Unsymmetric dihydropyridines bearing 2-pyridyl methyl carboxylate as modulators of P-glycoprotein; synthesis and biological evaluation in resistant and non-resistant cancer cells

Maryam Nejati^{a,b}, Hossein Sadeghpour^b, Sara Ranjbar^c, Katayoun Javidnia^a, Najmeh Edraki^a, Luciano Saso^d, Omidreza Firuzi^{a*}and Ramin Miri^{a*}

^aMedicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences,

Shiraz, Iran

^bDepartment of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences,

Shiraz, Iran

^cPharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

^dDepartment of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome,

Rome, Italy

Ramin Miri, PhD, Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran, Tel: +98-71-3230-3872, Fax: +98-71-3233-2225, E-mail: <u>mirir@sums.ac.ir</u>

Omidreza Firuzi, MD PhD, Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran, Tel: +98-71-3230-3872, Fax: +98-71-3233-2225, E-mail: <u>firuzio@sums.ac.ir</u>

Abstract

Multidrug resistance (MDR) in cancer cells is often associated with overexpression of Pglycoprotein (P-gp or ABCB1 or MDR1), therefore, modulators of this transporter might be helpful in overcoming MDR. In this study, 16 novel unsymmetrical dihydropyridine (DHP) derivatives bearing 2-pyridyl methyl carboxylate at C₃ and nitroimidazole or nitrophenyl ring at C₄ positions of the DHP ring were synthesized. Their cytotoxicity was tested against 4 human cancer cells by MTT assay. MDR reversal capacity was examined in P-gp overexpressing cells (MES-SA/DX5) by measuring alteration of doxorubicin's IC50 and performing flow cytometric determination of intracellular rhodamine 123 accumulation. Calcium channel blocking (CCB) activity, as a side effect of DHPs, was tested on guinea pig ileum. Molecular docking was performed to explain the binding mode of compounds. Two derivatives, 4a and 4c, containing 4-nitrophenyl at C₄ while possessing methyl (4a) and isopropyl carboxylates (4c) at C₅ position of DHP core demonstrated superior cytotoxic and MDR reversal activities and lower CCB effect. Docking analysis confirmed the importance of 4-nitrophenyl ring for P-gp inhibitory activity. Some of the synthesized DHP derivatives with considerable MDR reversal capacity, could be promising compounds for further discovery of useful agents for management of drug resistant cancer.

Keywords: Cancer, ABC transporters, Antineoplastic Agents, Molecular docking, Structureactivity relationship

1. Introduction

Cancer is the main cause of death in the world and the annual number of new cancer cases is estimated to rise from 14 million in 2012 to 22 million within the next 2 decades ¹. Multidrug resistance (MDR) in cancer, defined as the resistance of cancer cells to several different chemotherapeutic agents, is an important cause of treatment failure ^{2,3}. MDR appears to have diverse and complex mechanisms. One of the most accepted classifications is the division to classical or ATP-binding cassette (ABC) transporters-mediated MDR and atypical MDR that involves transporter–independent mechanisms ⁴.

ABC efflux transporter proteins pump the anticancer agent out of the cancer cell and do not allow its intracellular accumulation ^{2,5-8}. One of these efflux pumps, P-glycoprotein (P-gp, ABCB1 or MDR1), belongs to the family of ATP-binding cassette (ABC) transporters and constitutes a major cause of MDR ^{9,10}. This membrane protein is responsible for the efflux of several compounds across the plasma membrane, including anticancer agents ¹¹. There has been much effort focused towards the development of efficient MDR reversal agents in order to restore the sensitivity of cancer cells to chemotherapeutic agents ⁶.

1,4-Dihydropyridine (1,4-DHP) derivatives have several pharmacological activities and a number of them are being used for management of cardiovascular diseases due to their calcium channel blocking (CCB) capacity ¹². Aside from their CCB effect, these compounds have been also studied for their MDR reversal activity ¹³⁻¹⁶ and their interactions with P-gp have been assessed in previous reports ¹⁷⁻²⁰. These compounds have also shown cytotoxic effects against different cancer cells ^{18,21,22} and therefore, represent high potential for discovery of anticancer and MDR reversal agents. Since the CCB capacity of DHPs may cause undesired cardiovascular effects, investigators have attempted to synthesize DHPs with better cytotoxic and MDR reversal profile, while possessing low CCB effect ^{23,24}.

According to a previous study, DHPs with pyridine ring at C_3 and C_5 positions had better MDR reversal activities ¹⁵. The previous studies of our group have also shown that symmetric and fused DHPs containing pyridyl alkyl carboxylate moieties are potent Pglycoprotein modulators ²⁵⁻²⁷.

In continuation of our ongoing efforts on the structure-activity relationship (SAR) of DHPs as cytotoxic and MDR reversal agents, in the present study, novel unsymmetric DHP derivatives with 2-pyridyl methyl carboxylate at C_3 while containing nitrophenyl or nitroimidazole moieties at C_4 and different alkyl carboxylates at C_5 were synthesized and their CCB, cytotoxic and MDR reversal activities were examined. Finally, in order to get perception about the binding mode of the derivatives in the active site of P-gp, molecular docking analysis was carried out.

2. Experimental section

2.1. General

Nifedipine, rhodamine 123, MTT (thiazolyl blue tetrazolium bromide) and 2,2,6-trimethyl-4H-1,3-dioxin-4-one were purchased from Sigma-Aldrich. Alkyl acetoacetates (methyl, ethyl, *iso*-propyl and *tert*-butyl acetoacetate), dimethyl sulfoxide and 2-pyridyl methyl alcohol were obtained from Merck, Darmstadt, Germany. Penicillin-G/streptomycin and RPMI 1640 were from Biosera, Ringmer, UK. FBS and doxorubicin were from Invitrogen, San Diego, CA and Ebewe Pharma, Unterach, Austria, respectively. Melting points were determined by using an electrothermal 9100 digital melting point apparatus and were uncorrected (Electrothermal, Essex, UK). The reaction progress and purity of the synthesized compounds were checked on Merck aluminum plates precoated with silica gel 60 F-254Silica gel column chromatography was performed with Silica gel 60G. ¹H NMR spectra were recorded on a Bruker 500 spectrometer with TMS (tetramethylsilane) as an internal standard. IR spectra were measured in KBr with a Perkin-Elmer FT-IR in the range of 600–4000 cm⁻¹. Mass spectra were recorded on an Agilent GC-MS.

2. 2. Synthesis

2.2.1. Synthesis of 2-pyridyl methyl-3-oxobutanoate (III)

2-pyridyl methyl alcohol I (16. 67mmol, 1.82 g) was added to the stirred solution of 2,2,6trimethyl-4H-1,3-dioxin-4-one II (16. 67mmol, 2.37 g) in xylene. The resulting mixture was refluxed for 1 hr. After TLC (chloroform: methanol, 9:1) showed complete conversion the solvent was removed under the reduced pressure. The final product III was purified using column chromatography (petroleum ether:ethylacetate, 4:1).

IR (KCl) 3020 (C-H aromatic), 1747 (CO-ester), 1720 (CO-ketone) cm⁻¹

2.2.2. General procedure for the synthesis of unsymmetrical derivatives of DHP

Compounds were synthesized using modified Hantzsch reaction ²⁸. Two mmol (0.23-0.32 g) of appropriate alkyl acetoacetate **IVa-d** and 3 mmol (0.23 g) of ammonium acetate were dissolved in appropriate alkyl alcohol. The reaction mixture was refluxed for 24 hrs. After completion of the reaction as indicated by TLC, aryl aldehyde **VIIa-d** (2 mmol, 0.30 g) and 2-pyridyl methyl-3-oxobutanoate **III** (2 mmol, 0.38 g) were added to the solution. After refluxing for further 24 hrs, the solvent was evaporated under reduced pressure. The products

Page 6 of 43

were purified by column chromatography and preparative TLC on silica gel, affording pure materials **1a-d**, **2a-d**, **3a-d** and **4a-d**. The final products were recrystallized from diethyl ether and petroleum ether ²⁹. Characteristic data of synthesized compounds are as follows:

3-pyridin-2-yl methyl 5-methyl 2,6-dimethyl-4-(1-methyl-5-nitro-1H-imidazol-2-yl)-1,4-dihydropyridine-3,5-dicarboxylate (**1a**)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.61 (1H, brs, N*H*), 8.53 (1H, d, C₆-*H*-pyridyl, *J*=3.9 Hz), 7.92 (1H, s, C₄-*H*-imidazol), 7.62 (1H, t, C₄-*H*-pyridyl, *J*=7.3 Hz), 7.21 (1H, t, C₅-*H*-pyridyl, *J*=5.9 Hz), 7.08 (1H, d, C₃-*H*-pyridyl, *J*=7.6 Hz), 5.35 and 5.09 (2H, dd, O-C*H*₂-pyridyl, *J*=12.8 Hz), 5.18 (1H, s, C₄-*H*-DHP), 3.94 (3H, s, N₁-C*H*₃-imidazol), 3.66 (3H, s, O-C*H*₃), 2.29 and 2.23 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃). MS (EI): m/z 428 ([MH]⁺, 8), 410 (39), 335 (53), 291 (84), 259 (100), 192 (56), 93 (93). IR (KBr) 3264 (NH), 3056 (CH-aromatic), 2934 (CH-aliphatic), 1695 (CO), 1536, 1378 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-ethyl 2,6-dimethyl-4-(1-methyl-5-nitro-1H-imidazol-2-yl)-1,4dihydropyridine-3,5-dicarboxylate (**1b**)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.94 (1H, brs, N*H*), 8.53 (1H, d, C₆-*H*-pyridyl, *J*=4.0 Hz), 7.92 (1H, s, C₄-*H*-imidazol), 7.61 (1H, t, C₄-*H*-pyridyl, *J*=7.3 Hz), 7.21 (1H, t, C₅-*H*-pyridyl, *J*=5.9 Hz), 7.09 (1H, d, C₃-*H*-pyridyl, *J*=7.7 Hz), 5.35 and 5.10 (2H, dd, O-C*H*₂-pyridyl, *J*=12.9 Hz), 5.19 (1H, s, C₄-*H*-DHP), 4.12 (2H, q, O-C*H*₂CH₃, *J*=7.0 Hz), 3.97 (3H, s, N₁-C*H*₃-imidazol), 2.22 and 2.27 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.22 (3H, t, O-CH₂C*H*₃, *J*=7.0 Hz). MS (EI): m/z 442 ([MH]⁺, 29), 424 (56), 349 (84), 305 (80), 259 (100), 93 (96). IR (KBr) 3270 (NH), 3058 (CH-aromatic), 2933 (CH-aliphatic), 1700 (CO), 1506, 1373 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-isopropyl 2,6-dimethyl-4-(1-methyl-5-nitro-1H-imidazol-2yl)-1,4-dihydropyridine-3,5-dicarboxylate (1c)

