield (15 h, 92% e.e.). For the assignment of the configuration, the optical rotation of (-)-1b was compared with the one reported in Ref. 12 and the diol (-)-1c was transformed into (R)-(+)-mevalonolactone (to be published).
- 22. At 40% acetylation, (R)-(+)-2b and (R)-(+)-2c were obtained in 8 and 4 h (40% yield, and 92% e.e. for both esters). The configuration was established through the optical rotations of the diols obtained by hydrolysis of the acetates.
- 23. The E values for 1b and 1c are 20 and 13, respectively, and are similar to those reported for three out of the five compounds described in ref. 10.
- The stereochemical consequence of the stereoelectronic factors due to the presence of heteroatoms or phenyl groups at a stereogenic center have been already pointed out by several authors; see: (a) Foelsche, E.; Hickel, A.; Hönig, H.; Seufer-Wasserthal, P. J. Org. Chem. 1990, 55, 1749. (b) Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.; Cuccia, L. A. J. Org. Chem. 1991, 56, 2656. (c) Xie, Z. -F.; Suemune, H.; Sakai, K. Tetrahedron: Asymmetry, 1993, 4, 973. (d) Carrea, G.; De Amici, M.; De Micheli, C.; Liverani, P.; Carnielli, M.; Riva, S. Tetrahedron: Asymmetry, 1993, 4, 1063.

(Received in UK 9 September 1994)