¹H NMR (500MHz, CDCl₃) $\delta_{\rm H}$ 8.60 (1H, brs, N*H*), 8.53 (1H, d, C₆-*H*-pyridyl, *J*=3.8Hz), 7.92 (1H, s, C₄-*H*-imidazol), 7.62 (1H, t, C₄-*H*-pyridyl, *J*=7.4Hz), 7.21 (1H, t, C₅-*H*-pyridyl, *J*=5.9 Hz), 7.09 (1H, d, C₃-*H*-pyridyl, *J*=7.6 Hz), 5.35 and 5.11 (2H, dd, O-C*H*₂-pyridyl, *J*=12.9 Hz), 5.17 (1H, s, C₄-*H*-DHP), 5.01 (1H, sep, O-C*H*(CH₃)₂, *J*=6.1 Hz), 3.99 (3H, s, N₁-C*H*₃-imidazol), 2.23 and 2.28 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.17and 1.20(6H, 2d, OCH(C*H*₃)₂, *J*= 6.1 Hz). MS (EI): m/z 456([MH]⁺, 90), 438(20), 363(46), 329(64), 259(85), 233(68), 178(38), 93(100). IR (KBr) 3280(NH), 3135, 3051(CH-aromatic), 2982, 2930(CH-aliphatic), 1707, 1658(CO), 1540, 1339(NO₂) cm⁻¹

3-pyridin-2-yl methyl 5-tert-butyl 2,6-dimethyl-4-(1-methyl-5-nitro-1H-imidazol-2-yl)-1,4-dihydropyridine-3,5-dicarboxylate (**1d**)

¹H NMR (500MHz,CDCl₃) $\delta_{\rm H}$ 8.88 (1H, brs, N*H*), 8.55 (1H, d, C₆-*H*-pyridyl, *J*=3.8 Hz), 7.93 (1H, s, C₄-*H*-imidazol), 7.65 (1H, t, C₄-*H*-pyridyl, *J*=7.4 Hz), 7.25 (1H, t, C₅-*H*-pyridyl, *J*=5.9 Hz), 7.11 (1H, d, C₃-*H*-pyridyl, *J*=7.6Hz), 5.35 and 5.11 (2H, dd, O-C*H*₂-pyridyl, *J*=13.0 Hz), 5.14 (1H, s, C₄-*H*-DHP), (1H, d, O-C*H*₂-pyridyl, *J*=13.0 Hz), 3.97 (3H, s, N₁-C*H*₃-imidazol), 2.28 and 2.18(6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.41 (9H, s, O-C(C*H*₃)₃). MS (EI): m/z 470([MH]⁺, 16), 377 (52), 352(34), 321(54), 259(62), 233(100), 93(78). IR (KBr) 3298(NH), 3070(CH-aromatic), 2972, 2934(CH-aliphatic), 1679(CO), 1514, 1339 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-methyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (**2a**)

¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H}$ 9.07 (1H, s, N*H*), 8.44 (1H, d, C₆-*H*-pyridyl, *J*=4.4 Hz), 7.67 (1H, d, C₃-*H*-phenyl, *J*=7.4 Hz), 7.61 (2H, m,C₄-*H*-pyridyl and C₅-*H*-phenyl), 7.50 (1H, d, C₆-*H*-phenyl, *J*=7.7 Hz), 7.37 (1H, t, C₄-*H*-phenyl, *J*=7.6 Hz), 7.23 (1H, m, C₅-*H*-pyridyl), 6.82 (1H, d, C₃-*H*-pyridyl, *J*=7.8 Hz), 5.60 (1H, s, C₄-*H*-DHP), 5.04 (2H, s, O-C*H*₂-pyridyl), 3.42 (3H, s, O-C*H*₃), 2.22 and 2.28 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃). MS (EI): m/z 424 ([MH]⁺, 12), 406 (20), 331 (100), 284 (18),192 (16), 93 (25). IR (KBr) 3265 (NH), 3076 (CH-aromatic), 2947 (CH-aliphatic), 1713, 1698 (CO), 1530, 1351 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-ethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (2b)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 9.04 (1H, s, N*H*), 8.44 (1H, m, C₆-*H*-pyridyl), 7.69 (1H, m, C₃-*H*-phenyl), 7.60-7.64 (2H, m, C₄-*H*-pyridyl and C₅-*H*-phenyl), 7.50 (1H, m, C₆-*H*-phenyl), 7.38 (1H, m, C₄-*H*-phenyl), 7.24 (1H, m, C₅-*H*-pyridyl), 6.85 (1H, d, C₃-*H*-pyridyl, *J*=7.8 Hz), 5.66 (1H, s, C₄-*H*-DHP), 5.04 and 5.02 (2H, dd, O-C*H*₂-pyridyl, *J*=13.8 Hz), 3.81-4.00 (2H, m, O-C*H*₂CH₃), 2.23 and 2.26 (6H, 2s, C₂-C*H*₃ and C₆-<u>C</u>*H*₃), 1.04 (3H, t, O-CH₂C*H*₃, *J*=7.0 Hz). MS (EI): m/z 438 ([MH]⁺, 39), 420 (15), 345 (100), 329 (20), 92 (40). IR (KBr) 3258 (NH), 3073 (CH-aromatic), 2984 (CH-aliphatic), 1700 (CO), 1531, 1350 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-isopropyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4dihydropyridine-3,5-dicarboxylate (**2c**)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.50 (1H, d, C₆-*H*-pyridyl, *J*=3.6 Hz), 7.70 (1H, d, C₃-*H*-phenyl, *J*=8.0 Hz), 7.55 (2H, m, C₆-*H*-phenyl and C₄-*H*-pyridyl), 7.46 (1H, t, C₅-*H*-phenyl, *J*=7.3 Hz), 7.25 (1H, t, C₄-*H*-phenyl, *J*=6.0 Hz), 7.14 (1H, t, C₅-*H*-pyridyl, *J*=5.9 Hz), 7.00 (1H, d, C₃-*H*-pyridyl, *J*=7.7 Hz), 5.94 (1H, s, C₄-*H*-DHP), 5.76 (1H, s, N*H*), 5.24 and 5.13 (2H, dd, O-C*H*₂-pyridyl, *J*=13.6 Hz), 4.95 (1H, m, O-C*H*(CH₃)₂), 2.29 and 2.33 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.21 and 0.97 (6H, 2d, O-CH(C*H*₃)₂, *J*=6.6 Hz). MS (EI): m/z 452 ([MH]⁺, 6), 434 (25), 359 (100), 317 (47), 270 (29), 92 (36). IR (KBr) 3267 (NH), 3067 (CH-aromatic), 2980 (CH-aliphatic), 1694 (CO), 1522, 1349 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-tert-butyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (**2d**)

¹H NMR (500 MHz, CDCl₃) δ_H 8.53 (1H, d, C₆-*H*-pyridyl, *J*=3.9 Hz), 7.65-7.68 (2H, m, C₃-*H*-phenyl and C₄-*H*-pyridyl), 7.56 (1H, d, C₆-*H*-phenyl, *J*=7.7 Hz), 7.48 (1H, t, C₅-*H*-phenyl, *J*=7.4 Hz), 7.27 (1H, m, C₄-*H*-phenyl), 7.22 (1H, t, C₅-*H*-pyridyl, *J*=5.9 Hz), 7.09 (1H, d, C₃-*H*-pyridyl, *J*=7.6 Hz), 5.87 (1H, s, C₄-<u>H</u>-DHP), 5.78 (1H, brs, N*H*), 5.31 and 5.16 (2H, dd, O-C*H*₂-pyridyl, *J*=13.8), 2.31 and 2.28 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.36 (9H, s, O-C(C*H*₃)₃). MS (EI): m/z 466 ([MH]⁺, 58), 392 (36), 373 (48), 317 (100), 287 (25), 93 (39), 57 (53). IR (KBr) 3227 (NH), 3080, 3024 (CH-aromatic), 2974 (CH-aliphatic), 1703, 1694 (CO), 1526, 1353 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-methyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (**3a**)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.56 (1H, m, C₆-*H*-pyridyl), 8.08 (1H, m, C₂-*H*-phenyl), 8.00 (1H, m, C₄-*H*-phenyl), 7.58-7.63 (2H, m, C₆-*H*-phenyl and C₄-*H*-pyridyl), 7.34 (1H, t, C₅-*H*-phenyl, *J*=7.9 Hz), 7.20 (1H, m, C₅-*H*-pyridyl), 7.05 (1H, d, C₃-*H*-pyridyl, *J*=7.8 Hz), 5.86 (1H, s, N*H*), 5.30 and 5.14 (2H, dd, O-C*H*₂-pyridyl, *J*=13.4 Hz), 5.18 (1H, s, C₄-*H*-DHP), 3.65 (3H, s, O-C*H*₃), 2.42 and 2.38 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃). MS (EI): m/z 424 ([MH]⁺, 10), 331 (100), 301 (31), 192 (44), 93 (55). IR (KBr) 3263 (NH), 3072 (CH-aromatic), 2949 (CH-aliphatic), 1695 (CO), 1529, 1348 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-ethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (**3b**)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.56 (1H, d, C₆-*H*-pyridyl, *J*=4.7 Hz), 8.09 (1H, s, C₂-*H*-phenyl), 8.00 (1H, d, C₄-*H*-phenyl, *J*=8.1 Hz), 7.58-7.63 (2H, m, C₆-*H*-phenyl and C₄-*H*pyridyl), 7.34 (1H, t, C₅-*H*-phenyl, *J*=8.1 Hz), 7.20 (1H, t, C₅-*H*-pyridyl, *J*=6.1 Hz), 7.04 (1H, d, C₃-*H*-pyridyl, *J*=7.7 Hz), 5.78 (1H, s, N*H*), 5.29 and 5.14 (2H, dd, O-C*H*₂-pyridyl, *J*=13.4 Hz), 5.18 (1H, s, C₄-*H*-DHP), 4.10 (2H, m, O-C*H*₂CH₃), 2.42 and 2.38 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.23 (3H, t, O-CH₂C*H*₃, *J*=7.0). MS (EI): m/z 438 ([MH]⁺, 44), 345 (100), 329 (27), 315 (40), 206 (39), 93 (87). IR (KBr) 3261 (NH), 3071 (CH-aromatic), 2979 (CHaliphatic), 1699 (CO), 1525, 1348 (NO₂) cm⁻¹. 3-pyridin-2-yl methyl 5-isopropyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4dihydropyridine-3,5-dicarboxylate (**3c**)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.54 (1H, d, C₆-*H*-pyridyl, *J*=4.0 Hz), 8.08 (1H, s, C₂-*H*-phenyl), 7.98 (1H, d, C₄-*H*-phenyl, *J*=7.8 Hz), 7.57-7.62 (2H, m, C₆-*H*-phenyl and C₄-*H*pyridyl), 7.33 (1H, t, C₅-*H*-phenyl, *J*=7.8 Hz), 7.19 (1H, t, C₅-*H*-pyridyl, *J*=5.7 Hz), 7.03 (1H, d, C₃-*H*-pyridyl, *J*=7.6), 5.76 (1H, s, N*H*), 5.27 (1H, d, O-C*H*₂-pyridyl, *J*=13.4 Hz), 5.13 (2H, m, O-C*H*₂-pyridyl and C₄-*H*-DHP), 4.95 (1H, sep, O-C*H*(CH₃)₂, *J*=6.2 Hz), 2.40 and 2.36 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.25 and 1.09 (6H, 2d, O-CH(C*H*₃)₂, *J*=6.0 Hz). MS (EI): m/z 452 ([MH]⁺, 19), 359 (100), 317 (92), 287 (43), 178 (45), 93 (75). IR (KBr) 3269 (NH), 3068 (CH-aromatic), 2980 (CH-aliphatic), 1695 (CO), 1522, 1348 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-tert-butyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (**3d**)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.56 (1H, d, C₆-*H*-pyridyl, *J*=3.6 Hz), 8.09 (1H, s, C₂-*H*-phenyl), 8.00 (1H, d, C₄-*H*-phenyl, *J*=7.8 Hz), 7.62-7.64 (m, 2H, C₆-*H*-phenyl and C₄-*H*pyridyl), 7.35 (1H, t, C₅-*H*-phenyl, *J*=7.8 Hz), 7.23 (1H, t, C₅-*H*-pyridyl, *J*=5.7 Hz), 7.09 (1H, d, C₃-*H*-pyridyl, *J*=7.6 Hz), 5.83 (1H, s, N*H*), 5.29 and 5.18 (2H, dd, O-C*H*₂-pyridyl, *J*=13.6 Hz), 5.13 (1H, s, C₄-*H*-DHP), 2.41 and 2.34 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.40 (9H, s, O-C(C*H*₃)₃). MS (EI): m/z 466 ([MH]⁺, 5), 373 (20), 317 (100), 287 (48), 178 (32), 93 (42). IR (KBr) 3266 (NH), 3065, 3012 (CH-aromatic), 2980 (CH-aliphatic), 1693 (CO), 1521, 1348 (NO₂) cm⁻¹. 3-pyridin-2-yl methyl 5-methyl 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (4a)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.56 (1H, d, C₆-*H*-pyridyl, *J*=3.6 Hz), 8.02 (2H, d, C₃-*H*-phenyl and C₅-*H*-phenyl, *J*=8.2 Hz), 7.58 (1H, t, C₄-*H*-pyridyl, *J*=7.2 Hz), 7.40 (2H, d, C₂-*H*-phenyl and C₆-*H*-phenyl, *J*=8.2 Hz), 7.20 (1H, t, C₅-*H*-pyridyl, *J*=5.9 Hz), 7.02 (1H, d, C₃-*H*-pyridyl, *J*=7.6 Hz), 5.72 (1H, s, N*H*), 5.30 and 5.13 (2H, dd, O-C*H*₂-pyridyl, *J*=13.3 Hz), 5.17 (1H, s, C₄-*H*-DHP), 3.63 (3H, s, O-C*H*₃), 2.40 and 2.36 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃). MS (EI): m/z 424 ([MH]⁺, 46), 331 (100), 301 (38), 192 (65), 93 (93). IR (KBr) 3259 (NH), 3066 (CH-aromatic), 2948 (CH-aliphatic), 1699 (CO), 1513, 1342 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-ethyl 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate (4b)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.55 (1H, d, C₆-*H*-pyridyl, *J*=4.4 Hz), 8.02 (2H, d, C₃-*H*-phenyl and C₅-*H*-phenyl, *J*=8.8 Hz), 7.58 (1H, m, C₄-*H*-pyridyl), 7.41 (2H, d, C₂-*H*-phenyl and C₆-*H*-phenyl, *J*=8.8 Hz), 7.20 (1H, m, C₅-*H*-pyridyl), 7.02 (1H, d, C₃-*H*-pyridyl, *J*=7.8 Hz), 5.80 (1H, s, N*H*), 5.29 and 5.13 (2H, dd, O-C*H*₂-pyridyl, *J*=13.4 Hz), 5.17 (1H, s, C₄-*H*-DHP), 4.08 (2H, m, O-C*H*₂CH₃), 2.39 and 2.35 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.20 (3H, m, O-CH₂C*H*₃). MS (EI): m/z 438 ([MH]⁺, 7), 345 (100), 315 (34), 206 (30), 93 (59). IR (KBr) 3258 (NH), 3066 (CH-aromatic), 2973, 2937 (CH-aliphatic), 1700 (CO), 1510, 1342 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-isopropyl 2,6-dimethyl-4-(4-nitrophenyl)-1,4dihydropyridine-3,5-dicarboxylate (**4c**)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.55 (1H, d, C₆-*H*-pyridyl, *J*=3.6 Hz), 8.02 (2H, d, C₃-*H*-phenyl and C₅-*H*-phenyl, *J*=8.4 Hz), 7.57 (1H, t, C₄-*H*-pyridyl, *J*=7.4 Hz), 7.41 (2H, d, C₂-*H*-phenyl and C₆-*H*-phenyl, *J*=8.4 Hz), 7.19 (1H, t, C₅-*H*-pyridyl, *J*=5.9 Hz), 7.03 (1H, d, C₃-*H*-pyridyl, *J*=7.7 Hz), 5.80 (1H, s, N*H*), 5.28 (1H, d, O-C*H*₂-pyridyl, *J*=13.4 Hz), 5.14 (2H, m, O-C*H*₂-pyridyl and C₄-*H*-DHP), 4.94 (1H, sep, O-C*H*CH₃, *J*=6.1 Hz), 2.38 and 2.35 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.23 and 1.09 (6H, 2d, O-CH(C*H*₃)₂, *J*=6.1 Hz). MS (EI): m/z 452 ([MH]⁺, 58), 343 (30), 317 (29), 178 (40), 93 (100). IR (KBr) 3264 (NH), 3072 (CH-aromatic), 2971, 2930 (CH-aliphatic), 1693 (CO), 1508, 1342 (NO₂) cm⁻¹.

3-pyridin-2-yl methyl 5-tert-butyl 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (4d)

¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.57 (1H, d, C₆-*H*-pyridyl, *J*=3.6 Hz), 8.04 (2H, d, C₃-*H*-phenyl and C₅-*H*-phenyl, *J*=8.3 Hz), 7.63 (1H, t, C₄-*H*-pyridyl, *J*=7.2 Hz), 7.42 (2H, d, C₂-*H*-phenyl and C₆-*H*-phenyl, *J*=8.3 Hz), 7.25 (1H, t, C₅-*H*-pyridyl, *J*=5.9 Hz), 7.08 (1H, d, C₃-*H*-pyridyl, *J*=7.6 Hz), 5.78 (1H, s, N*H*), 5.31 and 5.19 (2H, dd, O-C*H*₂-pyridyl, *J*=13.5 Hz), 5.13 (1H, s, C₄-*H*-DHP), 2.39 and 2.34 (6H, 2s, C₂-C*H*₃ and C₆-C*H*₃), 1.39 (9H, s, O-C(C*H*₃)₃). MS (EI): m/z 466 ([MH]⁺, 30), 317 (100), 287 (45), 178 (32), 93 (77). IR (KBr) 3239 (NH), 3095 (CH-aromatic), 2976, 2933 (CH-aliphatic), 1701, 1659 (CO), 1512, 1342 (NO₂) cm⁻¹.

2.3. Cell lines

Cancer cell lines including K562 (human chronic myelogenous leukemia), LS180 (human colon adenocarcinoma), MCF-7 (human breast adenocarcinoma), and also cell lines used for MDR reversal tests, MES-SA and MES-SA/DX5 (human uterine sarcoma), were maintained in RPMI 1640 supplemented with 10% FBS, and 100 units/ml penicillin-G and 100 µg/ml streptomycin. The percentage of FBS for HL-60 (human acute promyelocytic leukemia) was 20%. For MES-SA/DX5 cells, 100 nM doxorubicin was added to the maintenance flasks and it was removed 24 hrs before starting the tests. LS180, MCF-7, MES-SA and MES-SA/DX5 cells were grown in monolayer cultures, while K562 and HL-60 cells were grown in suspension, at 37°C in humidified air containing 5% CO₂.

2.4. Cytotoxicity assay

Cytotoxicity of synthesized compounds was measured by MTT reduction assay ^{30,31}. Suspensions of HL-60, K562, LS180 and MCF-7 with appropriate densities were prepared and seeded in 96-well plates. The cytotoxicity assay was performed as described in our previous study ³². After adding DMSO to solubilize the produced formazan, the absorbance of each well was read at 570 nm with background correction at 650 nm by a microplate reader (model 680, Bio-Rad, Japan).

2.5. MDR reversal measured by alteration of sensitivity to doxorubicin in resistant cells

MES-SA and MES-SA/DX5 cells were seeded in 96-well plates and maintained overnight at 37°C. Then the compounds at different concentrations were added in the absence or presence

of doxorubicin. There was only doxorubicin in reference wells. After 3 days of incubation at 37°C, MTT assay was conducted as described in our previous study ^{32,33}.

2.6. Rhodamine 123 efflux assay for measurement of P-glycoprotein inhibition

R123 is a selective substrate for P-gp 34 . The assay that is used here was a modified version of the assay that was described in a previous study 32,35 .

The MES-SA/DX5 cells were trypsinized, suspended in fresh medium and counted. Nine-hundred μ L of the suspension containing 2.5 x 10⁵ cells was placed in micro tubes and 100 μ L of 5 μ M R123 was added. Cells were kept at 37°C for 30 min and then were centrifuged and washed twice with ice-cold PBS. Five-hundred μ L of three different concentrations of the synthesized compounds (ranging from 2.5 to 25 μ M, final concentration) were added to the cells alongside with two concentrations of verapamil (2.5 and 10 μ M), which was used as a reference P-gp inhibitor compound. The cells were incubated at 37°C for another 30 min. Finally, suspensions (5.0 x 10⁵ cells/ml) were analyzed by a flow cytometer (BD FACS Calibur, Becton Dickenson, USA). The number of cells counted for each sample was 10,000.

2.7. CCB activity evaluation

The CCB evaluation was carried out as previously described ^{32,36}. Male guinea pigs (300-450g) were purchased from Animal House Department, Shiraz University of Medical Sciences, fasted for 24 hrs and sacrificed by a blow on the neck. One-cm segments of ileum were installed in oxygenated tyrode solution ³² in jacketed organ bath (Pan Lab (Letica), Spain) at 37°C. KCl (40 mM) was added to the solution in presence or absence of the

synthesized compounds, nifedipine and DMSO as blank, final concentrations of which were 10^{-10} , 10^{-9} , 10^{-8} , 10^{-7} , 10^{-6} and 10^{-5} M (x3, at 10 min intervals). The inhibitory effect of each compound was measured by percentile of the heights of the corresponding peaks in contrast to the peaks made by KCl in the absence of the compound. IC₅₀ of each tested compound were calculated based on these percentages.

2.8. P-gp docking analysis

In this study, we applied AutoDock 4.2 package software to inquire the affinity and binding modes of the synthesized derivatives to the binding pocket of P-gp. Since the high resolution crystal structure of P-gp is not available, we applied the 3D structure of human P-gp which has been recently generated by homology modeling and MD simulation studies on X-ray structure of Apo murine P-gp (PDB entry: 3G5U) by our research group ^{37,38}. All the docked compounds were sketched and minimized (by molecular mechanics, MM+, and semi-empirical, AM1, methods) using HYPERCHEM 7.0 software. AutoDock Tools 4.2 was used to prepare ligands and protein for docking process. The PDBQT files were generated by adding charges and defining the degree of torsions. The grid dimensions were set to $60 \times 60 \text{ Å}$ with points separated by 0.375 Å and the grid was centered at 93.12, 68.17 and 124.91 Å (X, Y and Z) that involved the active site of DHPs. Docking was performed using Lamarckian Genetic Algorithm as the docking algorithm with 100 runs. Other parameters were left as default.

3. Results and Discussion

3.1. Synthesis

Unsymmetrical DHP derivatives (1a-d, 2a-d, 3a-d and 4a-d) were synthesized based on the described method in "Experimental" section. The step-by-step method is depicted in Fig. 1.

Reaction of 2-pyridyl methyl alcohol I with 2,2,6-trimethyl-4-H-1,3-dioxin-4-one II produced 2-pyridyl methyl-3-oxobutanoate III in a good yield (95%). The final unsymmetric DHPs were synthesized according to a modified Hanstzch reaction. Hanstzch reaction has been one of the major methods of DHPs synthesis since its introduction in 1882 ³⁹. Chemical reaction of different alkyl acetoacetates IVa-d and ammonium acetate V in refluxing alkyl alcohol resulted in the formation of different aryl aldehydes and 2-pyridyl methyl-3-oxobutanoate III in order to produce the final unsymmetric DHPs. Synthesized compounds were then purified by preparative TLC and the chemical structures of the desired compounds were confirmed by ¹H NMR and EI-MS. The structures and physical properties of the synthesized compounds are summarized in Fig. 1 and Table 1, respectively.

3.2. Cytotoxicity

In order to investigate the anticancer potential of the synthesized compounds, the cytotoxic activity evaluations were performed against 4 human cancer cell lines including HL-60, K562, LS180 and MCF-7 by using MTT assay. The results are presented as IC₅₀ values in Table 2.

In general, compounds bearing nitrophenyl moiety at C₄ (**2a-d**, **3a-d** and **4a-d**) showed cytotoxic activities, while the agents with nitroimidazole group at this position (**1a-d**) had no considerable cytotoxicity against the cell lines.

As for the substituent at C_5 position, the compounds that possess *iso*-propyl and *tert*butyl (**2c-d**, **3c-d** and **4c-d**) had lower IC₅₀ values, i.e., higher cytotoxic effects. It should be noted that since all compounds with nitrophenyl groups had similar IC₅₀ values, it can be concluded that the aromatic group at C₄ position is a more influential factor compared to the alkyl group at C₅ position. An exception is **2d** bearing 2-nitrophenyl and *tert*-butyl at C₄ and C₅ positions, respectively, which demonstrated low cytotoxic activity. This is probably due to the change in the orientation caused by NO₂ group and the bulk of *tert*-butyl substitute that probably prevents the molecule from approaching its target site.

The cytotoxic potency of the compounds synthesized in the present study, were far better than the potencies of the symmetrical molecules containing pyridyl, reported in our previous studies, where only a few compounds showed IC_{50} values of lower than 100 μ M ^{40,41}. Therefore, it can be stated that cytotoxicity will be improved by adding carbon to the carboxylate moieties at C₃ and C₅ positions.

3.3. MDR reversal measured by alteration of sensitivity to doxorubicin in resistant cells

MDR reversal activity was tested in P-gp overexpressing MES-SA/DX5 cells and the results were compared to those obtained in the parental cell line, MES-SA. The findings related to all synthesized compounds are presented in Tables 3 and 4, while one representative agent from each of the 4 groups of derivatives are shown in Figs. 2 and 3. P-gp expression in MES-SA and MES-SA/DX5 cells was examined by western blot and it was observed that while MES-SA-DX5 cells express a considerable amount of P-gp, the expression of this protein is below the detection limit in the parental MES-SA cells (data not shown).

MDR reversal activity measurement in P-gp overexpressing MES-SA/DX5 cells revealed that compounds with 4-nitrophenyl (4a-d) and 3-nitrophenyl (3a-d) at C_4 position,

Page 19 of 43

Can. J. Chem. Downloaded from www.nrcresearchpress.com by Auburn University - Draughton Library on 04/25/19 personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record. generally possessed higher MDR reversal activities than their counterparts having nitroimidazole (1a-d) and 2-nitrophenyl (2a-d) rings (Table 3). Some of these compounds (3c, 3d, 4b, 4c and 4d) caused a significant reduction in the IC_{50} of doxorubicin at concentrations as low as 1 µM. Therefore, considering Log P values in Table 1, it can be deduced that less lipophilic nitroimidazole substituents were worse P-gp modulators than 3and 4-nitrophenyl substituents. Moreover, a significant reduction of doxorubicin IC₅₀ was observed in the presence of compounds 3a, 3b and 4a at 2.5 µM concentrations and above. In our previous studies, compounds bearing nitroimidazole showed MDR reversal effect in HL60/MX1 (acute promyelocytic leukemia) cell line as a cell model of atypical MDR, which is a mitoxantrone resistant derivative of the human leukemia HL60 cell line with altered topoisomerase II catalytic activity and reduced levels of topoisomerase II alpha and beta proteins ^{40,41}. So, it is possible that these compounds are only effective on topoisomerase II and not P-gp. Comparing the alkyl groups at C₅ position shows that the more lipophilic *tert*-butyl and *iso*-propyl substitutes confer higher MDR reversal activities than methyl and ethyl substitutions (Log P values are reported in Table 1). As expected, none of the tested compounds significantly increased the sensitivity of non-resistant MES-SA cells to doxorubicin (Table 4).

3.4. Rhodamine 123 efflux assay for measurement of P-glycoprotein inhibition

The efflux of Rh123 in MES-SA/DX5 cells was measured by a flow cytometric method. One representative diagram is depicted in Fig. 4 and the geometric means of all experiments are shown in Fig. 5.

Rh123 is selectively pumped out of the cell by P-gp, therefore, inhibitors of P-gp can prevent this process and increase intracellular accumulation of this fluorescent probe ³⁴. Rh123 efflux assay was used to confirm the results obtained from MTT method and to specifically show that the compounds work through P-gp pump inhibition.

Flow cytometric determination of Rh123 efflux in MES-SA/DX5 cells showed that in general, the compounds with 4-nitrophenyl (4a-d) or 3-nitrophenyl at C₄ position (3a-d) were better modulators of P-gp, because they promoted intracellular Rh123 retention more strongly and at lower concentrations compared to compounds with nitroimidazole (1a-d) or 2-nitrophenyl (2a-d). 3c, 4a, 4b and 4c were the most promising P-gp inhibitors which caused significant Rh123 accumulation compared to control in MES-SA/DX5 cells at 5 μ M concentration.

Generally, the Rh123 efflux results were in agreement with the findings of MDR reversal assay obtained by MTT reduction method. However, as these two techniques measure cellular events at different incubation times, some dissimilarities were observed in the order of compound activities; While, **3d** and **4d** demonstrated significant reduction in the IC₅₀ of doxorubicin at concentrations as low as 1 μ M (Table 3), these compounds exhibited lower P-gp inhibitory activities in flow cytometric Rh123 determination assay compared to the other derivatives in their subgroups, 3-nitrophenyl and 4-nitrophenyl bearing derivatives at C4, respectively (Fig. 5).

Regarding the substitution at C_5 position, it is noticeable that in the most potent compound sets, the *iso*-propyl containing compounds (**3c** and **4c**) showed greater P-gp inhibitory activities compared to other C_5 substituents, but in the case of the least potent series, the compounds containing *tert*-butyl at C_5 position (**1d** and **2d**) had better effects. In our previous studies, 3-nitrophenyl and 4-nitrophenyl at C_4 position of the DHP ring resulted in slightly higher activity compared to the compounds with nitroimidazole as the aromatic ring at C_4 position. Moreover, as noted in our former studies, the presence of larger alkyl groups such as *iso*-propyl and *tert*-butyl at C_5 position leads to more active compounds ³². These consequences are consistent with the results of the current study.

3.5. CCB activity evaluation

The CCB activity of synthesized compounds, as a potential side effect of compounds with DHP structure, was evaluated on guinea pig ileal longitudinal smooth muscle (GPLISM) and the IC_{50} related to each compound was calculated. The results are shown in Table 5.

Among the synthesized compounds, those bearing nitroimidazolyl or 4-nitrophenyl group at C₄ (**4a-d** and **1a-d**) demonstrated the lowest CCB activity. Compound **1a** with an IC₅₀ value of 8.1 x 10⁻⁶ M was 76 times less active than nifedipine as the reference CCB agent. On the other hand, compounds possessing 2-nitrophenyl or 3-nitrophenyl at C₄ (**2a-d** and **3a-d**) had the lowest IC₅₀ values. Some of these compounds (**3a-c** and **2a**) were even stronger than nifedipine. These structure-activity relationship findings are in agreement with the outcomes of our previous study ⁴¹.

In addition, introducing *iso*-propyl or *tert*-butyl groups at C₅ position reduced the CCB activity, while the opposite happened by methyl or ethyl substitutions. For example, **4c**-**d** blocked the calcium channels less than **4a**-**b** and similarly **2c**-**d** had higher IC₅₀ values than **2a**-**b**. Although C₅ moiety had some effects on the IC₅₀ values, the most influential factor to determine the CCB activity appeared to be the aromatic group at C₄ position. This is in line with the previous studies and modeling of the 1,4-dihydropyridines as calcium channel blockers 42,43 .

3.6. Molecular docking study

It has been reported that DHPs bind near the Nucleotide Binding Domain (NBD) of P-gp. Borchers and colleagues determined the active site of DHPs by photo affinity labeling and mass spectrometry ⁴⁴. They suggested that DHPs bind to the P-gp 468 –527 residues. Szabon-Watola and coworkers predicted the binding location of the DHPs resides near the conserved Val907 of coupling helix 2, and an essential Mg²⁺ binding residue Gln475 of the Walker domain ⁴⁵. They suggested that a ligand binding in this location would be expected to limit conformational reorganization necessary for xenobiotic efflux. The molecular docking analysis of 1c, 2c, 4a and 4c suggested that the most active derivative, 4c, possessed the lowest estimated free energy of binding (-10.59 kcal/mol) and estimated inhibition constant (17.30 nM) (Table 6). Oxygen atoms of NO₂ group on phenyl ring made two strong hydrogen bond interactions with Arg543 and Ser474 and a key hydrogen bond could be seen between NH of DHP ring and carbonyl side chain of Gln441. Carbonyl functions of 2-pyridyl methyl carboxylate and iso-propyl carboxylate moieties involved in hydrogen bond interactions with hydroxyl groups of Ser474 and Ser909, respectively. Additionally, isopropyl appeared to be well accommodated into the hydrophobic pocket surrounded by II470, Val471 and Tyr490 (Fig. 6. A). Compound 4a, having methyl carboxylate moiety, demonstrated the second best estimated free energy of binding (-9.74 kcal/mol) and estimated inhibition constant (71.97 nM) (Table 6). It seems that the binding pose of 4c (containing *iso*-propyl carboxylate at C_5) is slightly different from that of compound 4a (containing methyl carboxylate at C₅) (Fig. 6. B). Consequently, 4c established hydrogen bond interaction between nitrogen atom of pyridine ring and Asn903 but in the case of 4a, this interaction was not observed. Moreover, unlike the bulky *iso*-propyl group in 4c, the small methyl function in 4a did not well orientate

Page 23 of 43

toward the mentioned hydrophobic residues. Compounds 1c and 2c, bearing nitroimidazole and 2-nitrophenyl at C₄, respectively, showed the lowest estimated free energies of binding (-9.67 and kcal/mol, respectively) (Table 6). As illustrated in Fig. 6. C and Fig. 6. D, the binding orientation of 2c and 1c is totally different from that of 4a and 4c. Therefore, for compound 2c, 2-pyridyl methyl carboxylate moiety did not have any interaction with the receptor, while NH of DHP ring involved in a hydrogen bond interaction with Ser909 and NO₂ formed two hydrogen bonds with Arg547 and Val472. Another hydrogen bond interaction was established between Arg543 and carbonyl group of the methyl carboxylate moiety Fig. 6. C. Binding interactions of compound 1c is illustrated in Fig. 6 .D.

Generally, molecular docking analysis of the compounds in the active site of P-gp indicated that substitutions on C₄ and C₅ positions of DHP ring played an important role in binding orientations of the tested compounds. The presence of 4-nitrophenyl (as in 4c) at C₄ is more favored than 2-nitrophenyl (as in 2c) and nitroimidazole (as in 1c) and could probably lead to more favorable interactions and better orientations. According to docking results compound 4c, bearing *iso*-propyl carboxylate substitution at C₃, might have better binding affinity to P-gp active site than its counterpart, 4a, with methyl carboxylate moiety due to the bulk of *iso*-propyl group, which provided better orientation of 4c in the pocket comprising some lipophilic residues.

4. Conclusions

In conclusion, 16 novel DHP derivatives were synthesized and examined for cytotoxicity, MDR reversal capacities and also CCB activity as a potential side effect. The compounds with noticeable inherent cytotoxicity, remarkable MDR reversal and low CCB effects were identified. Consequently, **4a** and **4c** (both possessing 4-nitrophenyl at C_4 and methyl (**4a**) and *iso*-propyl carboxylates (**4c**) at C₅) were recognized as the most promising compounds with low CCB activity which had moderate inherent cytotoxicity against cancer cells and significantly increased the sensitivity of P-gp overexpressing MES-SA-DX5 cells to doxorubicin at the low concentrations of 1 and 2.5 μ M (**4c** and **4a**, respectively). Furthermore, the two compounds remarkably increased the intracellular accumulation of Rh123 in MES-SA-DX5 cells comparable to that of verapamil.

Compound **3c** (bearing 3-nitrophenyl at C_4 and *iso*-propyl carboxylate at C_5) was the most effective MDR reversal derivative; however, its CCB activity did not differ much from that of nifedipine. Compounds with nitroimidazole as the aromatic moiety at C_4 , showed neither cytotoxicity nor MDR reversal effect.

The binding modes of potent compounds, **4a** and **4c** inside the P-gp active site indicated that these compounds could be well accommodated in the active site and key hydrogen bond interactions were observed between ligands and Gln441, Ser474, Arg543, Ser909 and Asn903 of the active site.

Some of the synthesized DHP derivatives presented in this study, have cytotoxic and MDR reversal effects, while possessing low CCB activity, and could represent promising compounds for further development of novel agents useful for treatment of resistant types of cancer.

Acknowledgements

The authors wish to thank the support of the Vice-Chancellor for Research, Shiraz University of Medical Sciences.

References

- (1) Stewart, B.; Wild, C. 2016.
- (2) Hee Choi, Y.; Yu, A.-M. Curr. Pharm. Des. 2014, 20, 793.
- (3) Gillet, J.-P.; Gottesman, M. M. In *Multi-drug resistance in cancer*; Springer: 2010, p

47.

(4) Teodori, E.; Dei, S.; Scapecchi, S.; Gualtieri, F. *Il Farmaco*. **2002**, *57*, 385.

(5) Coburger, C.; Wollmann, J.; Krug, M.; Baumert, C.; Seifert, M.; Molnár, J.; Lage, H.;
Hilgeroth, A. *Bioorg. Med. Chem.* 2010, *18*, 4983.

(6) Falasca, M.; Linton, K. J. Expert Opin. Investig. Drugs. 2012, 21, 657.

(7) Bugde, P.; Biswas, R.; Merien, F.; Lu, J.; Liu, D.-X.; Chen, M.; Zhou, S.; Li, Y. *Expert Opin. Ther. Targets.* **2017**, *21*, 511.

(8) Mancini, M.; Rigalli, J.; Cere, L.; Semeniuk, M.; Catania, V.; Ruiz, M. Curr. Med. chem. 2018.

(9) Nanayakkara, A. K.; Follit, C. A.; Chen, G.; Williams, N. S.; Vogel, P. D.; Wise, J. G.
 Sci. Rep. 2018, *8*, 967.

(10) Kamijo, K.; Taketani, S.; Yokota, S.; Osumi, T.; Hashimoto, T. J. Biol. Chem. 1990, 265, 4534.

- (11) Shukla, S.; Ohnuma, S.; V Ambudkar, S. Curr. Drug. Targets. 2011, 12, 621.
- (12) Sica, D. A. J. Clin. Hypertens. 2006, 8, 53.

(13) Ichiro, N.; Kimitoshi, K.; Junko, K.; Shin-Ichi, A.; Akira, K.; Ken-Ichi, S.; Yohji, Y.;
Cornwell, M. M.; Pastan, I.; Gottesman, M. M. *Biochem. pharmacol.* **1989**, *38*, 519.

(14) Sirisha, K.; Achaiah, G.; Prasad, N.; Bhasker, S.; Umachander, L.; Reddy, V. M. *Pharm. Chem. J.* **2018**, *52*, 8.

(15) Tasaka, S.; Ohmori, H.; Gomi, N.; Iino, M.; Machida, T.; Kiue, A.; Naito, S.; Kuwano, M. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 275.

(16) Zarrin, A.; Mehdipour, A. R.; Miri, R. Chem. Biol. Drug. Des. 2010, 76, 369.

(17) Baumert, C.; Günthel, M.; Krawczyk, S.; Hemmer, M.; Wersig, T.; Langner, A.;
Molnár, J.; Lage, H.; Hilgeroth, A. *Bioorg. Med. Chem.* 2013, *21*, 166.

Bazargan, L.; Fouladdel, S.; Shafiee, A.; Amini, M.; Ghaffari, S.; Azizi, E. Cell.
Biol.Toxicol. 2008, 24, 165.

(19) Zhou, X.-f.; Coburn, R. A.; Morris, M. E. J. Pharm. Sci. 2005, 94, 2256.

(20) Shahraki, O.; Edraki, N.; Khoshneviszadeh, M.; Zargari, F.; Ranjbar, S.; Saso, L.;
Firuzi, O.; Miri, R. *Drug Des. Dev. Ther.* 2017, 11, 407.

(21) Richter, M.; Molnár, J.; Hilgeroth, A. J. Med. Chem. 2006, 49, 2838.

(22) Goto, R. N.; Sobral, L. M.; Sousa, L. O.; Garcia, C. B.; Lopes, N. P.; Marín-Prida, J.;
Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; Pardo-Andreu, G. L.; Curti, C. *Eur. J. Pharmacol.* **2018**, *819*, 198.

(23) Kawase, M.; Motohashi, N. Curr. Drug. Targets. 2003, 4, 31.

(24) Zarrin, A.; Mehdipour, A. R.; Miri, R. Chem. Biol. Drug. Des. 2010, 76, 369.

(25) Ranjbar, S.; Firuzi, O.; Edraki, N.; Shahraki, O.; Saso, L.; Khoshneviszadeh, M.;Miri, R. *MedChemComm.* 2017, *8*, 1919.

(26) Foroughinia, F.; Javidnia, K.; Amirghofran, Z.; Mehdipour, A.; Miri, R. J. Pharm. Pharmacol. 2008, 60, 1481.

(27) Ranjbar, S.; Khonkarn, R.; Moreno, A.; Baubichon-Cortay, H.; Miri, R.; Khoshneviszadeh, M.; Saso, L.; Edraki, N.; Falson, P.; Firuzi, O. *Toxicol. Appl. Pharmacol.* **201**9, *362*, 136-49.

(28) Saini, A.; Kumar, S.; Sandhu, J. S. J. Sci. Ind. Res. India. 2008, 67, 95.

- (29) Hosseini, M.; Miri, R.; Amini, M.; Mirkhani, H.; Hemmateenejad, B.; Ghodsi, S.;Alipour, E.; Shafiee, A. Arch. Pharma. 2007, 340, 549.
- (30) Mosmann, T. J. Immunol. Methods. 1983, 65, 55.
- (31) Azizmohammadi, M.; Khoobi, M.; Ramazani, A.; Emami, S.; Zarrin, A.; Firuzi, O.;
 Miri, R.; Shafiee, A. *Eur. J. Med. Chem.* 2013, *59*, 15.
- (32) Shekari, F.; Sadeghpour, H.; Javidnia, K.; Saso, L.; Nazari, F.; Firuzi, O.; Miri, R. *Eur. J. Pharmacol.* 2014, *746c*, 233.
- (33) Firuzi, O.; Javidnia, K.; Mansourabadi, E.; Saso, L.; Mehdipour, A. R.; Miri, R. Arch.*Pharm. Res.* 2013, *36*, 1392.
- (34) Ambudkar, S. V.; Dey, S.; Hrycyna, C. A.; Ramachandra, M.; Pastan, I.; Gottesman,M. M. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 361.
- (35) Munić, V.; Kelnerić, Ž.; Mikac, L.; Eraković Haber, V. Eur. J. Pharma. Sci. 2010,
 41, 86.
- (36) Miri, R.; Javidnia, K.; Mirkhani, H.; Hemmateenejad, B.; Sepeher, Z.; Zalpour, M.;
 Behzad, T.; Khoshneviszadeh, M.; Edraki, N.; Mehdipour, A. R. *Chem. Biol. Drug. Design.* **2007**, *70*, 329.
- (37) Aller, S. G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P. M.;
 Trinh, Y. T.; Zhang, Q.; Urbatsch, I. L. *Science*. 2009, *323*, 1718.
- (38) Shahraki, O.; Zargari, F.; Edraki, N.; Khoshneviszadeh, M.; Firuzi, O.; Miri, R. J.*Biomol. Struct. Dyn.* 2016, 1.
- (39) Vijesh, A. M.; Isloor, A. M.; Peethambar, S. K.; Shivananda, K. N.; Arulmoli, T.;Isloor, N. A. *Eur. J. Med. Chem.* 2011, *46*, 5591.
- (40) Foroughinia, F.; Javidnia, K.; Amirghofran, Z.; Mehdipour, A.; Miri, R. J. Pharm. Pharmacol. 2008, 60, 1481.

(42) Miri, R.; Mehdipour, A. Bioorg. Med. Chem. 2008, 16, 8329.

(43) Miri, R.; Javidnia, K.; Hemmateenejad, B.; Tabarzad, M.; Jafarpour, M. Chem. Biol. Drug. Design. 2009, 73, 225.

(44) Borchers, C.; Boer, R.; Klemm, K.; Figala, V.; Denzinger, T.; Ulrich, W.-R.; Haas, S.;Ise, W.; Gekeler, V.; Przybylski, M. *Mol. Pharmacol.* 2002, *61*, 1366.

(45) Szabon-Watola, M. I.; Ulatowski, S. V.; George, K. M.; Hayes, C. D.; Steiger, S. A.;

Natale, N. R. Bioorg. Med. Chem. Lett. 2014, 24, 117.

Table 1. Physical properties of synthesized unsymmetrical dihydropyridine compounds

 Table 2. Cytotoxic activity of synthesized dihydropyridine compounds on various human

 cancer cell

Table 3. Effects of synthesized dihydropyridine compounds on the sensitivity of multidrug

 resistant MES-SA/DX5 cells to doxorubicin assessed by MTT assay.

Table 4. Effects of synthesized dihydropyridine compounds on the sensitivity of non-resistant MES-SA cells to doxorubicin assessed by MTT assay.

Table 5. Calcium channel blocking activities of synthesized unsymmetrical dihydropyridine

 compounds.

Table 6. Docking results of selected compounds with P-gp.

Fig. 1. Synthesis procedure of 1,4-dihydropyridine derivatives.

Fig. 2. Effects of representative synthesized 1,4-dihydropyridine compounds on the sensitivity of multidrug-resistant MES-SA/DX5 cells to doxorubicin examined by MTT assay. MES-SA/DX5 cells were seeded in 96-well plates and compounds 1d (a), 2d (b), 3c (c) and 4c (d) were added at $0.5-5 \mu$ M concentrations after 24 hrs. Doxorubicin was also added at 100-1000 nM concentrations right after the test compound and cells were further incubated for 72 hrs. MTT test was performed and the data were presented as % viability compared to control (non-treated) wells. Compounds 3c (c) and 4c (d) caused significant changes at the concentration of 1 μ M, while compounds 1d (a) and 2d (b) did not differ from control (doxorubicin alone) at 1 μ M (data not shown). Data are mean \pm S.E.M. of 3-5 independent experiments and differences were analysed by using the one-way ANOVA followed by LSD test.

Fig. 3. Effects of representative synthesized compounds against non-resistant parental MES-SA cells to doxorubicin measured by MTT assay. MES-SA cells were seeded in 96-well plates after 24 hrs of incubation the compounds were added at $0.5-5 \mu$ M concentrations immediately followed by doxorubicin addition at 100-1000 nM. After further incubation for 72 hrs, MTT test was performed and the data were presented as %viability compared to control (non-treated) wells. Data are mean \pm S.E.M. of 3-5 independent experiments. Differences were analysed by using the one-way ANOVA followed by LSD test.

Fig. 4. Effect of compound 4c on the fluorescence intensity of Rh123 in MES-SA/DX5 cells. MES-SA/DX5 cells were trypsinized and resuspended in fresh medium. 2.5 x 10^5 cells in a micro tube were treated with Rh123 (5 μ M, final concentration) and incubated at 37 °C for 30 min. The cells were centrifuged and washed twice with ice-cold PBS and then treated with 3 different concentrations of the synthesized compounds (5, 10 and 25 μ M). The cells were incubated at 37°C for another 30 min and finally, 10,000 of them were injected to a flow cytometer.

Fig. 5. Inhibition of Rh123 efflux shown as mean fluorescence intensity in MES-SA/DX5 cells in the presence or absence of synthesized compounds and verapamil. MES-SA/DX5 cells were trypsinized and resuspended in fresh medium. 2.5×10^5 cells in a micro tube were treated with Rh123 (5 μ M, final concentration) and incubated at 37 °C for 30 min. The cells were centrifuged and washed twice with ice-cold PBS and then treated with 3 different concentrations of the synthesized compounds (ranging from 2.5 to 25 μ M). The cells were incubated at 37°C for another 30 min and finally, 10,000 of them were injected to a flow cytometer. Ctrl: Control sample, VP: verapamil. Data are mean \pm S.E.M. of 3-5 independent experiments, and differences were analyzed by using the one-way ANOVA followed by LSD

30

test.* The difference between Gmean in the absence and the presence of the test compound is significant (P value< 0.05).

Fig. 6. Docking of compounds 4c (A), 4a (B), 2c (C) and 1c (D) in the active site of P-gp. Ligands are displayed as yellow sticks, while the core amino acid residues are displayed as grey sticks and hydrogen bonds are illustrated by green lines.

,	ġ.
	S
	ĕ
,	of
	on
	ĽS
	ve
,	a
	<u>1</u>
ł	θĘ
6	al
5	E
32	le
4	H H
u (on
N N	÷
car	ter
ibi	dif
Ľ	Š
tor	Ĩ
4g	It
au	n.
Ā	Ē
1	osi
ity	np
ers	ğ
Ξİ.	ē
IJ	gg
E	ц р
þn	an
Δu	ğ
Ň	E
q	eq
on	<u>S</u>
s.c	ğ
es	õ
Idu	E.
l <u>c</u> l	Ĕ
sea	ц Ц
re	Ē
IC	ISC
N.1	JU
Ā	Ĩ
3	ğ
E	pt
Ĕ	S.
ed	ă
jad	Εhe
li	IS
Ā	bt
Ď	E
d	ŝn
Jer	an
Ū,	Ξ
Ľ.	Z
ш.	st-
Ũ	Ju
	us
i	Ξ
	<u>7</u> .
	on
	se
	lu
	na
	CSO
	bei
	JT]
1	Щ

Compound	MW ^a	mp ^b	Yield	Log P ^c	R _f
	(g/mol)	(°C)			
1a	427	203-206	24%	1.70	0.40
1b	441	200-206	18%	2.12	0.38
1c	455	190-192	12%	2.59	0.40
1d	469	204-207	17%	3.00	0.40
2a	423	200-202	19%	2.56	0.54
2b	437	194-196	20%	2.98	0.52
2c	451	176-181	31%	3.44	0.44
2d	465	137-139	28%	3.86	0.56
3a	423	106-108	14%	2.56	0.58
3b	437	137-139	38%	2.98	0.56
3c	451	167-172	21%	3.44	0.52
3d	465	198-199	39%	3.86	0.56
4 a	423	136-138	21%	2.56	0.60
4b	437	117-118	41%	2.98	0.64
4c	451	123-124	15%	3.44	0.52
4d	465	155-160	25%	3.86	0.60
Nifedipine					

Table 1. Physical properties of synthesized unsymmetrical dihydropyridine compounds.

^a Molecular weight. ^b Melting point. ^c Logarithm of partition coefficient between n-octanol and water (LogP) calculated by DruLiTo 1 software.

Compound	IC ₅₀ (µM)							
	HL-60	K562	LS180	MCF-7				
1a	>200	>200	>200	$102.8 \pm 24.2^*$				
1b	151.7 ± 75.4	>200	>200	100.0 ± 30.9				
1c	107.0 ± 17.5	>200	128.6 ± 33.7	106.1 ± 28.9				
1d	133.4 ± 6.5	>200	115.7 ± 51.8	39.7 ± 4.4				
2a	22.5 ± 4.5	34.7 ± 2.6	43.0 ± 5.9	44.1 ± 5.2				
2b	44.2 ± 6.8	23.4 ± 1.6	27.4 ± 4.5	36.1 ± 3.5				
2c	30.4 ± 2.4	11.1 ± 2.2	37.0 ± 2.1	24.1 ± 3.8				
2d	36.4 ± 5.7	52.6 ± 13.9	54.2 ± 3.0	84.7 ± 16.4				
3 a	43.3 ± 1.3	78.5 ± 4.4	56.9 ± 5.4	46.2 ± 10.0				
3b	44.6 ± 1.6	32.4 ± 0.9	46.5 ± 5.9	38.1 ± 2.3				
3c	38.0 ± 2.0	21.8 ± 2.2	89.6 ± 10.4	26.8 ± 3.5				
3d	11.7 ± 0.4	21.8 ± 1.8	32.5 ± 4.3	32.4 ± 3.9				
4 a	40.9 ± 4.1	49.6 ± 4.2	65.0 ± 10.7	55.8 ± 13.4				
4b	35.0 ± 5.6	35.5 ± 7.6	50.6 ± 11.7	35.6 ± 4.0				
4c	24.0 ± 2.5	22.1 ± 6.5	32.5 ± 6.4	24.9 ± 5.8				
4d	25.0 ± 2.3	16.0 ± 2.0	30.6 ± 8.5	20.4 ± 5.5				
Doxorubicin	$(6.9 \pm 0.9) \times 10^{-3}$	$(68.3 \pm 13.4) \times 10^{-3}$	$(51.1 \pm 12.3) \times 10^{-3}$	$(32.8 \pm 8.3) \times 10^{-3}$				

Table 2. Cytotoxic activity of synthesized dihydropyridine compounds on various human cancer cell

 lines.

* The values higher than 100 μ M are obtained by extrapolation of the dose-response curve. Values are presented as mean \pm S.E.M. of at least 4 experiments.

Compound	IC ₅₀ of doxorubicin in the presence of different concentrations of test compound								
	0 µM	0.5 μΜ	1 µM	2.5 μM	5 μΜ	10 µM	25 μΜ		
1 a	702.1 (97.4)	-	-	-	664.4 (135.9)	435.5 (92.6)	551.1 (60.5)		
11.	725 5(92 2)				540.0 (01.7)	500 4 (51 2)	180.9*		
10	725.5(82.3)	-	-	-	348.8 (81.7)	300.4 (31.2)	(17.1)		
1.	770 4 (100 2)				018 5 (50.0)	5(1,1,(107,5)	111.6*		
Ic	//0.4 (109.2)	-	-	-	918.5 (59.0)	561.1 (127.5)	(12.0)		
1d	695.3 (192.9)	-	-	437.8 (58.1)	198.8* (45.2)	-	-		
2a	629.5 (125.7)	-	-	-	1017.2 (83.5)	674.2 (141.5)	-		
2b	837.0 (90.4)	4) -		1004.6	04.6 682.3 (80.9) 31.1)	425.8*(45.7)			
			-	(131.1)			-		
2c	862.4 (110.8)	-	-	681.7 (74.8)	530.4 (146.9)	269.9* (220.4)	-		
2d	1005.7(169.3)	642.3 (111.3)	426.7* (43.7)	306.3*(53.4)	72.6* (22.9)	-	-		
3 a	828.5 (73.4)	-	852.8 (204.0)	442.0*(107.1)	88.4*(25.7)	-	-		
3 b	798.3 (77.4)	-	585.6 (77.3)	378.6* (65.9)	112.3* (50.8)	-	-		
3c	964.5 (97.6)	737.7 (125.7)	615.5* (70.1)	334.5* (31.3)		-	-		
3d	838.6 (60.0)	-	515.0*(195.4)	429.3* (37.9)	303.5* (51.2)	-	-		
4a	563.2 (115.7)	-	434.0 (40.8)	303.7* (47.3)	-	-	-		
4b	777.2 (148.4)	-	386.8* (16.8)	148.3* (24.9)	-	-	-		
40	748 2 (81 1)	748.2 (81.1) 683.9 (65.7)	454.4*	210 5* (20 7)	-	-			
40	/48.2 (81.1)		(127.9)	219.3* (39.7)			-		
4d	815.1 (45.5)	667.4 (106.9)	537.1* (65.4)	239.5* (14.5)	69.0* (26.0)	-	-		

* The difference between the IC_{50} value of doxorubicin (expressed in nM) in the absence of the test compound (0 μ M) and its presence at different concentrations (0.5-25 μ M) was significant (p < 0.05). Values are presented as mean (S.E.M.) of at least 4 experiments and differences were analysed by using the one-way ANOVA followed by LSD test.

Compound	IC ₅₀ of doxorubicin at the presence of different concentrations of test compound									
	0 µM	0.5 µM	1 µM	2.5 μΜ	5 μΜ	10 µM	25 μΜ			
1a	28.9 (4.8)	-	-	-	32.8 (14.0)	32.1 (6.6)	21.2 (3.9)			
1b	42.0 (9.1)	-	-	-	21.8 (8.8)	29.0 (8.3)	21.9 (6.4)			
1c	36.7 (10.2)	-	-	-	30.6 (10.6)	26.2 (9.1)	17.3 (7.7)			
1d	40.9 (8.1)	-	-	43.2 (11.8)	35.1 (8.0)	-	-			
2a	29.9 (3.5)	-	-	-	30.1 (4.8)	20.4 (2.7)	-			
2b	28.3 (2.5)	-	-	36.9 (6.1)	33.6 (7.2)	24.4 (5.0)	-			
2c	25.2 (3.4)	-	-	33.0 (14.8)	26.2 (7.6)	11.8 (3.3)	-			
2d	33.0 (5.4)	26.8 (8.8)	30.6 (9.8)	29.0 (7.7)	24.1 (3.6)	-	-			
3 a	30.0 (4.4)	-	22.0 (1.0)	41.2 (4.6)	34.8 (7.4)	-	-			
3b	30.0 (3.1)	-	35.0 (5.6)	43.7 (8.7)	27.1 (2.4)	-	-			
3c	32.5 (2.7)	24.2 (1.8)	40.5 (5.1)	26.0 (4.2)	-	-	-			
3d	26.5 (3.2)	-	17.2 (2.4)	30.5 (3.9)	22.2 (3.2)	-	-			
4 a	35.2 (3.3)	-	42.5 (3.6)	38.7 (4.7)	-	-	-			
4b	39.8 (4.3)	-	33.5 (2.5)	30.4 (4.6)	-	-	-			
4c	33.9 (6.0)	27.0 (1.8)	30.0 (4.5)	18.2 (2.1)	-	-	-			
4d	33.3 (5.0)	31.2 (7.9)	31.1 (6.7)	23.4 (2.2)	23.0 (4.9)	-	-			

Table 4. Effects of synthesized dihydropyridine compounds on the sensitivity of non-resistant MES-SA cells to doxorubicin assessed by MTT assay.

* The differences between the IC_{50} value of doxorubicin (expressed in nM) in the absence of the test compound (0 μ M) and its presence at different concentrations (0.5-25 μ M) were not significant (p < 0.05). Values are presented as mean (S.E.M.) of at least 4 experiments and differences were analysed by using the one-way ANOVA followed by LSD test.

	ġ.
	õ
	ec
	ц Ч
	0
	on
	.S
	ē
	Ĺ,
	cia
	Ξ
	q
6	al
1	E
25	e
4	Ę
0	В
o	2
\geq	Ľf.
ra1	fe
ibi	ij.
Ц	ž
on	na
Ъ,	tn
Pi	Ē.
raı	uc
Ā	Ē
1	OSI
Ξť.	۲ġ,
LS	n
ve	ŏ
Ξ	ge
D	pa
IJ	ц т
nc	an
E	60
4	н.
ą	Ę
E	õ
ō	py
S.C	5
es	õ
pr	Ļ
- Ho	<u>.</u>
ar	p
se	pt
 4) 	· 🗆 -
cre	5
nrcre	nsci
w.nrcre	anusci
ww.nrcre	manusci
www.nrcre	d manusci
m www.nrcre	oted manusci
rom www.nrcre	epted manusci
d from www.nrcre	ccepted manusci
led from www.nrcre	e accepted manusci
aded from www.nrcre	the accepted manusci
nloaded from www.nrcre	is the accepted manusci
wnloaded from www.nrcre	ot is the accepted manusci
Downloaded from www.nrcre	ript is the accepted manusci
. Downloaded from www.nrcre	script is the accepted manusci
m. Downloaded from www.nrcre	nuscript is the accepted manuscr
hem. Downloaded from www.nrcre	nanuscript is the accepted manusci
Chem. Downloaded from www.nrcre	I manuscript is the accepted manuscr
J. Chem. Downloaded from www.nrcre	IN manuscript is the accepted manuscript
m. J. Chem. Downloaded from www.nrcre	st-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	is Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	This Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	. This Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	ly. This Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	only. This Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	se only. This Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	use only. This Just-IN manuscript is the accepted manuscript is the accepted manuscript is the accepted manuscript is the accepted manuscript and the accepted manuscript is the accepted manuscript manuscript is the accepted manuscript manuscript manuscript is the accepted manuscript manusc
Can. J. Chem. Downloaded from www.nrcre	al use only. This Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	onal use only. This Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	srsonal use only. This Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	personal use only. This Just-IN manuscript is the accepted manuscr
Can. J. Chem. Downloaded from www.nrcre	or personal use only. This Just-IN manuscript is the accepted manusci

Table	5.	Calcium	channel	blocking	activities	of	synthesized	unsymmetrical	dihydropyridine
compo	und	s.							

Compounds	IC ₅₀ (M)	P value*
1a	$(8.1 \pm 3.4) \times 10^{-6}$	0.000
1b	$(4.6 \pm 0.5) \times 10^{-7}$	0.163
1c	$(4.8 \pm 1.9) \times 10^{-7}$	0.334
1d	$(1.3 \pm 0.6) \times 10^{-6}$	0.008
2a	$(1.1 \pm 0.3) \times 10^{-8}$	1.000
2b	$(1.1 \pm 0.4) \times 10^{-7}$	1.000
2c	$(2.0 \pm 0.9) \times 10^{-7}$	0.997
2d	$(6.8 \pm 1.8) \times 10^{-7}$	0.036
3 a	$(6.5 \pm 1.3) \times 10^{-8}$	1.000
3 b	$(9.5 \pm 2.2) \times 10^{-8}$	1.000
3c	$(5.0 \pm 0.2) \times 10^{-8}$	0.713
3d	$(1.5 \pm 0.4) \times 10^{-7}$	0.997
4 a	$(1.8 \pm 0.7) \times 10^{-6}$	0.001
4 b	$(5.2 \pm 1.0) \times 10^{-7}$	0.086
4c	$(2.9 \pm 2.4) \times 10^{-6}$	0.014
4d	$(2.8 \pm 0.9) \times 10^{-6}$	0.000
Nifedipine	$(1.1 \pm 0.4) \times 10^{-7}$	-

* Statistical analysis of the difference between IC₅₀ values of test compounds and nifedipine.

Values are presented as mean \pm S.E.M. of 3-4 experiments.

			Hydrogen bond interaction		
Compound	ΔG	Ki	Atom of ligand	Amino acid	Distance
	(kcal/mol)	(nM)			(Å)
1c	-9.55	99.25	Oxygen (NO ₂)	Arg543	1.80
			Oxygen (NO ₂)	Arg543	2.51
			C=O (<i>iso</i> -propyl carboxylate)	Ser909	2.55
			C=O (pyridyl carboxylate)	Arg547	2.19
			N <u>H</u>	Gln441	1.81
2c	-9.94	51.70	Oxygen (NO ₂)	Arg547	2.02
			Oxygen (NO ₂)	Val472	2.11
			C=O (pyridyl carboxylate)	Arg543	2.14
			N <u>H</u>	Ser909	2.05
4a	-10.04	43 95	Oxygen (NO ₂)	Arg543	2.55
	10.01		Oxygen (NO_2)	Ser474	2.23
			C=O (methyl carboxylate)	Ser909	2.80
			C=O (pyridyl carboxylate)	Ser474	2.04
			N <u>H</u>	Gln441	1.97
40	10.30	28.31	$Oxygen(NO_{r})$	Ara5/13	2 20
70	-10.50	20.31	Oxygen (NO_2)	A1g545 Sor/17/	2.20
			C=O (iso propul carboxylate)	Sor000	2.40
			C=O(iso-propyr carboxylate)	Ser 171	2.70
			U-U (pyridyi cardoxylate)	Ser4/4	2.04
			N <u>H</u>	Gin441	1.98
			Nitrogen (pyridine ring)	Asn903	2.00

Table 6. Docking results of selected compounds with P-gp.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Can. J. Chem. Downloaded from www.nrcresearchpress.com by Auburn University - Draughton Library on 04/25/19 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

Can. J. Chem. Downloaded from www.nrcresearchpress.com by Auburn University - Draughton Library on 04/25/19 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

Fig. 6